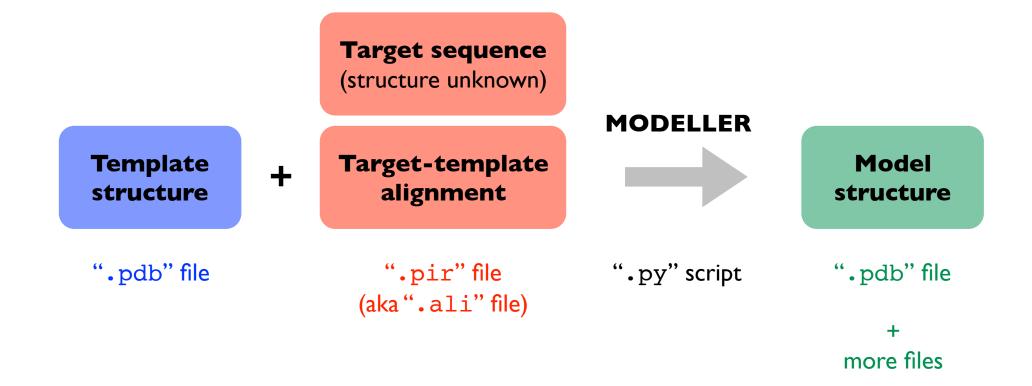
CHEM 436 / 630


Molecular modelling of proteins

Winter 2018 Term

Instructor:

Guillaume Lamoureux Concordia University, Montréal, Canada

Homology modelling

MODELLER's automodel command

I. Read the target-template alignment (so that we know which residue to compare to which)

2. List all the restraints that will have to be satisfied by our model

"This C_{α} should be close to that C_{α} ." "This dihedral angle should be around 110°." etc.

More about restraints :

A. Šali & T. L. Blundell. 1993. J. Mol. Biol. **234**, 779-815. http://salilab.org/pdf/Sali_JMolBiol_1993.pdf

A. Šali & J. Overington. 1994. *Protein Sci.* **3**, 1582-1596. http://salilab.org/pdf/Sali_ProteinSci_1994.pdf

3. Calculate a model that satisfies the restraints as well as possible

Spatial restraints

Spatial restraints are described using **probability distribution functions** (pdf's). **Feature** *x* (distance, angle, etc.) has the following **pdf** :

Examples of features (x) :

- C_{α} – C_{α} distances
- ϕ or ψ dihedral angles (backbone)

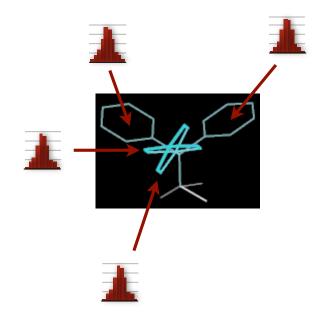
- X1 X2 X3 X4 torsion angles (side-chain rotamers)
- Atom overlaps (Atoms should not overlap.)
- etc.

Probability that x falls between

 x_1 and x_2 according to the pdf :

$$p(x_1 \le x \le x_2) = \int_{x_1}^{x_2} p(x) \, dx$$

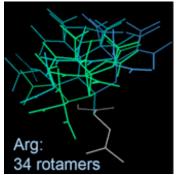
pdf's are defined **conditionally**.


Feature *x* has the following pdf when conditions *a*, *b*, *c*, *d* are met :

Examples of conditions (**a**) : "The amino acid is of a certain type." "The backbone is in an α-helix conformation." "The side-chain is in a certain rotameric state."

Example of a rotamer library

S.C. Lovell, J.M. Word, J.S. Richardson & D.C. Richardson. 2000. "The Penultimate Rotamer Library" *Proteins: Structure Function and Genetics* **40**, 389-408. <u>http://www3.interscience.wiley.com/journal/72504897/abstract</u>

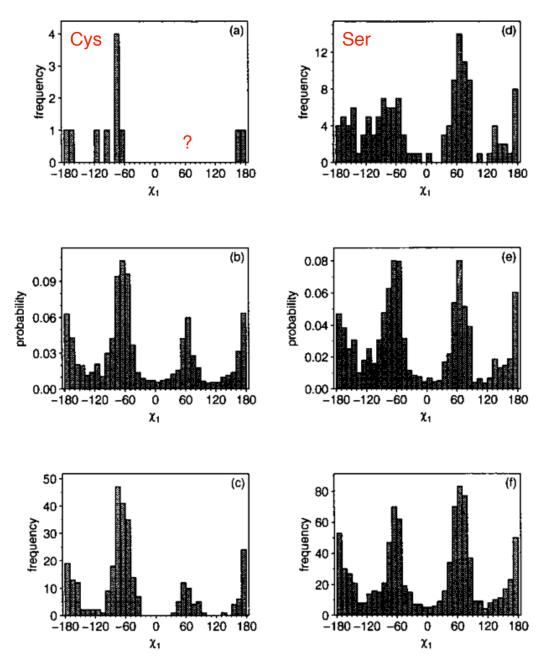

Name	#	%	alpha	beta	other	χ1	χ1	χ2	x 2	χ2	χ1 χ2
						mode	comm.	mode	comm.	range	1/2 Width at 1/2 Height
Phenylalanine											
p90°	202	13%	1%	24%	11%	59	62	88	90	60 to 90, -90 to-60	11 11
t80°	522	33%	57%	18%	29%	177	-177	80	80	20 to 90, -90 to -75	13 17
m-85°	697	44%	29%	51%	47%	-64	-65	-83	-85	50 to 90, -90 to -50	12 17
m <u>-30°</u>	149	9%	12%	5%	11%	-64	-65	-19	-30	-50 to 0, 0 to 50	9 20
		98%	97%	99%	98%					-	
	1570/1	599	389	514	667						

Example of a rotamer library

S.C. Lovell, J.M. Word, J.S. Richardson & D.C. Richardson. 2000. "The Penultimate Rotamer Library" *Proteins: Structure Function and Genetics* **40**, 389-408. <u>http://www3.interscience.wiley.com/journal/72504897/abstract</u>

Name	#	%	alpha	beta	other	χ1	χ 1	χ2	x 2	χ3	X 3	χ4	x 4	χ1 χ2 χ3 χ4
Arginine						mode c	omm.ª	mode	comm.	mode	comm.	mode	comm.	1/2 Width at 1/2 Height
ptp85° ^b	3	<1% ^c	0%	1%	<1%		62		180		65		85	
ptp180°	11	1%	0%	2%	2%	71	62	171	180	65	65	-161	-175	14 17 10 13
ptt85°	16	2%	1%	2%	2%	65	62	-178	180	-179	180	88	85	13 14 13 17
ptt180°	16	2%	1%	2%	2%	59	62	176	180	-178	180	-177	180	15 13 15 19
ptt-85°	15	2%	1%	2%	2%	66	62	-176	180	-178	180	-83	-85	15 14 12 14
ptm180°	6	1%	0%	1%	1%		62		180		-65		175	
ptm-85°	5	1%	0%	0%	1%		62		180		-65		-85	
tpp85°	11	1%	3%	1%	<1%	-178	-177	57	65	57	65	85	85	13 13 12 15
tpp180°	8	1%	1%	0%	1%		-177		65		65		-175	
tpt85°	20	2%	3%	2%	2%	177	-177	64	65	180	180	86	85	14 13 15 14
tpt180°	15	2%	3%	1%	1%	179	-177	60	65	178	180	163	180	13 17 14 17
ttp85°	33	4%	5%	3%	3%	-179	-177	177	180	65	65	83	85	14 17 13 15
ttp180°	25	3%	5%	3%	1%	-178	-177	-178	180	65	65	-162	-175	14 16 14 26
ttp-105°	9	1%	1%	1%	1%		-177		180		65		-105	
ttt85°	19	2%	2%	2%	2%	-175	-177	176	180	179	180	83	85	14 14 13 14
ttt180°	33	4%	3%	7%	3%	-179	-177	177	180	-179	180	170	180	15 13 12 27
ttt-85°	26	3%	3%	3%	2%	-179	-177	179	180	180	180	-86	-85	15 14 14 15
ttm105°	10	1%	2%	1%	<1%	-178	-177	170	180	-66	-65	107	105	15 16 15 15
ttm180°	13	1%	<1%	4%	1%	180	-177	-178	180	-67	-65	176	175	15 12 11 15
ttm-85°	28	3%	3%	3%	3%	-175	-177	-178	180	-65	-65	-84	-85	14 16 15 14
mtp85°	22	2%	2%	3%	2%	-69	-67	177	180	64	65	84	85	13 17 13 13
mtp180°	45	5%	4%	3%	6%	-65	-67	176	180	64	65	-174	-175	12 19 13 19
mtp-105°	7	1%	0%	2%	1%	-62	-67	179	180	67	65	-113	-105	11 15 13 15
mtt85°	34	4%	4%	4%	3%	-67	-67	178	180	179	180	83	85	12 19 13 19
mtt180°	89	9%	9%	5%	12%	-67	-67	-178	180	-177	180	174	180	14 13 13 21
mtt-85°	53	6%	4%	7%	6%	-66	-67	-177	180	-179	180	-83	-85	13 13 13 13
mtm105°	15	2%	1%	1%	2%	-68	-67	-179	180	-65	-65	103	105	12 13 13 15
mtm180°	48	5%	1%	4%	8%	-68	-67	173	180	-64	-65	180	175	14 17 13 30
mtm-85°	54	6%	13%	2%	3%	-69	-67	-167	-167	-63	-65	-86	-85	14 13 13 13
mmt85°	7	1%	1%	1%	1%		-62		-68		180		85	
mmt180°	18	2%	1%	3%	2%	-63	-62	-66	-68	-179	180	-168	180	13 13 10 29
mmt-85°	22	2%	<1%	4%	3%	-60	-62	-72	-68	-178	180	-92	-85	14 13 15 13
mmm180°	11	1%	<1%	2%	2%	-64	-62	-74	-68	-67	-65	172	175	14 15 10 13
mmm-85°	22	2%	2%	3%	3%	-62	-62	-64	-68	-61	-65	-82	-85	14 13 15 13
		82%	79%	81%	84%									

769/938^d


234 146

389

χ type	Residue types	Class	Range (°)	$ Mean \bar{\chi}_i (°) $	Standard deviation $\sigma(\chi_i)$ (°)
χ1	C, D, E, F, H, I, K, L, M, N, Q, R, S, T, V, W, Y	+	[0, 120]	63	10
		t	[120, 240]	180	10
			[-120, 0]	-63	10
χ2	E, I, K, L, M, Q, R	+	[0, 120]	65	10
		t	[120, 240]	180	10
		_	[-120, 0]	-65	10
	D	1	[0, 180]	0	25
	Ν	1	[-180, 0]	-50	10
		2	[0, 80]	10	10
		3	[80, 180]	140	10
	H, W	1	[-180, 0]	-75	10
		2	[0, 180]	75	10
	F, Y	1	[0, 180]	75	10
χ3	K, M, R, Q	+	[0, 120]	65	10
		t	[120, 240]	180	10
		_	[-120, 0]	-65	10
	E	1	[35, 85]	60	15
		2	[85, 395]	180	35
χ4	К	+	[0, 120]	65	15
		t	[120, 240]	180	15
		_	[-120, 0]	-65	15
	R	+	[0, 70]	45	10
		t	[70, 255]	170	35
		—	[-105, 0]	-80	10

Table 5 Definition of the χ_1 , χ_2 , χ_3 and χ_4 side-chain dihedral angle classes

Approximate mean values and standard deviations for each peak are also given. See Šali (1991) for histograms of χ_i for each residue type that result in these definitions of the classes.

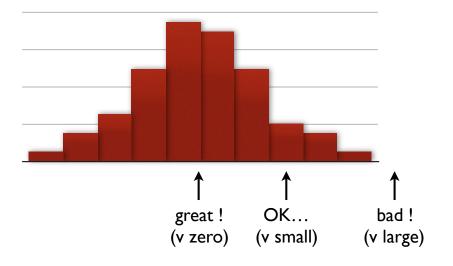
Figure from :

A. Šali & T. L. Blundell. 1993. J. Mol. Biol. **234**, 779-815. http://salilab.org/pdf/Sali_JMolBiol_1993.pdf

Figure 4. Smoothing sparse distributions of χ_1 side-chain dihedral angles. (a) A distribution of χ_1 angles of 11 Cys residues obtained from a small database of 8 proteins, totalling 1245 residues with χ_1 side-chain dihedral angles. The proteins are 4hvp, 2rspa, 4ape-n, 2app-n, 2apr-n, 3cms-n, 5pep-n, 2apr-c (see Table 1 for the protein names). (b) The smoothed Cys distribution obtained from the small database of 8 structures. The smoothing parameter σ was 5. (c) The "reliable" non-smoothed distribution of Cys χ_1 was obtained from the whole local database of 80 protein structures. This distribution consists of 297 Cys residues. (d) 138 Ser residues in the small database. (e) The smoothed Ser distribution. (f) 923 Ser residues in the large database.

Spatial restraints

We find the list of restraints that are appropriate to apply given the template structure we use.


For each residue of the template structure, we pick the pdf that corresponds to the residue type and residue conformation.

If the residue does not match the target residue, we use a pdf that depends only on the residue type (and not on its conformation)

We find the model structure that best satisfies those restraints.

Easier said than done...

We calculate the level of violation for each restraint.

Structure optimization

Protein structure :

$$\mathbf{R} = \{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \ldots\}$$

(vector of 3N elements R_i)

Violation function :

```
V = f(\mathbf{R}, \text{restraints})
Also includes restraints
to enforce a realistic
```

stereochemistry (CHARMM force field)

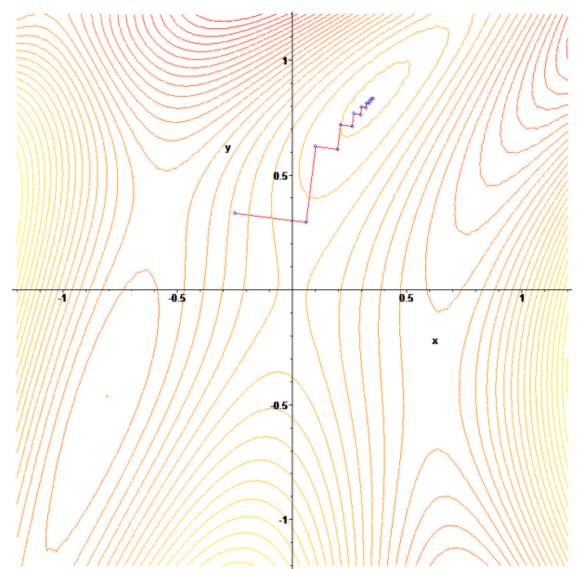


Figure from : Wikipedia: Gradient descent

Optimization flowchart in automodel

(from the MODELLER user manual: <u>https://salilab.org/modeller/manual/node493.html</u>)

- I. Generate the optimization schedule for the variable target function method (VTFM).
- 2. Read the initial model (".ini" file).
- 3. Randomize the coordinates of the initial structure.
- 4. Optimize the model :
 - 4.1 Partially optimize the model by VTFM :
 - Select only the restraints that operate on the atoms that are close enough in sequence, as specified by the current step of VTFM.
 - Optimize the model by conjugate gradients (CG), using only currently selected restraints.
 - Repeat as many times as specified.
 - 4.2 Refine the model by simulated annealing with molecular dynamics (MD) :
 - Do a short CG optimization.
 - Increase T in several steps and do MD optimization at each T.
 - Decrease T in several steps and do MD optimization at each T.
 - Do a short CG optimization.
- 5. Calculate the remaining restraint violations and write them out.
- 6.Write out the final model to a file ". B9999????.pdb".

Think you found a good model ?

"Not so fast."

DOPE score

Statistical potential extracted from high-resolution, nonredundant protein structures.

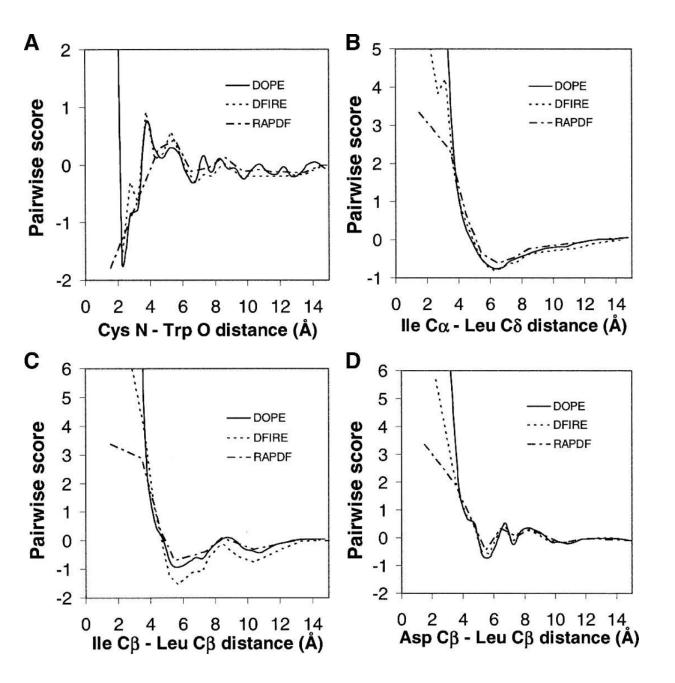
Tested to see how good it was at scoring conformations of proteins depending on how close they were to the native conformation. **Reference :** M.-y. Shen & A. Šali. 2006. *Protein Sci.* **15**, 2507-2524. <u>http://dx.doi.org/10.1110/ps.062416606</u>

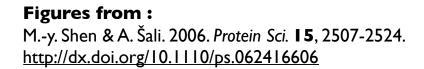
Statistical potential :

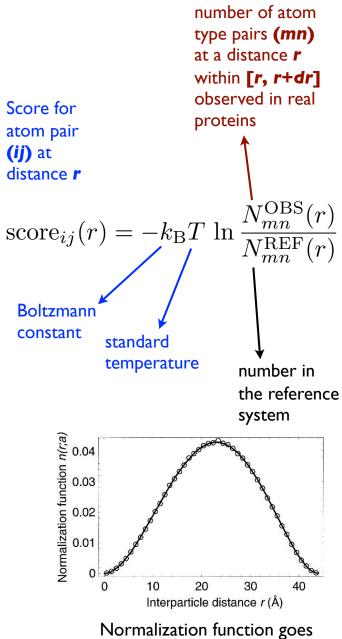
A protein conformation has a lower (statistical) potential if it is found more often than expected.

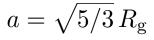
What is our initial level of expectation ?

Problem of defining the "reference state"


How do we define conformations ?




DOPE uses the "bag of amino acids" state


DOPE uses distances between atoms of different types.

Normalization function goes from $\mathbf{r} = \mathbf{0}$ to $\mathbf{r} = \mathbf{a}$, the size of the protein :

