CHEM 436 / 630

Molecular modelling of proteins

Winter 2018 Term

Instructor:

Guillaume Lamoureux Concordia University, Montréal, Canada

Molecular dynamics

"Putting the thermal fluctuations back into a protein structure"

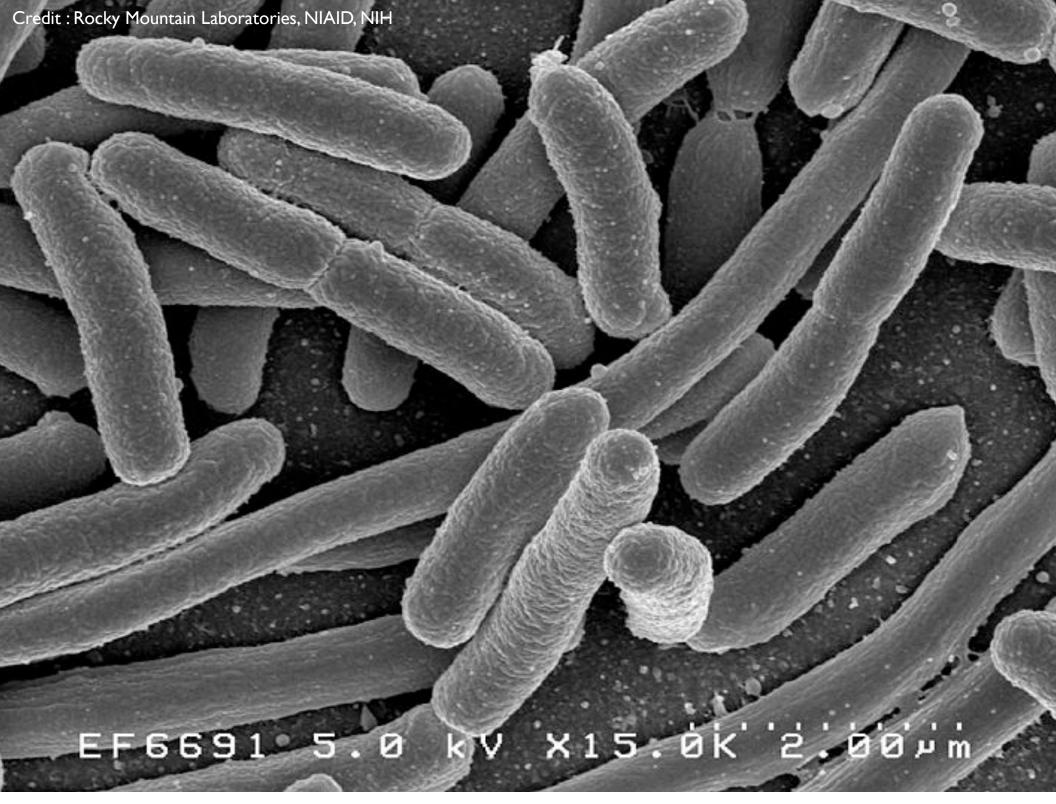
Basic techniques :

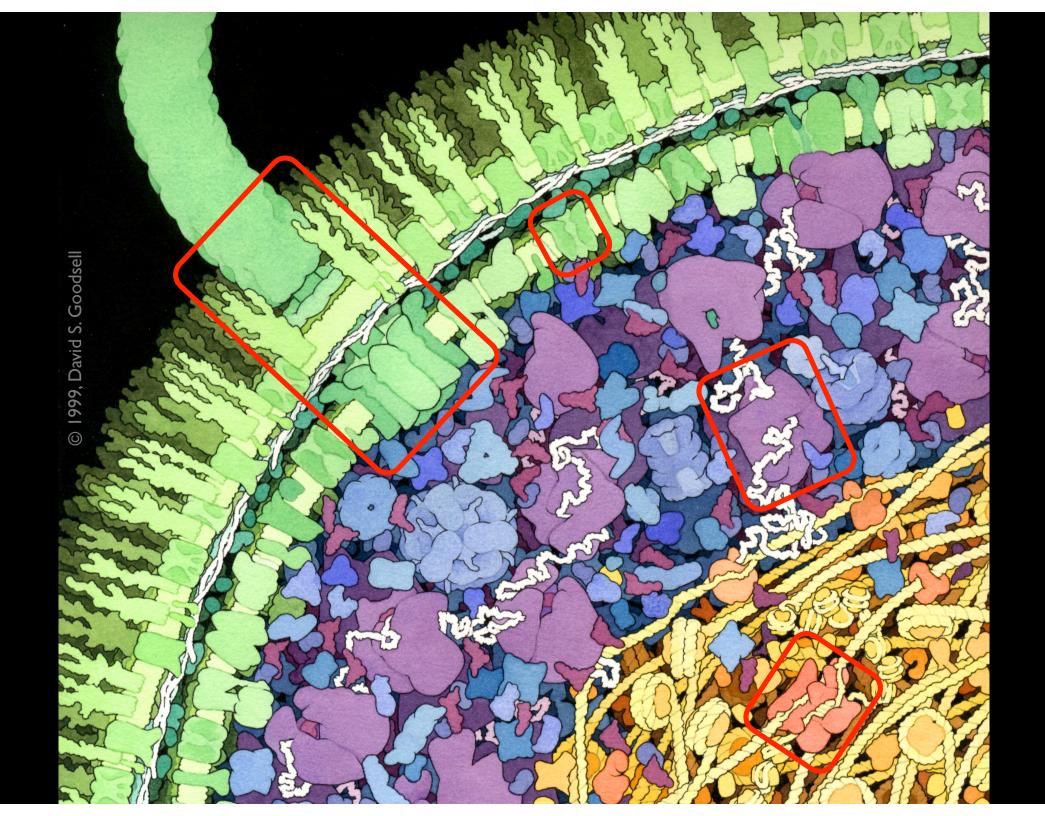
Simulation of a system undergoing thermal fluctuations

Advanced techniques :

Free energy calculations

- Conformational sampling / searching
- Exploration of dynamics
- Debye–Waller factors (x-ray)
- Diffusion coefficients
- IR spectra
- NMR observables
- Raman spectra
- Reaction profiles (conformational change, substrate permeation, etc.)
- Binding free energies of ligands
- Partition constants ("log P")
- Thermodynamic effects of a mutation
- pK_a calculations
- Rate constants / kinetics

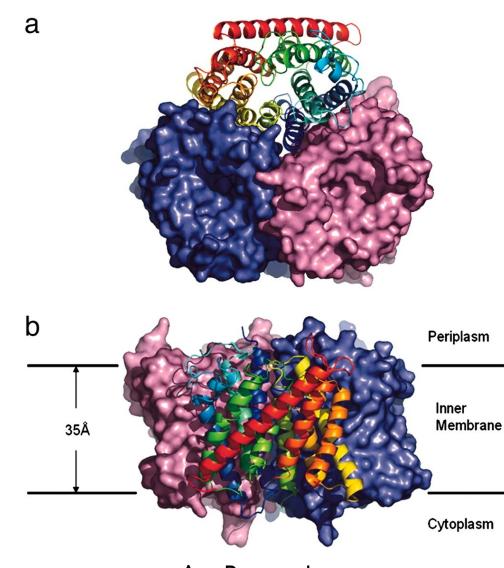




Unique protein chains: 1

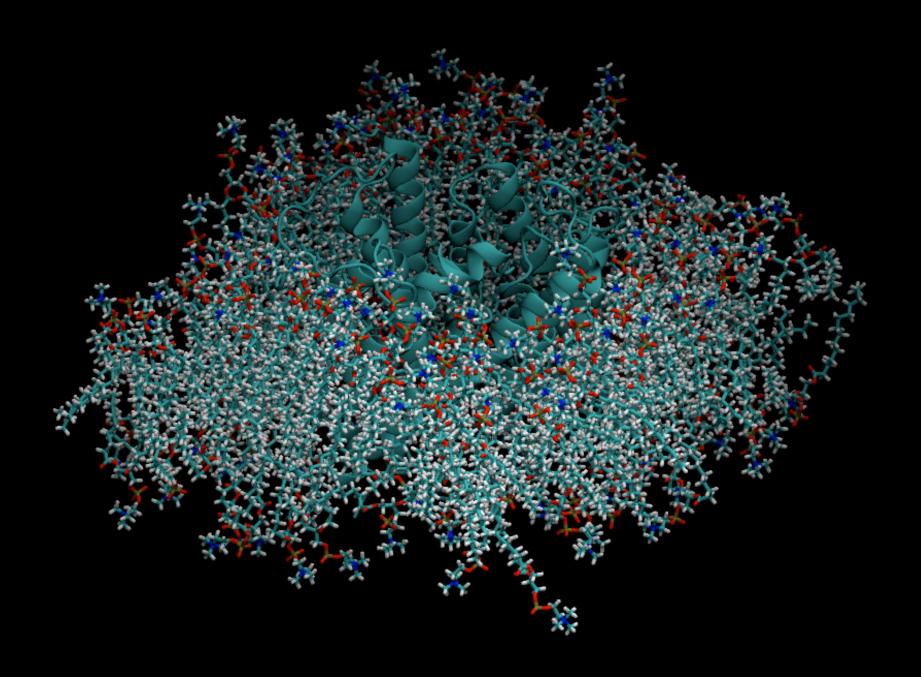
DOI: 10.1073/pnas.0406475101

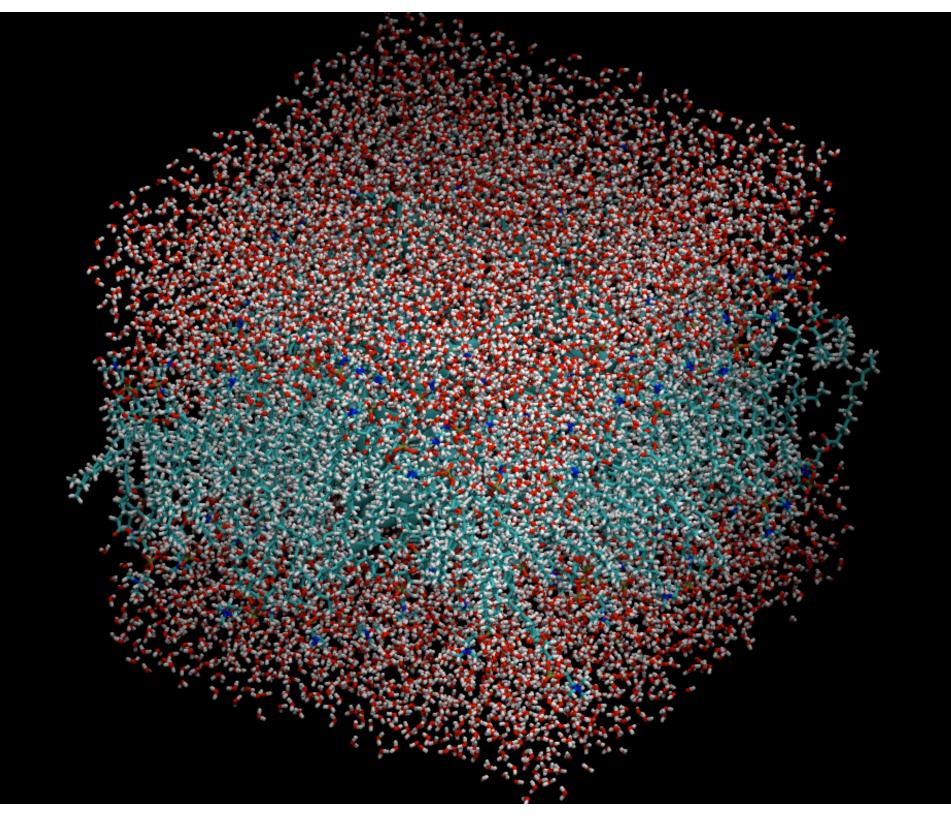
AmtB structure

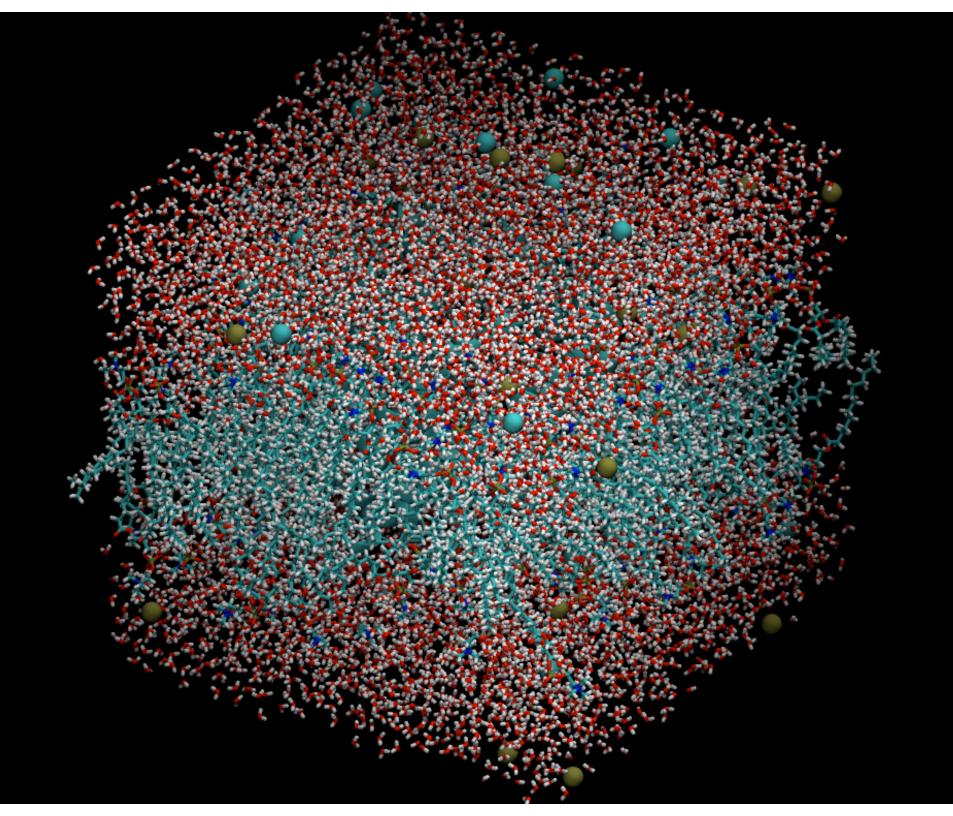


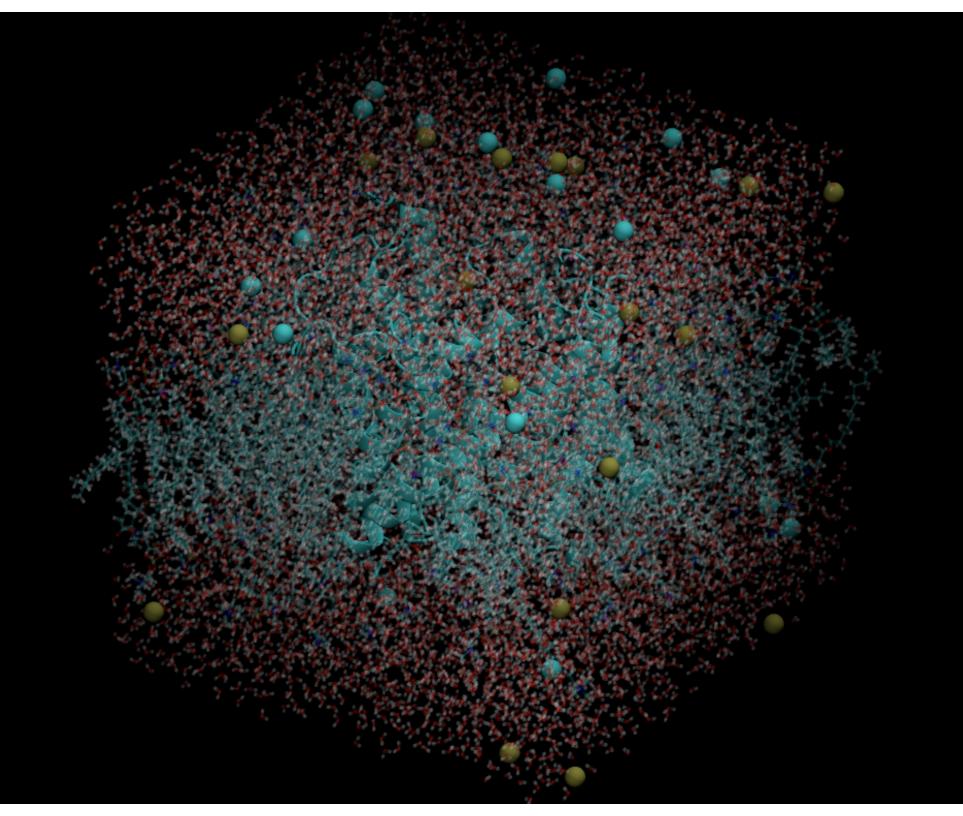
AmtB crystal structure (Zheng et al., PNAS 2004, **101**, 17090)

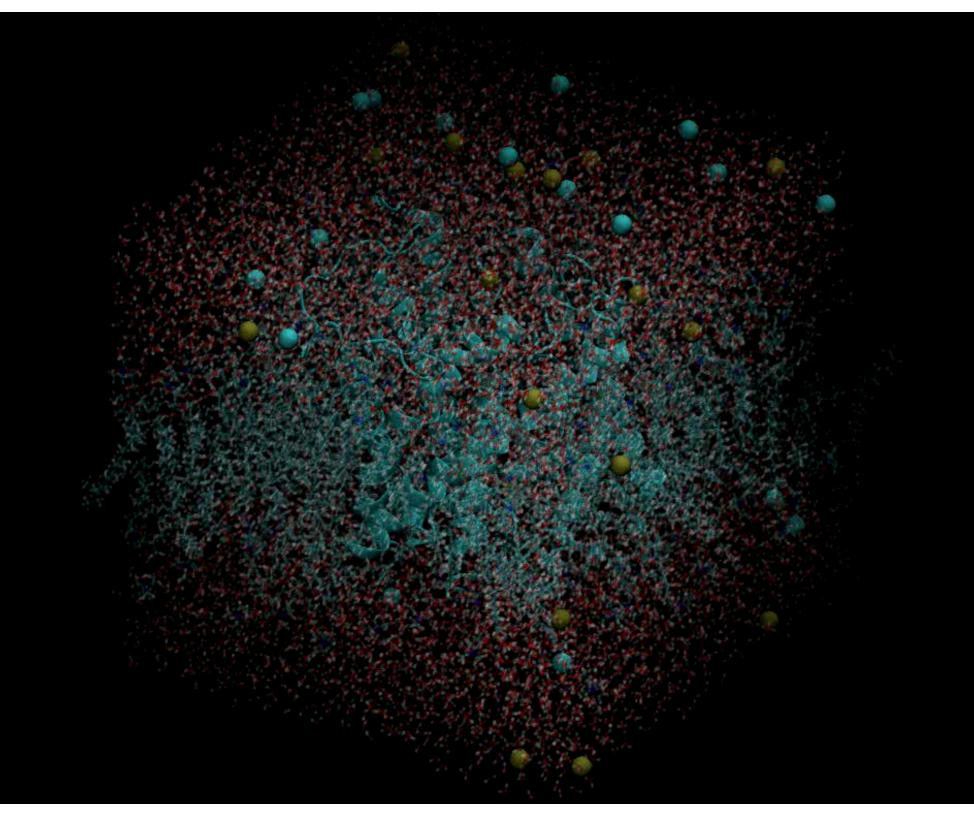






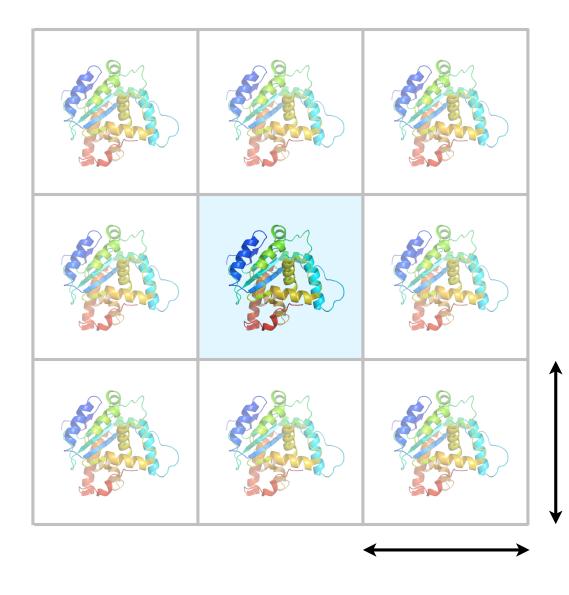






Periodic boundary conditions

(with electrostatic energy calculated using an Ewald summation)



Lattice size should be large enough to accommodate tumbling motions of the solute and to preserve a layer of solvent of **at least 2 Debye lengths** between the images.

Numerical integration

$$m_i \mathbf{a}_i(t) = \mathbf{F}_i(t)$$

Non-integrable system of differential equations

Finite-difference approximations :

$$\mathbf{a}_{i}(t) \simeq \frac{\mathbf{v}_{i}(t + \frac{1}{2}\delta t) - \mathbf{v}_{i}(t - \frac{1}{2}\delta t)}{\delta t}$$

$$\mathbf{v}_i(t+\frac{1}{2}\delta t) \simeq \frac{\mathbf{r}_i(t+\delta t)-\mathbf{r}_i(t)}{\delta t}$$

$$\mathbf{v}_i(t - \frac{1}{2}\delta t) \simeq \frac{\mathbf{r}_i(t) - \mathbf{r}_i(t - \delta t)}{\delta t}$$

Finite-difference version of Newton's equations :

$$m_i \frac{\mathbf{r}_i(t+\delta t) - 2\mathbf{r}_i(t) + \mathbf{r}_i(t-\delta t)}{\delta t^2} = \mathbf{F}_i(t)$$

We can calculate
$$\mathbf{r}_i(t+\delta t)$$
 from $\mathbf{r}_i(t)$ and $\mathbf{r}_i(t-\delta t)$:

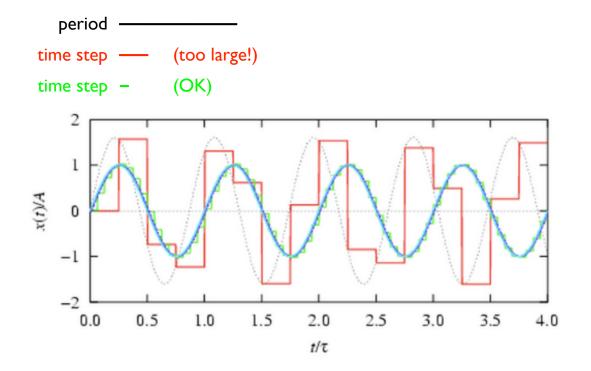
$$\mathbf{r}_i(t+\delta t) = 2\mathbf{r}_i(t) - \mathbf{r}_i(t-\delta t) + \delta t^2 \frac{\mathbf{F}_i(t)}{m_i}$$

(Verlet formula, 1967)

Choice of time step (δt)

Rule of thumb :

 δt should be at least one tenth of the shortest period of oscillation of the system, but ideally one twentieth.



O–H stretch : ~3500 cm⁻¹ $\Rightarrow \tau \sim 10$ fs $\Rightarrow \delta t \sim 0.5$ fs

C=O stretch : ~1700 cm⁻¹ N-O stretch : ~1600 cm⁻¹ C=C stretch : ~1600 cm⁻¹ $\Rightarrow \delta t \sim 1.0$ fs To avoid using a 0.5 fs time step, the X–H bonds can be kept rigid (using the SHAKE algorithm).

How long should the simulation be ?

Typical time for crossing an energy barrier :

$$\tau = \tau_o \, e^{\Delta G^{\ddagger}/k_{\rm B}T}$$

$$\Delta G^{\ddagger}$$

Using $\tau_0=1~\mathrm{ps}$:

1 kcal mol⁻¹ \Rightarrow **1.2 ps⁻¹** ("1.2 crossings per ps")

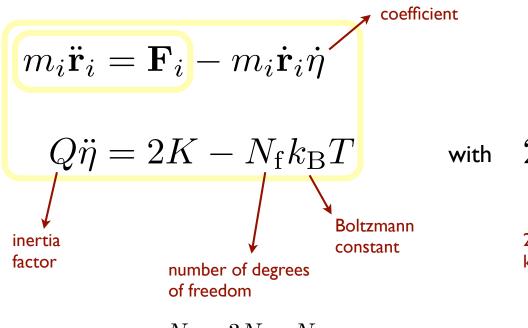
5 kcal mol⁻¹ \Rightarrow **1.4 ns**⁻¹

 $10 \text{ kcal mol}^{-1} \Rightarrow < 1 \text{ ms}^{-1}$

The problem gets worse if the system has multiple barriers...

"Thermostatted" Newton's equations (Nosé–Hoover equations)

variable friction



$$N_{\rm f} = 3N - N_{\rm c}$$

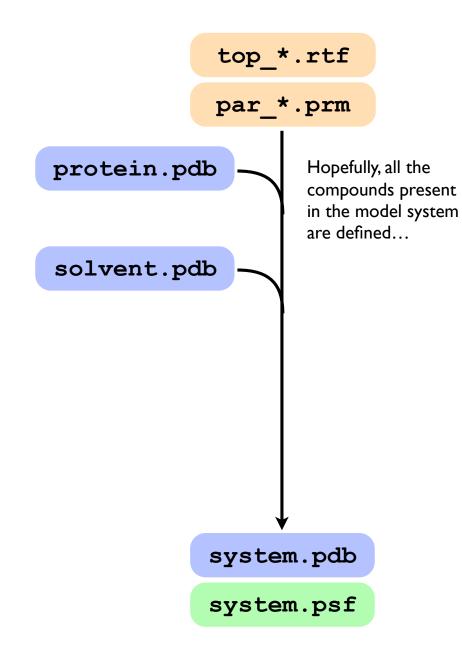
with $2K = \sum_j m_j \dot{r}_j^2$

2 times the total instantaneous kinetic energy of the system

According to the equipartition theorem, each degree of freedom of the system should have a kinetic energy of $\frac{1}{2}k_{\rm B}T$.

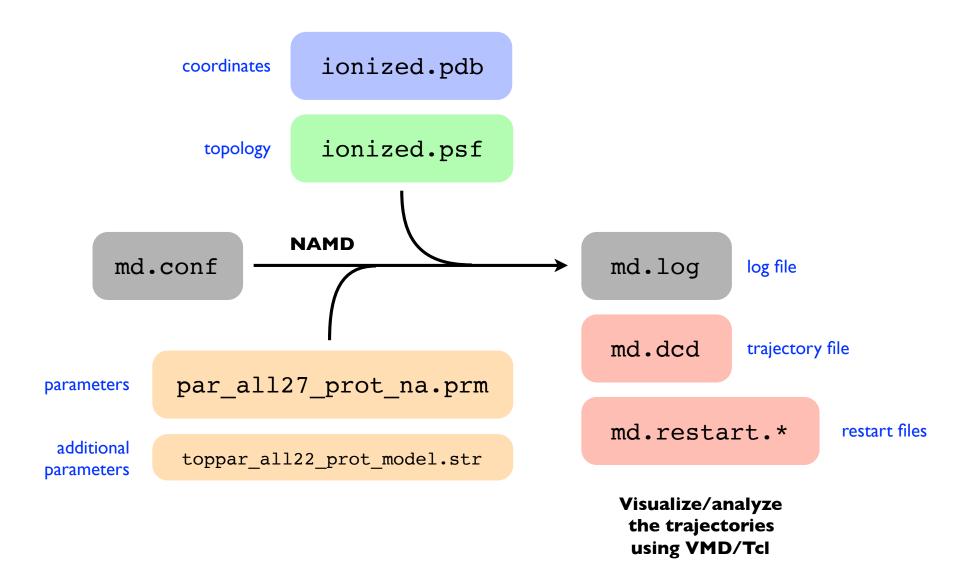
For that reason, K is related to the instantaneous temperature of the system.

General procedure for system setup



- Read topology and parameter files
- Read PDB file (protein coordinates)
- Add solvent / membrane
- Specify details of energy function (cutoff scheme, periodic boundary conditions, additional restraints, etc.)
- Minimize energy (to remove potential bad contacts)
- Write PDB and PSF (coordinates and topology)

MD simulation in **NAMD**



Molecular dynamics

"Putting the thermal fluctuations back into a protein structure"

Basic techniques :

Simulation of a system undergoing thermal fluctuations

Advanced techniques :

Free energy calculations

- Conformational sampling / searching
- Exploration of dynamics
- Debye–Waller factors (x-ray)
- Diffusion coefficients
- IR spectra
- NMR observables
- Raman spectra
- Reaction profiles (conformational change, substrate permeation, etc.)
- Binding free energies of ligands
- Partition constants ("log P")
- Thermodynamic effects of a mutation
- pK_a calculations
- Rate constants / kinetics

Debye–Waller factors (a.k.a. B-factors)

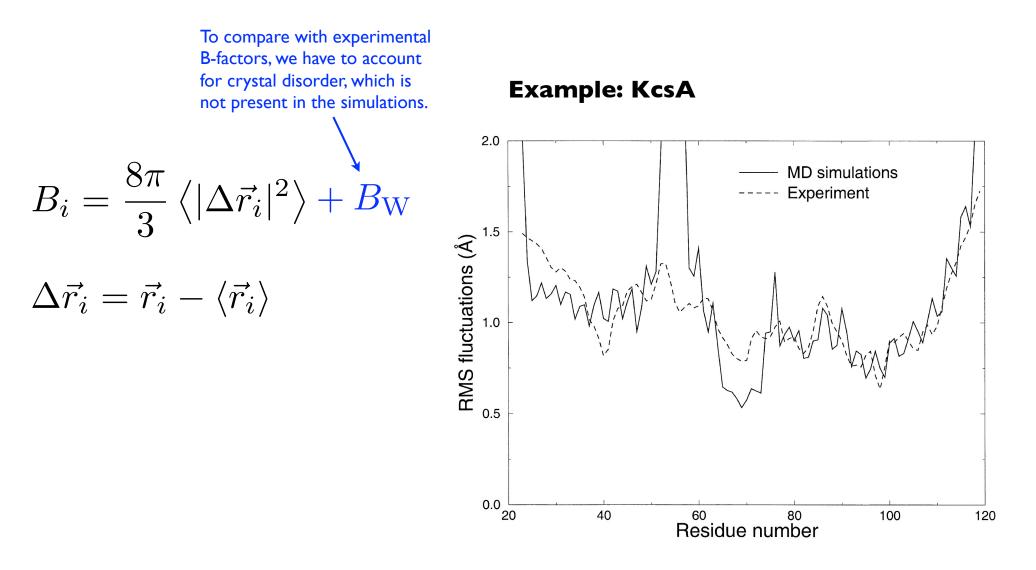


Figure from : Bernèche and Roux, *Biophys. J.* **78**, 2900–2917 (2000)

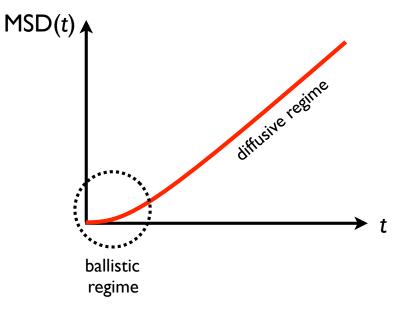
Diffusion coefficients

(for a molecule in a homogeneous environment)

$$MSD(t) = \left\langle |\mathbf{r}(t) - \mathbf{r}(0)|^2 \right\rangle$$
$$D = \lim_{t \to \infty} \frac{1}{6t} MSD(t)$$

We usually calculate the MSD by assuming that the fluctuations are *stationary* :

$$MSD(t) = \left\langle \left| \mathbf{r}(t+\tau) - \mathbf{r}(\tau) \right|^2 \right\rangle$$
$$= \frac{1}{N_{\tau}} \sum_{\tau}^{N_{\tau}} \left| \mathbf{r}(t+\tau) - \mathbf{r}(\tau) \right|^2$$



Radial distribution functions (RDFs)

(between pairs of atoms)

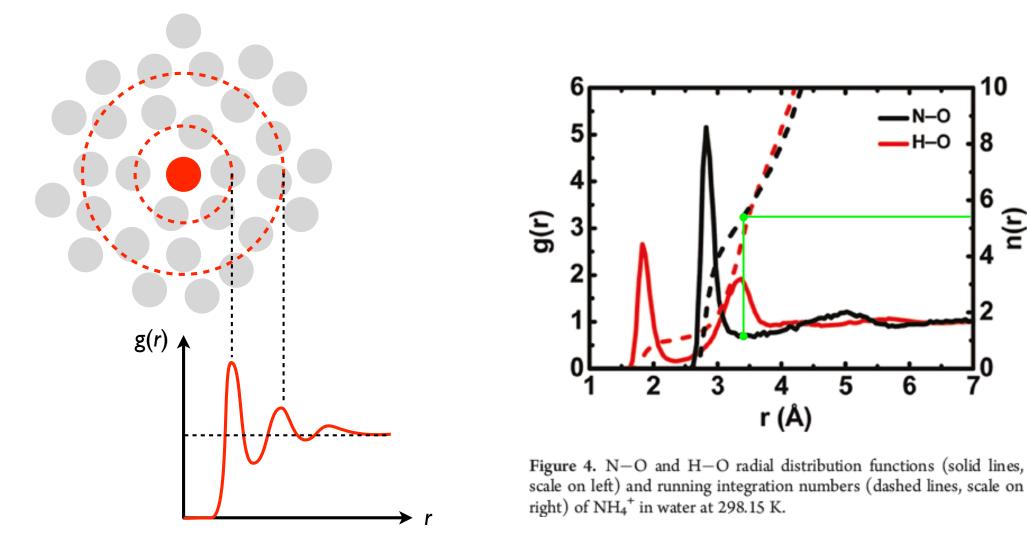


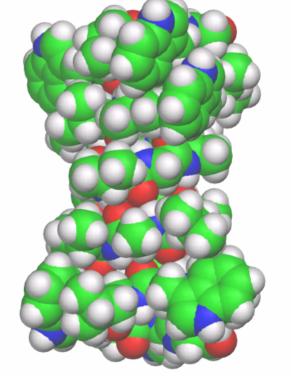
Figure from : Orabi and Lamoureux, J. Chem. Theory Comput. 8, 182–193 (2012)

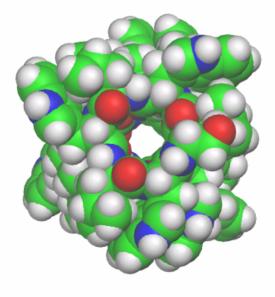
Gramicidin A channel

15 residues, alternating L and D amino acids : Formyl-Val-Gly-Ala-Leu-Ala-Val-Val-Trp-Leu-Trp-Leu-Trp-Leu-Trp-Ethanolamine

Urry. PNAS 68, 672–676 (1971)

Arseniev, Barsukov, Bystrov, Lomize, and Ovchinnikov. FEBS Lett. **186**, 168–174 (1985) Ketchem, Hu, and Cross. Science **261**, 1457–1460 (1993) Townsley, Tucker, Sham, and Hinton. Biochemistry **40**, 11676–11686 (2001)





Conducts H⁺, Cs⁺, Rb⁺, K⁺, Na⁺, Li⁺

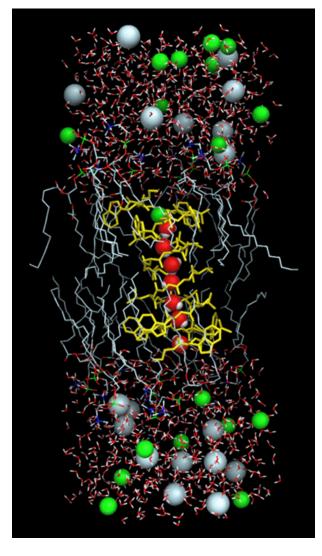
Impermeable to anions

Figure from : Roux, Acc. Chem. Res. **35**, 366–375 (2002)

Solid-state NMR observables

Chemical shift anisotropy (CSA)

$$\begin{split} \Delta \sigma &= \sigma_{||} - \sigma_{\perp} \\ \sigma_{||} &= \left\langle \hat{\mathbf{Z}} \cdot \sigma(t) \cdot \hat{\mathbf{Z}} \right\rangle_{\substack{\text{direction of the} \\ \text{magnetic field}}} \\ \sigma_{\perp} &= \frac{1}{2} \left\langle \hat{\mathbf{X}} \cdot \sigma(t) \cdot \hat{\mathbf{X}} + \hat{\mathbf{Y}} \cdot \sigma(t) \cdot \hat{\mathbf{Y}} \right\rangle_{\substack{\text{directions perpendicular} \\ \text{to the magnetic field}}} \\ \sigma(t) &= \sum_{i=1}^{3} \hat{\mathbf{e}}_{i}(t) \sigma_{ii} \hat{\mathbf{e}}_{i}(t)_{\substack{\text{directions perpendicular} \\ \text{to the magnetic field}}}} \\ \text{corresponding tensor element}_{\substack{\text{magnitudes}}} \\ \text{Tensor oriented relative to dipolar couplings}}_{\text{(C=O, N-C_{n}, N-H, etc.)}} \end{split}$$



 $\cdot \hat{\mathbf{Y}}$

Figure from : Allen, Andersen, and Roux, *ACS* **125**, 9868–9877 (2003)

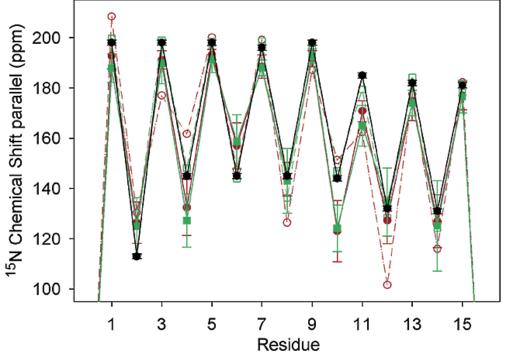
Solid-state NMR observables

Examples :

¹⁵N–¹H dipolar coupling (DC)

 C_{α} –²H quadrupolar splitting (DQS)

$$\left< \Delta \nu \right> = \Delta \nu_0 \left< \frac{3\cos^2 \theta(t) - 1}{2} \right>$$
 standard frequency splitting

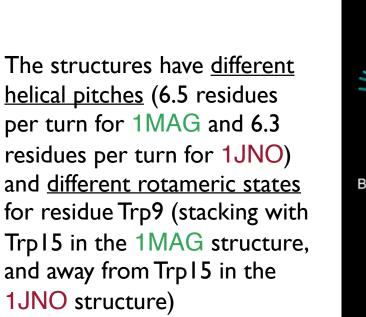


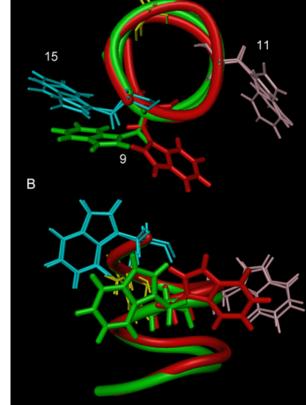
PDB: 1MAG

Ketchem, Lee, Hu, and Cross. *J. Biomol. NMR* **8**, 1–14 (1996) (solid-state NMR in DMPC bilayers)

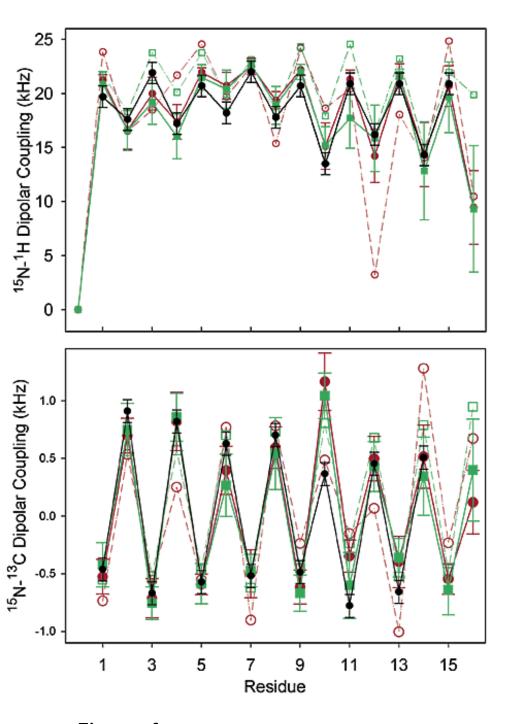
PDB: 1JNO

Townsley, Tucker, Sham, and Hinton. *Biochemistry* **40**, 11676–11686 (2001) (solution NMR in SDS micelles)

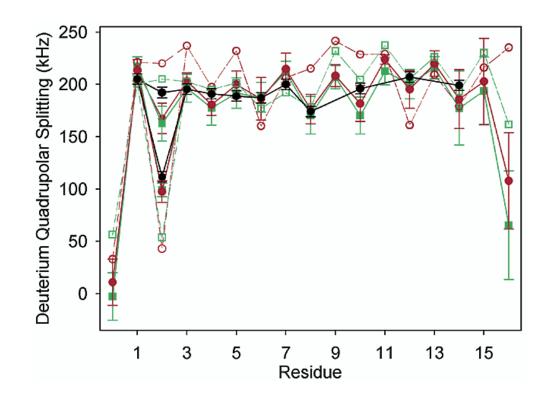




Figures from : Allen, Andersen, and Roux, JACS 125, 9868–9877 (2003)



Figures from : Allen, Andersen, and Roux, JACS 125, 9868–9877 (2003)



Backbone :

"Despite the differing helical pitches and NMR observables of the initial PDB:IJNO and PDB:IMAG structures, the two backbones become nearly indistinguishable after dynamic relaxation in the bilayer, attaining helical pitches consistent with independent X-ray determination and backbone NMR observables in close agreement with experiment."

Trp9:

"The observed isomerizations of the Trp9 side chain suggest that a mixture of rotameric states may better reproduce experiment. In fact, empirical fitting, supported by umbrella sampling calculations, suggests that a mixture of states consisting of 80% T and 20% K rotamers best reproduces side chain NMR observables."

Molecular dynamics

"Putting the thermal fluctuations back into a protein structure"

Basic techniques :

Simulation of a system undergoing thermal fluctuations

Advanced techniques :

Free energy calculations

- Conformational sampling / searching
- Exploration of dynamics
- Debye–Waller factors (x-ray)
- Diffusion coefficients
- IR spectra
- NMR observables
- Raman spectra
- Reaction profiles (conformational change, substrate permeation, etc.)
- Binding free energies of ligands
- Partition constants ("log P")
- Thermodynamic effects of a mutation
- pK_a calculations
- Rate constants / kinetics

Free energy (Gibbs) $e_{\downarrow}^{G/k_{\rm B}T} = \left\langle e_{\downarrow}^{(E+pV)/k_{\rm B}T} \right\rangle$ Gibbs instantaneous internal energy (potential + kinetic) energy (potential + kinetic)

It seems that computing the Gibbs energy of a system only amounts to calculating the exponential of the instantaneous enthalpy (H = E + pV) in an MD simulation at constant temperature and pressure.

Problem !

The higher the enthalpy of a region of phase space, the more it contributes to the average but the less often it is "visited" during the MD simulation.

Fortunately...

We care about free energy differences :

$$\Delta G = G_{\text{after}} - G_{\text{before}}$$

Still !

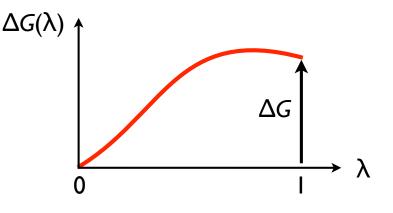
The free energy difference may be too large to be efficiently sampled from a free simulation.

Thermodynamic integration (TI)

We introduce a parameter λ that controls the simulation of the system in such a way that :

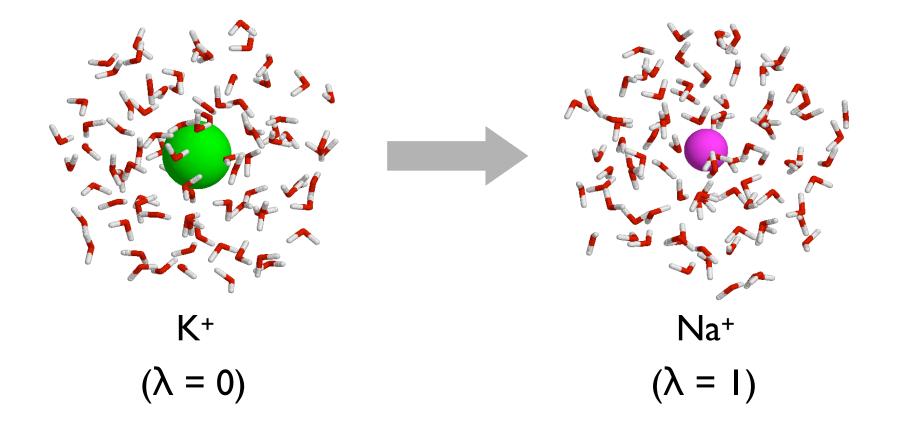
 $G(\lambda) = G_{before}$ when $\lambda = 0$ and $G(\lambda) = G_{after}$ when $\lambda = I$. $\Delta G = \int_0^1 d\lambda \, \frac{\partial G}{\partial \lambda}$ We can calculate a free energy difference by $= \int_{0}^{1} d\lambda \left\langle \frac{\partial U}{\partial \lambda} \right\rangle,$ integrating the "profile" of the derivative of U(the potential energy) with respect to λ ,

averaged over the isotherm-isobar ensemble corresponding to a specific value of λ .



Application of TI : Relative hydration free energies

$$U(\lambda) = (1 - \lambda) U_{\mathrm{K}^+} + \lambda U_{\mathrm{Na}^+}$$

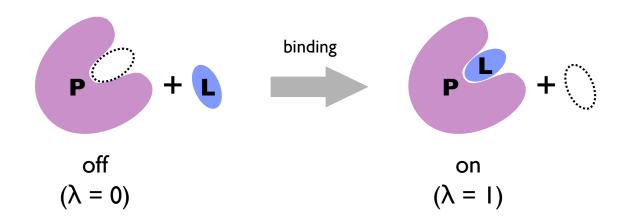


 $\Delta G = -17.2 \text{ kcal/mol}$

Application of TI : Binding free energies

Simple approach :

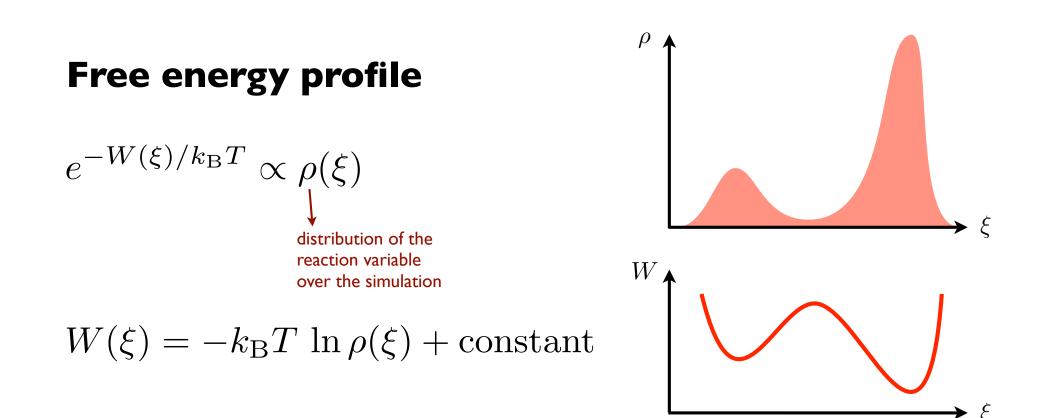
 $U(\lambda) = (1 - \lambda) U_{\text{off}} + \lambda U_{\text{on}}$



"Well-behaved" approach :

We perform the calculation in stages.

<u>First stage</u>: λ is used to "turn on" the shape of the molecule <u>Second stage</u>: λ is used to "turn on" the charges on the molecule

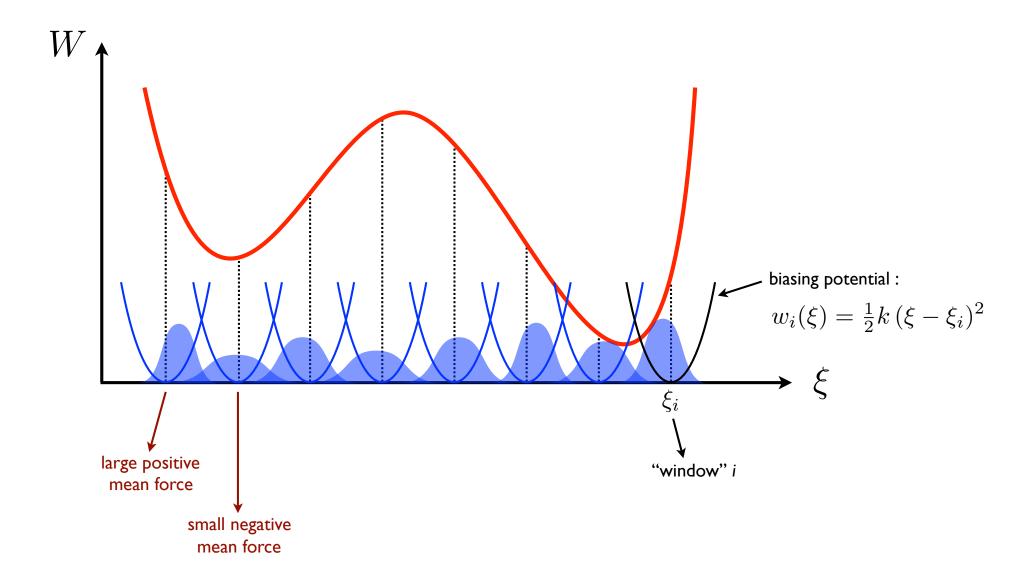


Potential of mean force

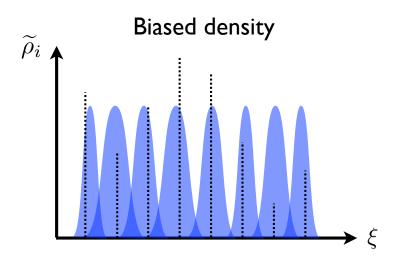
$$\langle F(\xi) \rangle = -\frac{\partial W}{\partial \xi}$$
$$W(\xi) = W(\xi_0) - \int_{\xi_0}^{\xi} d\xi' \langle F(\xi') \rangle$$

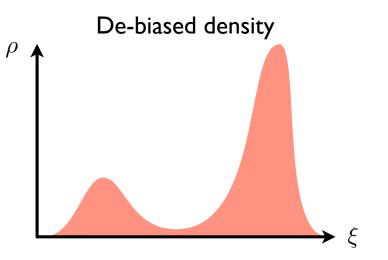
We can calculate the PMF if we know the average force "felt" along the reaction coordinate.

Umbrella Sampling



Weighted Histogram Analysis Method (WHAM)





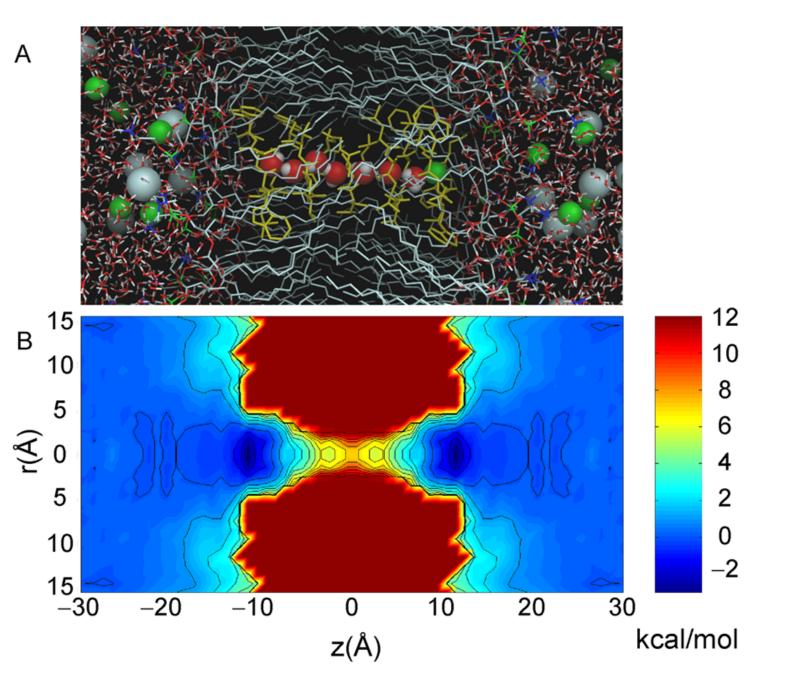
free energy added to the system by the introduction of the biasing potential

$$\rho(\xi) = \sum_{i=1}^{n} p_i(\xi) \rho_i(\xi)$$

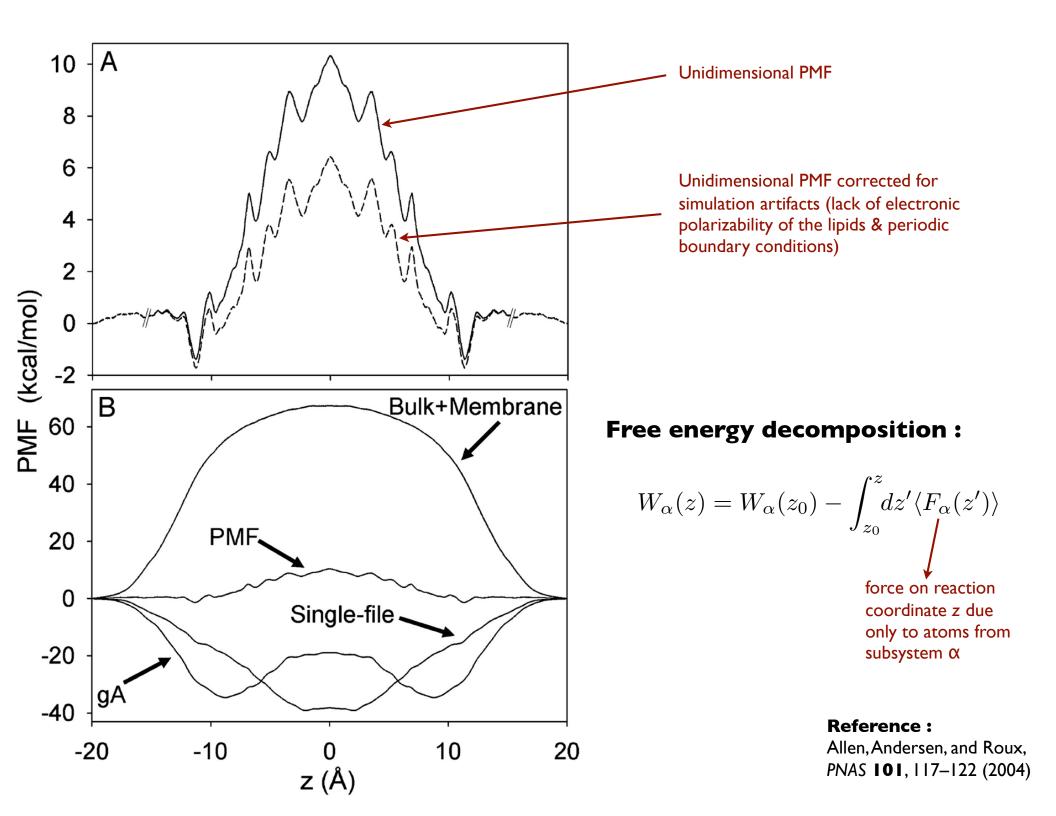
$$\rho_i(\xi) = \widetilde{\rho}_i(\xi) e^{[w_i(\xi) - f_i]/k_{\rm B}T}$$

$$p_i(\xi) = \frac{n_i e^{-[w_i(\xi) - f_i]/k_{\rm B}T}}{\sum_{j=1}^{n} n_j e^{-[w_j(\xi) - f_j]/k_{\rm B}T}}$$

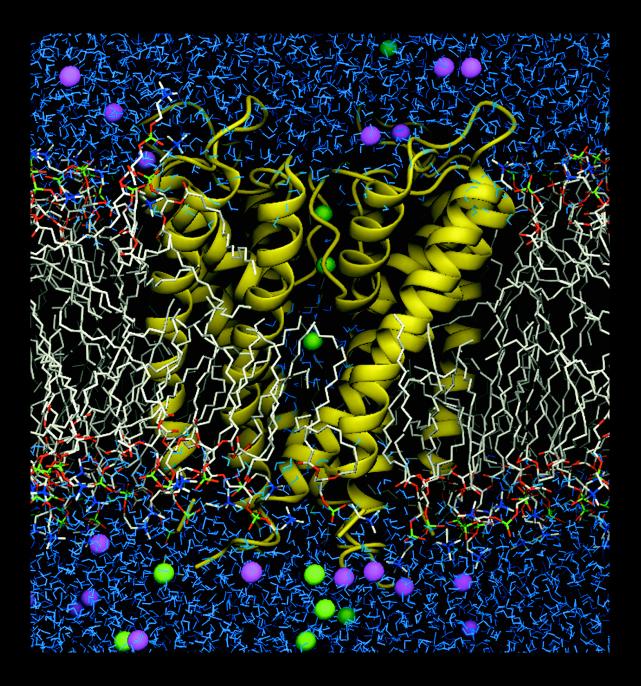
Free energy profile of K⁺ around Gramicidin A



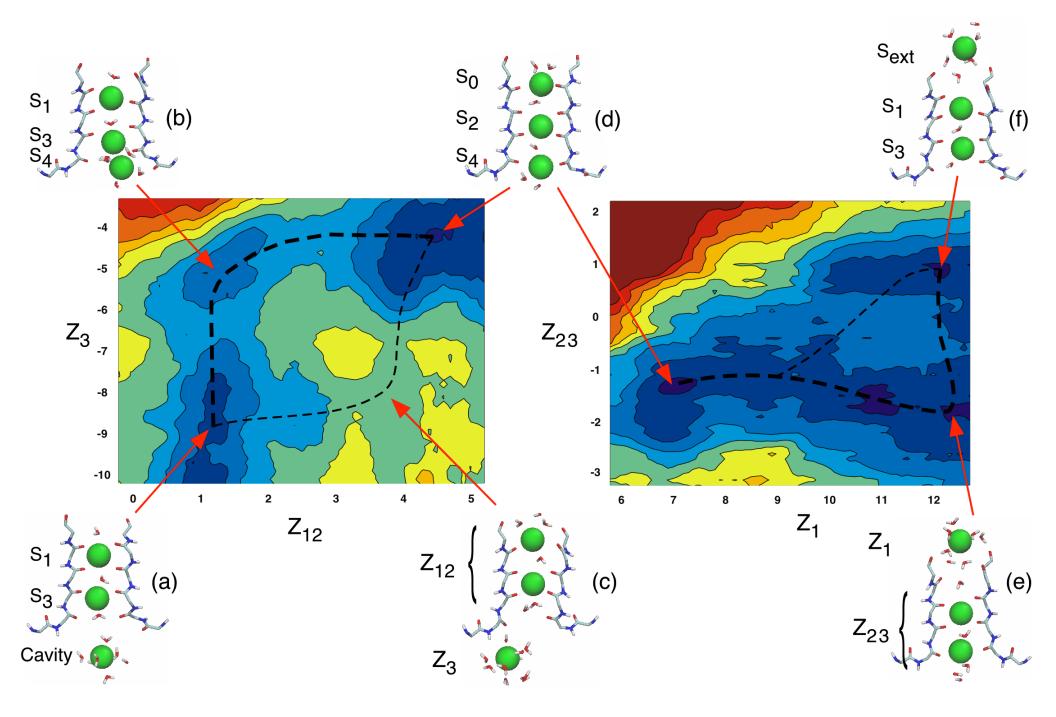
Reference : Allen, Andersen, and Roux, *PNAS* **101**, 117–122 (2004)



Molecular Dynamics simulations of the KcsA K⁺ Channel



Reference : Bernèche and Roux, *Biophys. J.* **78**, 2900–2917 (2000)



Reference : Bernèche and Roux, *Nature* **414**, 73–77 (2001)

What to do with a PMF ? Rate constants

Transition state theory :

(low-friction regime)

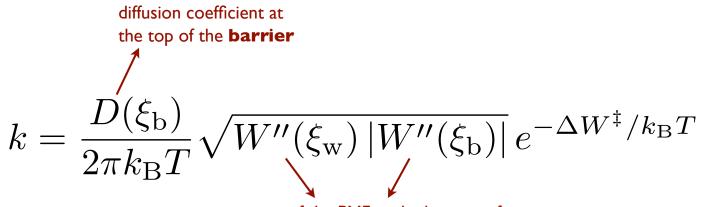
$$k_{\rm TST} = \nu_{\rm w} \, e^{-\Delta W^{\ddagger}/k_{\rm B}T}$$

frequency of oscillation at the bottom of the **well**

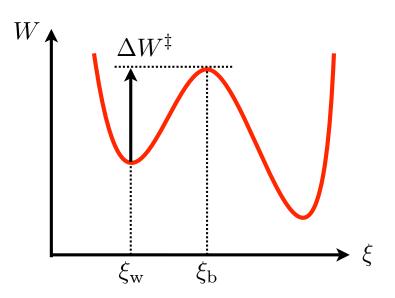
$\nu_{\rm w} = \frac{\sqrt{W''(\xi_{\rm w})/m_{\xi}}}{2\pi}$

Kramers theory :

(high-friction regime)



curvature of the PMF at the bottom of the **well** and the top of the **barrier**



This formula gets more complicated if the reaction coordinate is not a Cartesian coordinate.

Reference :

Berne and Borkovec, J. Chem. Soc., Faraday Trans. **94**, 2717–2723 (1998)

Simulate Ion Flow

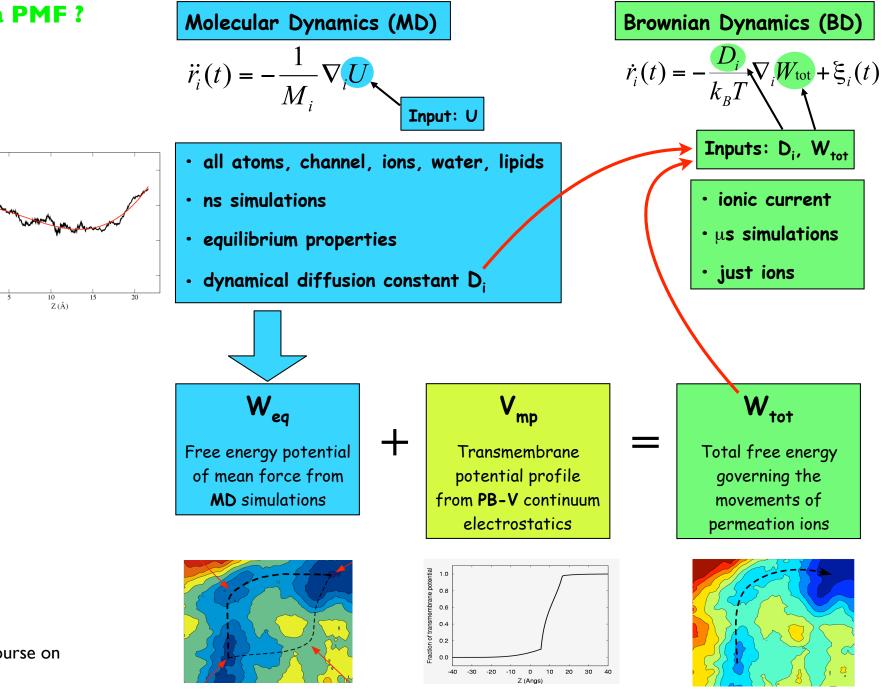
What to do with a PMF ?

Relative Diffusion Constant

0.8

0.6

0.4



Source : Benoît Roux, Course on ion permeation.

Brownian Dynamics Simulations of K⁺ in KcsA

Extracellular

