CHEM 436 / 630

Molecular modelling of proteins

Winter 2018 Term

Instructor:

Guillaume Lamoureux Concordia University, Montréal, Canada

Dasatinib binding to Src kinase

- Molecular dynamics simulations (total of 35 µs)
- Ligand "finds" the known position (PDB: 3G5D)
- Amber99SB ff for the protein
- TIP3P ff for water
- GAFF ff with AMI-BCC for the ligand
- k_{on} and k_{off} can be estimated from the simulation, and therefore K_A and ΔG

Movie from: Y. Shan et al., J. Am. Chem. Soc. 2011, 133, 9181-9183. http://dx.doi.org/10.1021/ja202726y

Dasatinib binding to Src kinase

Figure from:

Y. Shan et al., J. Am. Chem. Soc. 2011, 133, 9181-9183. http://dx.doi.org/10.1021/ja202726y

Dasatinib binding to Src kinase

Do we need the full simulation to calculate ΔG ?

- Can we estimate ΔH from the number of H-bonds and nonpolar contacts formed upon binding?
- Can we estimate ΔS from the number of water molecules displaced and the conformational restriction created upon binding?

This is what <u>molecular docking</u> methods attempt to do:

- Finding the optimal pose for the ligand at the surface of the protein
- Estimating ΔH as the sum of all interactions formed (protein-ligand), minus the sum of all interactions broken (protein-solvent, protein-protein, ligand-solvent, ligand-ligand)
- Estimating ΔS from the number of rotatable bonds immobilized upon binding, and the number of water molecules "liberated".

Docking relies on a large number of approximations but is <u>much</u> faster than MD simulations.

Movie from:

Y. Shan et al., J. Am. Chem. Soc. 2011, 133, 9181-9183. http://dx.doi.org/10.1021/ja202726y

Molecular docking

AutoDock Vina scoring function

 $d_{ij} = r_{ij} - R_{t_i} - R_{t_j}$

Interaction function

Scoring function

The function has 6 empirical parameters, that are adjusted to best reproduce a set of 190 known receptor-ligand structures.

See Table I from : Trott & Olson. 2010. J. Comput. Chem. 31, 455–461. http://dx.doi.org/10.1002/jcc.21334

12 10 8 RMSD 6 4 2 0 15 10 20 25 30 5 n Active Rotatable Bonds

Performance: Ligand pose and conformation

Figure from : Trott & Olson. 2010. J. Comput. Chem. 31, 455–461. http://dx.doi.org/10.1002/jcc.21334

AutoDock 4.0.1

AutoDock Vina

Performance: Free energies of binding

Figure from : Trott & Olson. 2010. J. Comput. Chem. 31, 455–461. http://dx.doi.org/10.1002/jcc.21334

What is missing?

Protein is treated as a rigid molecule.

- AutoDockVina can perform "flexible docking", with selected protein side chains allowed to flex. The protein backbone remains rigid, though.
- Newer docking methods allow for larger-scale deformations of the protein.

Water is described only implicitly.

- Explicit water molecules can be added by hand, but this is not feasible for high-throughput studies.
- Newer docking methods allow for insertion of explicit water molecules around the ligand.

Many types of molecular interactions missing...

 Metal ligation, covalent bonds, cation–aromatic interactions, etc. (just to name some of the strongest ones) This is a serious limitation if we expect the binding to follow an *induced fit* model.

This is a problem if binding relies on *bridging* water molecules.

Molecular docking

Nice ways to show a protein-ligand complex

Figure 6. Conformation of hordenine and its receptor-ligand interactions obtained after docking and energy minimisation. We used an active-state homology model of D2R and performed MD simulations with the endogenous ligand dopamine⁴². Dopamine was removed from the model, hordenine was docked into the binding pocket and the resulting receptor-ligand complex was subjected to energy minimisation in a water box. Whereas dopamine is able to form two hydrogen bonds with both Ser193^{5.42} and Ser197^{5.46} in the D2^{Up}R model⁴², our VS hit hordenine forms only a single hydrogen bond to Ser197^{5.46} due to the lack of a second hydroxyl group.

Figure from :

Sommer et al. 2017. *Sci.* Rep. **7**, 44201. http://dx.doi.org/10.1038/srep44201

Nice ways to show a protein-ligand complex

Fig. 2 Docked pose (*green*) of the ligand of 2R4F PDB code in the active site of HMG-CoA reductade structure with PDB code 1HWJ. The experimental pose of the ligand in PDB code 2R4F is shown in *magenta*. ADP is shown in *yellow* color. The calculated RMSD is 0.96 Å. The atoms in the 1HWJ active site were color coded by their B-factors. *Blue* is for low B-factor and *red* is for high B-factor value. Higher B-factor may indicate flexibility of the residues (inaccuracy in crystal-lography for some part of the protein also causes the higher B-factor)

Figure from : Shamsara. 2016. SpringerPlus 5, 334. http://dx.doi.org/10.1186/s40064-016-1972-4