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Fundamentals 1

1 Probability theory

1.1 Probability distributions and moments

A random variable X is a quantity for which we cannot predict with certainty
which value it will take every time we measure it, but for which we can tell
the probability that it takes a given value. If X is a discrete variable that can
take any one of n values x1, x2, . . . , xn, the probabilities of each value occuring
are defined as p1, p2, . . . , pn. These values can be empirically obtained from
a very large number of observations, or deduced from basic assumptions on
the nature of the elementary process giving rise to X. If X is a continuous

Exercise:
Deduce the probabilities pi

(i = 2 to 12) of a random
variable X corresponding to
the outcome of rolling two
ideal dice.

Exercise:
Write a program that
generates the probabilities
pi (i = n to 6n) for the
outcome of rolling n dice.

variable, the probability of the outcome of a measurement is described by a
continuous probability density w(x), defined such that the probability that the
measurement of X falls within the interval [x, x + dx] is equal to w(x)dx. Over
the full range of values that X can take, those infinitesimal probabilities sum
up to one:

Normalization:
∫

dx w(x) def= 1. (1)

The mean value (or expectation value) of a variable X distributed according to
w(x) is

Mean value: 〈X〉 =
∫

dx w(x)x. (2)

More generally, we define the mth moment of the distribution as the mean value
of the mth power of X:

mth moment: 〈Xm〉 =
∫

dx w(x)xm. (3)

We can write the mean value of any function f(X) in terms of the moments,
using a Maclaurin series of the function: Wikipedia:

Taylor series

〈f(X)〉 =
∫

dx w(x)f(x) =
∫

dx w(x)
∞∑

m=0

1
m!

∂mf

∂xm

∣∣∣∣
0

xm

=
∞∑

m=0

1
m!

∂mf

∂xm

∣∣∣∣
0

〈Xm〉. (4)

The characteristic function, φ, is defined as the Fourier transform of the Wikipedia:
Fourier transformdistribution:

φ(k) def=
∫

dx w(x)eikx = 〈eikX〉. (5)

w(x), φ(k), and the moments 〈Xm〉 contain the same information, and can be
obtained from any one of the other two. To summarize, we have

〈Xm〉 =
∫

dx w(x)xm =
∂mφ

∂(ik)m

∣∣∣∣
0

, (6)

http://en.wikipedia.org/wiki/Taylor_series
http://en.wikipedia.org/wiki/Fourier_transform
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φ(k) =
∫

dx w(x)eikx =
∞∑

m=0

(ik)m

m!
〈Xm〉, (7)

w(x) =
1
2π

∫
dk φ(k)e−ikx =

1
2π

∫
dk e−ikx

∞∑
m=0

(ik)m

m!
〈Xm〉. (8)

The moment 〈Xm〉 corresponds to the mth coefficient of the MacLaurin seriesExercise:
Verify Eqs. (6) to (8)

of φ(k), and for that reason φ(k) is also called the moment-generating function.
Knowing wX(x), the probability distribution of random variable X, one can

calculate wY (y), the distribution of any variable Y = f(X):

wY (y) =
∫

dx wX(x)δ(f(x)− y) = 〈δ(f(X)− y)〉, (9)

where δ is Dirac δ-function, defined such thatWikipedia:
Dirac delta function ∫

dz δ(z − a)g(z) = g(a) (10)

for any function g.

Exercise:
Prove that the transformed
distribution wY (y) is
normalized as well.

1.1.1 Binomial distribution

The binomial distribution is the function B(k;n, p) that describes the probabilityWikipedia:
Binomial distribution of observing k “successes” in n attempts, if each attempt has a probability p of

being successful (and, conversely, a probability 1− p of being unsuccessful).

B(k;n, p) def=
n!

k!(n− k)!
pk(1− p)n−k. (11)

It is a discrete distribution, defined only for integer values of k going from 0 to
n. By definition, the number of successes from n attempts is any number from
0 to n, and B is normalized such that

n∑
k=0

B(k;n, p) = 1. (12)

The binomial distribution is often encountered in problems related to chance
games, but more generally in any system where a global outcome is formed by
combining multiple random variables taking discrete values independently from
one another. It the context of statistical mechanics, this number of variables is
usually very large and the binomial distribution can be approximated by more
convenient distributions.

1.1.2 Poisson distribution

The Poisson distribution, P (k;λ), is a limiting case of the binomial distributionWikipedia:
Poisson distribution when n becomes infinitely large, but np remains constant, and equal to λ.

P (k;λ) def=
λke−λ

k!
. (13)

http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Binomial_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
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The Poisson distribution is often used in situations where the “successes” and
“failures” happen on a continuous basis—at any point in time, for instance—but
the number of “successes” remains countable. Since the number of “successful”
events can be arbitrarily high, the distribution is defined from k = 0 to ∞ but
becomes vanishingly small for large values of k. In the context of the statistical
mechanics of molecules, these events could be molecular collisions, electronic
transitions, or specific conformational changes.

1.1.3 Normal distribution

The normal distribution, N(x;µ, σ2), is another limiting case of the binomial Wikipedia:
Normal distributiondistribution, when n becomes infinitely large.

N(x;µ, σ2) def=
1

σ
√

2π
e−(x−µ)2/2σ2

(14)

The normal distribution is used in situations where variable X combines an
“uncountable” number of microscopic events—uncountable in the sense that
it is very large and that we are not interested in how many “successes” were
actually observed, but only in what their overall effect is. The parameters µ
and σ are called the mean and the standard deviation and, in connection to the
binomial distribution, correspond to the limits

lim
n→∞

np = µ and lim
n→∞

np(1− p) = σ2. (15)

The characteristic function of N(x;µ, σ2) is

φ(k;µ, σ2) = 〈eikX〉 =
1

σ
√

2π

∫ +∞

−∞
dx e−(x−µ)2/2σ2

eikx. (16)

Using the definite integral formula∫ +∞

−∞
dx e−(ax2+bx+c) =

√
π

a
e(b2−4ac)/4a, (17)

we find

φ(k;µ, σ2) = eikµ−k2σ2/2 = eikµ+(ik)2σ2
. (18)

The moments of the distribution are therefore

〈X〉 = µ, (19)
〈X2〉 = µ2 + σ2, (20)
〈X3〉 = µ3 + 3µσ2, (21)
〈X4〉 = µ4 + 6µ2σ2 + 3σ4. (22)

For µ = 0, we find
Exercise:
Derive Equations (19) to
(22)

〈Xm〉 =
∂m

∂(ik)m
e(ik)2σ2

∣∣∣∣
0

=


m!

2m/2(m/2)!
σm for m even,

0 for m odd.
(23)

http://en.wikipedia.org/wiki/Normal_distribution
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For a normally distributed variable, we expect 68.2% of our measurements to
fall within ±σ of the mean, 95.4% fall within ±2σ, and 99.7% fall within ±3σ.

N(x)

x

−3σ −2σ −σ σ 2σ 3σ

1.2 Cumulants

The previous discussion can be generalized to distributions of multiple variables,
where x is replaced by a vector x = (x1, x2, . . .) and w(x)dx corresponds to the
probability that X = (X1, X2, . . .) lies in the volume element dx centered around
x. We define the generalized moments of n variables as following:

〈Xm1
1 · · ·Xmn

n 〉 =
∫

dx1 · · · dxn w(x1, . . . , xn)xm1
1 · · ·xmn

n

=
∫

dx w(x)
n∏

i=1

xmi
i . (24)

The generalized characteristic function is defined as the n-dimensional Fourier
transform of w:

φ(k) def=
∫

dx w(x)eik·x = 〈eik·X〉. (25)

It is also the generating function of the moments:

〈Xm1
1 · · ·Xmn

n 〉 =
∂m1

∂(ik1)m1
· · · ∂mn

∂(ikn)mn
φ(k)

∣∣∣∣
0

. (26)

We define the cumulants, κ (or 〈· · ·〉c), as the quantities generated from the
logarithm of the moment-generating function φ(k):

κm1,...,mn

1,...,n
def= 〈Xm1

1 · · ·Xmn
n 〉c

def=
∂m1

∂(ik1)m1
· · · ∂mn

∂(ikn)mn
lnφ(k)

∣∣∣∣
0

. (27)

The cumulants can be used to write an expansion of the generalized moments:

〈X1〉 = κ1, (28)
〈X1X2〉 = κ1κ2 + κ12, (29)

〈X1X2X3〉 = κ1κ2κ3

+ κ12κ3 + κ13κ2 + κ23κ1

+ κ123, (30)
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〈X1X2X3X4〉 = κ1κ2κ3κ4

+ κ12κ3κ4 + κ13κ2κ4 + κ14κ2κ3

+ κ23κ1κ4 + κ24κ1κ3 + κ34κ1κ2

+ κ12κ34 + κ13κ24 + κ14κ23

+ κ123κ4 + κ124κ3 + κ134κ2 + κ234κ1

+ κ1234. (31)

Here, we have simplified the notation by dropping the upper indices (κ1 = κ1
1,

κ12 = κ11
12, etc.). There is a method to the madness: orders of the cumulants are

Exercise:
Derive Eqs. (28) to (30)
from the definitions of the
moments and cumulants.

formed in combinations that sum up to the order of the moment (e.g., for the
4th-order moment, we have combinations κiκjκkκl, κijκkl, κijkκl, and κijkl)
and for each combination of orders, all distinct permutations of the variables
are represented. Using a diagrammatic notation, we can write

〈X1〉 = , (32)
〈X1X2〉 = + , (33)

〈X1X2X3〉 = + + , (34)
〈X1X2X3X4〉 = + + + + . (35)

The “full” diagrams represent the sum of all variable permutations:

= + + , (36)
= + + + + + , (37)
= + + , (38)
= + + + . (39)

For a univariate distribution, we have

〈X〉 = 〈X〉c, (40)
〈X2〉 = 〈X〉2c + 〈X2〉c, (41)
〈X3〉 = 〈X〉3c + 3〈X2〉c〈X〉c + 〈X3〉c, (42)
〈X4〉 = 〈X〉4c + 6〈X2〉c〈X〉2c + 3〈X2〉2c + 4〈X3〉c〈X〉c + 〈X4〉c. (43)

The second cumulant represents the average of the squared fluctuations around
the mean:

〈XiXj〉c = 〈XiXj〉 − 〈Xi〉〈Xj〉 = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉. (44)

1.2.1 Independent variables

Cumulants have a few properties that make them very important for the theory
of statistical mechanics. If the moments of two independent random variables X1

and X2 can be generated from the characteristic functions φX1(k) and φX2(k),
the moments of the sum Y = X1 + X2 can be generated with the product of
the functions:

φY (k) = φX1(k)φX2(k). (45)
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Exercise:
Prove Equation (45) If their cumulants are generated from functions KX1(k) = lnφX1(k) and KX2(k) =

lnφX2(k), the cumulant of the sum can be generated from the sum of the gen-
erating functions:

KY (k) = KX1(k) + KX2(k). (46)

A consequence of this is that the mth cumulant of a sum is the sum of the mth
cumulants:

Additivity: 〈X1 + X2|m〉c = 〈Xm
1 〉c + 〈Xm

2 〉c. (47)

No such simple relationship exists for the moments. Equation (47) means that
the cumulants of an extensive quantity are extensive quantities as well. TheWikipedia:

Extensive quantity
cumulants also have the following properties (for any constants a and b):

Equivariance: 〈X + b〉c = 〈X〉c + b, (48)
Invariance: 〈X + b|m〉c = 〈Xm〉c for m ≥ 2, (49)

Homogeneity: 〈aX|m〉c = am〈Xm〉c. (50)

More generally, the multidimentional distribution of n independent variables,
w(x), can be written as the product of n individual distributions:

w(x) =
n∏

i=1

wi(xi), (51)

and the moment- and cumulant-generating functions are simple combinations
of the individual generating functions:

φ(k) =
n∏

i=1

φi(ki) and K(k) =
n∑

i=1

Ki(ki) =
n∑

i=1

lnφi(ki). (52)

The generalized moments become simple products of the individual moments:

〈Xm1
1 · · ·Xmn

n 〉 = 〈Xm1
1 〉 · · · 〈Xmn

n 〉 (53)

and the generalized cumulants 〈Xm1
1 · · ·Xmn

n 〉c are nonzero only if no more that
one of the m’s is greater than zero. (In other words, all mixed cumulants are
zero, which is why cumulants are additive in the first place.) More generally,
the average of a product of any two functions of independent variables is the
product of the individual averages:

〈f(xi)g(xj)〉 = 〈f(xi)〉〈g(xj)〉 if i 6= j. (54)

1.3 Central limit theorem

The central limit theorem states that the sum of a large number of identicallyWikipedia:
Central limit theorem distributed random variables has a normal distribution, regardless of the shape

of the distribution of those individual variables. We can prove the theorem by
imagining a random variable Y corresponding to the sum of n random variables
X drawn from the same probability distribution w(x). But first, let us discuss
some more properties of the normal distribution.

http://en.wikipedia.org/wiki/Extensive_quantity
http://en.wikipedia.org/wiki/Central_limit_theorem
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1.3.1 Normal distribution

From Eq. (18), we find that the cumulant-generating function of the univariate
normal distribution is

K(k) = ikµ + (ik)2σ2. (55)

Because K(k) is a second-degree polynomial in ik, the only two nonzero cu-
mulants are κ1 = µ and κ2 = σ2. For an n-dimensional system, the normal
distribution has the form

N(x;µ,S) =
1

(2π)n/2

1√
detS

e−(x−µ)·S−1·(x−µ)/2 (56)

where µ is an n-dimensional vector corresponding to 〈X〉 and S is the n ×
n covariance matrix (Sij = 〈XiXj〉c). If all variables are independent, the
covariance matrix is diagonal, its determinant is the product of the diagonal
elements (σ2

i ), and

N(x;µ,S) =
n∏

i=1

1
σi

√
2π

e−(x−µi)
2/2σ2

i =
n∏

i=1

N(xi;µi, σ
2
i ). (57)

Note that it is usually possible to find a linear transformation x′ = Ux that
diagonalizes the covariance matrix and therefore allows the distribution to be
written as a product of n normal distributions of the independent variables x′.

1.3.2 Proof

The cumulants of a variable Y corresponding to the average of n independent
variables X1, . . . , Xn having the same probability distribution are

〈Y m〉c =
1

nm
(〈Xm

1 〉c + · · ·+ 〈Xm
n 〉c) =

1
nm−1

〈Xm〉c. (58)

As n gets arbitrarily large, all cumulants except κ1 vanish, which means—as one
would expect—that the distribution of Y becomes an arbitrarily narrow peak
centered at 〈Y 〉. This is commonly referred to as the law of large numbers: the Wikipedia:

Law of large numbers
average of any quantity can be calculated to an arbitrarily high precision using
an arbitrarily large number of measurements.

If Y corresponds to the standardized sum of n independent variables:

Y =
1√
n

(X1 + X2 + · · ·+ Xn), (59)

its cumulants are

〈Y m〉c =
1

nm/2
(〈Xm

1 〉c + · · ·+ 〈Xm
n 〉c) =

1
nm/2−1

〈Xm〉c. (60)

As n gets arbitrarily large, only the two first cumulants survive (〈Y 〉c =
√

n〈X〉c
and 〈Y 2〉c = 〈X2〉c), which means that Y is normally distributed with a mean
µ =

√
n〈X〉c =

√
n〈X〉 and a variance σ2 = 〈X2〉c = 〈X2〉 − 〈X〉2. This proves

http://en.wikipedia.org/wiki/Law_of_large_numbers
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the central limit theorem—provided we accept the assumption that the only
distribution that has κi = 0 for i > 2 is the normal distribution.

There is a more general statement of the theorem, which holds for “locally
correlated” variables as well. This is an important generalization, since most
variables encountered in statistical mechanics are not strictly independent, but
simply dependent on a small number of “neighboring” variables. The sum of a
large number of such variables will also have a normal distribution.

2 Classical mechanics

2.1 Newtonian, Lagrangian, and Hamiltonian
formulationsReading:

Section 1-2 of McQuarrie
[1976] The most common description of the evolution of a system of N classical parti-

cles over time is Newton’s second law, which relates the instantaneous accelationWikipedia:
Newton’s laws of motion of each particle (labelled i = 1, 2, . . . , N) to the force applied on it:

miai = Fi. (61)

For a large number of interacting particles, these equations are used as following:

1. Knowing the positions x(t) and velocities v(t) of all particles at a given
time t, and provided with the force law that these particles obey, we
calculate the atomic forces Fi(t);

2. The atomic accelerations ai(t) are obtained from Fi(t)/mi;

3. Those accelerations are used to calculate the positions and velocities at a
later time t + δt;

4. The procedure is repeated from t + δt to t + 2δt, and so on.

The “F = ma” form of Newton’s equation requires the accelerations, ve-
locities, and positions—as well as the force law—to be described in Cartesian
coordinates:

miẍi = F x
i , (62)

miÿi = F y
i , (63)

miz̈i = F z
i . (64)

Any other coordinate system requires these 3N equations to be re-written in a
completely different form—which is not always very convenient. There exist two
main alternative formulations based not on the forces and accelerations—which
are vectors, and depend on the coordinate system—but on scalar functions of
generalized coordinates.

The Lagrangian formulation of the equations of motion is defined in terms
of 3N generalized coordinates q:Wikipedia:

Generalized coordinates

http://en.wikipedia.org/wiki/Newton's_laws_of_motion
http://en.wikipedia.org/wiki/Generalized_coordinates
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d

dt

(
∂L

∂q̇j

)
=

∂L

∂qj
. (65)

(Here, the index j runs from 1 to 3N .) The function L is the Lagrangian of the
system, defined as the total kinetic energy of the system (K), minus its total
potential energy (U):

L (q, q̇) def= K − U. (66)

K is typically a function of the generalized velocities (q̇) only, and U is typically
a function of the generalized coordinates (q) only—but not necessarily. The co-
ordinates q can be the usual 3N Cartesian coordinates or any other coordinates
that uniquely define the configuration of the system.

The Hamiltonian formulation of the equations of motion is defined in terms
of 3N generalized coordinates, q, and 3N generalized momenta, p, defined as
following:

pj
def=

∂L

∂q̇j
. (67)

Hamilton’s equations are

q̇j =
∂H

∂pj
and ṗj = −∂H

∂qj
. (68)

The function H is the Hamiltonian of the system, defined as the following
Legendre transform of the Lagrangian: Wikipedia:

Legendre transform

H (q, p) def=
∑

j

pj q̇j −L (q, q̇). (69)

(Notice that the Legendre transform makes H a function of the generalized
momenta p instead of the generalized velocities q̇.) If K is quadratic in terms of
the generalized velocities and if U depends only on the generalized coordinates,
the Hamiltonian corresponds to the total energy of the system (E):

H = K + U = E. (70)

Exercise:
Formulate the classic
“projectile motion” and
“harmonic oscillator”
problems using the
Newtonian, Lagrangian,
and Hamiltonian
approaches. Show that they
lead to the same equations
of motion.

The time derivative of any property A function of q, p, and t can be expressed
as following (using the chain rule):

dA

dt
=

∑
j

(
∂A

∂qj
q̇j +

∂A

∂pj
ṗj

)
+

∂A

∂t

=
∑

j

(
∂A

∂qj

∂H

∂pj
− ∂A

∂pj

∂H

∂qj

)
+

∂A

∂t

= {H , A}+
∂A

∂t
, (71)

where we have used the Poisson bracket notation of two functions A(q, p, t) and Wikipedia:
Poisson bracket

http://en.wikipedia.org/wiki/Legendre_transform
http://en.wikipedia.org/wiki/Poisson_bracket
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B(q, p, t):

{A,B} def=
∑

j

(
∂A

∂qj

∂B

∂pj
− ∂A

∂pj

∂B

∂qj

)
= −{B,A}. (72)

2.2 Liouville’s theorem

We introduce a function ρ(q, p, t) called the phase space distribution, defined
such that ρ(q, p, t) dq dp is proportional to the probability of finding a system at
time t within the volume element dq dp around point (q, p), knowing only that
this system evolves according to a given Hamiltonian H —not knowing what its
initial conditions were, for instance. The time evolution of ρ can be calculated
from Eq. (71):

dρ

dt
= {H , ρ}+

∂ρ

∂t
. (73)

There is a subtle but essential difference in the meaning of quantities dρ/dt and
∂ρ/∂t. On one hand, the partial derivative ∂ρ/∂t represents the rate of flow of
the trajectories through the volume element around a fixed point (q, p). This
flow can be expected to be faster in some regions of the phase space that in
other. On the other hand, the total derivative dρ/dt represents the variation of
ρ around a point (q(t), p(t)) moving with time.

Liouville’s theorem states that the phase space distribution function is con-
Wikipedia:
Liouville’s theorem
(Hamiltonian) stant over time:

dρ

dt
= 0. (74)

In other words, if instead of propagating a single point (q0, p0) over time we
propagate all trajectories in a differential element dq dp around this point, we
observe that, although the shape of this infinitesimal element may change con-
siderably over time, its actual volume does not. The density of possible trajec-
tories contained in that element is constant over time. If trajectories “fan out”
across one direction, they will get closer in other directions. At any fixed point
in phase space, the trajectory flow is therefore given by

∂ρ

∂t
= {ρ,H }. (75)

Any system that is not under the influence of an external force has a phase
space distribution that does not explicitly depend on time—it depends only on
its internal variables q and p—and therefore ∂ρ/∂t = 0 and

{ρ,H } = 0, (76)

which means that ρ is a constant of motion and is a function of the HamiltonianWikipedia:
Constant of motion only: ρ = ρ(H (q, p)). Such a system is said to be in thermodynamic equilibrium.

http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)
http://en.wikipedia.org/wiki/Liouville's_theorem_(Hamiltonian)
http://en.wikipedia.org/wiki/Constant_of_motion
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We define the partition function, Z, as the integral of ρ over the entire phase
space:

Z
def=

∫
dq dp ρ(H (q, p)). (77)

It represents the number of distinct possible trajectories obeying the Hamilto-
nian. The average of any quantity A = A(q, p) over all possible trajectories
obeying H corresponds to

〈A〉 =
1
Z

∫
dq dp ρ(H (q, p))A(q, p). (78)

At first glance, the partition function seems to serve strictly as a normaliza-
tion factor, that could be absorbed by defining a probability distribution in
phase space w

def= ρ/Z. We will see later on that Z is also a powerful moment-
generating function—and its logarithm, a cumulant-generating function.

3 Review of thermodynamics

3.1 Internal energy

The total energetic content of a system composed of a large number of particles
is represented by its internal energy , E. If we exert work on such a system, and
bring it from thermodynamic conditions Xi to thermodynamic conditions Xf , its
internal energy will increase. If those constraints Xf are relaxed, and the system
is left to return to the original conditions Xi, a fraction of the internal energy
accumulated during the i → f process is reconverted into work but, unless the
system is otherwise isolated from the rest of the world, a fraction is dissipated
as heat.

One recovers the maximum amount of work by letting the conditions Xf

go back to their initial values Xi slowly enough that the system is at all time
in a state of quasi-equilibrium—such a process is called quasi-static. The full
amount of work initially done on the system can be recovered upon only if both
the i→f and f→i processes are quasi-static, and only if the system interacts
with its environment through the constraint X—and not through any other
thermodynamic condition X ′.

For example, the work exerted on a piston to compress a confined gas from
a volume Vi to a volume Vf < Vi can be fully recovered only if (1) the piston
and the cylinder are made of a perfectly insulating material (no heat exchange
with the environment) and if (2) the piston is perfectly airtight (no gas particles
going in or out of the volume), and only if (3) both the compression and the
decompression are performed infinitely slowly. (Here, we also presume that the
piston moves inside the cylinder without any friction.) Only under these ideal
conditions will an amount of work ∆W be totally transferred to the internal
energy of the gas (Ef = Ei + ∆W ), and totally restored upon decompression.

From a strictly thermodynamic point of view, the state of a system is gov-
erned by the fact that the internal energy is an extensive function of the other Wikipedia:

Extensive quantity

http://en.wikipedia.org/wiki/Extensive_quantity
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extensive variables describing the system, such as its entropy SB, its volume V ,
and the number of particles N it is composed of:

E = E(SB, V, N). (79)

A system λ times bigger will have λN particles, a volume λV , and an entropy
λSB, and its internal energy will be λ times larger. In other words,

E(λSB, λV, λN) = λE(SB, V, N). (80)

Because of Euler’s theorem, such an extensive function obeys the following equa-
Wikipedia:
Euler’s homogeneous
function theorem tion:

E(SB, V, N) =
(

∂E

∂SB

)
V,N

SB +
(

∂E

∂V

)
N,SB

V +
(

∂E

∂N

)
SB,V

N. (81)

Since E is extensive, each of the three terms should be extensive as well, and the
coefficients of SB, V , and N are necessarily intensive. We define those conjugateWikipedia:

Intensive quantity
intensive variables as follows:

T
def=

(
∂E

∂SB

)
V,N

, −p
def=

(
∂E

∂V

)
N,SB

, µ
def=

(
∂E

∂N

)
SB,V

, (82)

corresponding to the temperature, the pressure (minus the pressure, actually),
and the chemical potential of the system. We therefore have the following
fundamental equation:

E(SB, V, N) = TSB − pV + µN. (83)

It was said earlier that the function E depends only on the extensive variables,
therefore its exact differential can be written as

dE = T dSB − p dV + µdN. (84)

In other words, the internal energy of a system can be increased either by
heating it (dSB > 0), by compressing it (dV < 0), or by inserting particles
(dN > 0)—or by doing a combination of the three. Those three variables define
the thermodynamic conditions of the system—what we previously called “X”.

A single number of particles N is sufficient to describe the equilibrium state
of the system only of all particles are identical. In general, we need as many
“composition” variables as we have chemical species in the system: N1, N2, etc.
Equation (83) then becomes

E(SB, V, N1, N2, . . .) = TSB − pV +
∑

i

µiNi. (85)

This accounts for the fact that each individual molecule of chemical species i
contributes to the total internal energy by an amount µi, depending on the
species.

http://en.wikipedia.org/wiki/Euler%27s_homogeneous_function_theorem
http://en.wikipedia.org/wiki/Euler%27s_homogeneous_function_theorem
http://en.wikipedia.org/wiki/Intensive_quantity
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For a microscopic point of view, the internal energy corresponds to the sum
of the potential energy (U) and the kinetic energy (K) of all particles composing
the system:

E = U + K. (86)

There may seem to be a profound disconnection between this microscopic def-
inition of E and the thermodynamic formula of Eq. (85). One of the purposes
of statistical mechanics is actually to provide a connection between those two
equations.

3.2 Thermodynamic functions and relations

3.2.1 Helmholtz free energy

We define Helmholtz potential , F , as the following Legendre transform of internal Wikipedia:
Legendre transform

energy E:

F (T, V,N) def= E(SB, V, N)− TSB (87)
= −pV + µN.

In general, the Legendre transform of an extensive function E of an extensive
variable Xi forms a new extensive function Ei that is independent of Xi but
that depends on its conjugate intensive variable ξi

def= ∂E/∂Xi:

Ei(ξi)
def= E(Xi)− ξiXi. (88)

Helmholtz potential depends on the temperature instead of the entropy, and
is well suited to describe the state of a system kept at constant temperature
and volume. For any isothermal (and non-diffusive) process, its variation cor-
responds to the mechanical work provided by a compression:

dF = −SB dT︸ ︷︷ ︸
0

−p dV + µdN︸ ︷︷ ︸
0

= −p dV. (89)

It also correspond to the work that gets ideally restored when the system sponta-
neously dilates. A system at constant temperature—and constant V and N—is
in thermodynamic equilibrium if dF = 0.

3.2.2 Gibbs free energy

We define Gibbs potential , G, as the following double Legendre transform of the
internal energy:

G(T,−p, N) def= F (T, V,N) + pV (90)
= µN. (91)

http://en.wikipedia.org/wiki/Legendre_transform
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Gibbs potential is well suited to describe the state of a system kept at constant
temperature and pressure. For any isothermal and isobaric (and non-diffusive)
process, its variation is strictly zero:

dG = −SB dT︸ ︷︷ ︸
0

+V dp︸︷︷︸
0

−µdN︸ ︷︷ ︸
0

= 0. (92)

In other words, it is the conserved quantity in any process happening at constant
pressure and temperature—which is the most common situation in chemistry
and biochemistry. For diffusive processes (for which dN 6= 0), it corresponds
to the energy required to insert of remove particles from the system. A system
at constant temperature and pressure—and constant N—is in thermodynamic
equilibrium if dG = 0.

Thermodynamic functions F and G are called free energies because they
represent the maximum amount of energy theoretically available as work ac-
cording to a given thermodynamical constraint. In itself, a spontaneous reac-
tion A → B liberates an internal energy ∆E corresponding to the difference in
kinetic and potential energy between the reactants and the products. However,
if the system in which the reaction happens is kept at constant temperature,
only ∆F = ∆E − T∆SB (Helmholtz free energy) can be converted into work:
a contribution T∆SB goes into maintaining the system at constant tempera-
ture. At constant temperature and pressure, as it is usually the case for in vivo
biochemical processes, only ∆G = ∆E − T∆SB + p∆V (Gibbs free energy) is
available: an additional contribution −p∆V goes into maintaining the system
at constant pressure. In living organisms, the energy stored in a chemical bond
or in a molecular affinity is measured in “units” of G—which makes Gibbs free
energy the fundamental energetic “currency” of life.

3.2.3 Reformulation based on entropy

To establish a connection with statistical mechanics, it is useful to reformulate
the definitions of all previous thermodynamic functions using entropy as the
fundamental extensive function—instead of the internal energy. By writing
entropy as a dimensionless quantity S

def= SB/kB and by defining β
def= 1/kBT we

have, according to Eq. (83),

S(E, V, N) = βE + βpV − βµN. (93)

In this new equation, the conjugate intensive variables are β, βp, and −βµ
(equivalent to variables T , −p, and µ used previously). The equivalent to
Helmholtz free energy is −βF , defined as

− βF (β, V,N) def= S(E, V, N)− βE (94)
= βpV − βµN,

and the equivalent to Gibbs free energy is −βG, defined as

− βG(β, βp, N) def= −βF (β, V,N)− βpV (95)
= −βµN, (96)
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Depending on the thermodynamic constraints exerted on the system, its
equilibrium state corresponds to extrema in either S, −βF , or −βG.

• In the microcanonical ensemble (E, V , and N constant), equilibrium is
attained when entropy S is maximum with respect to any virtual variation
of the conditions E, V , or N .

• In the canonical ensemble (β, V , and N constant), equilibrium is attained
when −βF is maximum with respect to β, V , and N .

• In the isothermal-isobaric ensemble (β, βp, and N constant), equilibrium
is attained when −βG is maximum with respect to N but minimum with
respect to β and βp.

In the more common parlance of the Legendre transforms of the internal en-
ergy, thermodynamic equilibrium is attained when, at constant temperature,
the Helmholtz free energy F decreases for any change in T and increases for any
change in V or N and when, at constant temperature and pressure, the Gibbs
free energy G decreases for any change in T or p and increases for any change
in N .

4 Equilibrium ensembles and fluctuations Reading:
Chapter 3 of Chandler
[1987]4.1 Microcanonical ensemble

We now consider the thermodynamic system discussed in Section 3 as a fluid of
N identical particles described by 3N generalized coordinates q and their 3N
conjugate momenta p. For a given configuration of the system, the instantaneous
internal energy is equal to its Hamiltonian H (q, p). If those N particles are
contained in a fixed volume V in thermal insulation, the internal energy of the
system is equal to a constant E and the probability density of finding the system
at point (q, p) in phase space is

w(q, p;E) =
δ(H (q, p)− E)∫

dq dp δ(H (q, p)− E)
. (97)

Obviously, the probability is nonzero only for states that have an internal energy
consistent with the thermodynamic constraint. What is less obvious, however,
is that all points consistent with the constraint H (q, p) = E are equiproba-
ble. This assumption, called the fundamental postulate of statistical mechan-
ics, amounts to saying that an arbitrary large collection of systems prepared
at random [started from various initial conditions such that H (q0, p0) = E]
will collectively spend the same amount of time in all microscopic states con-
sistent with the thermodynamic constraints, and therefore that all states will
contribute equally to the average properties of the system—whether they are
forming a single trajectory or not.

A stronger version of that postulate, called the ergodic hypothesis, assumes Wikipedia:
Ergodic hypothesis

http://en.wikipedia.org/wiki/Ergodic_hypothesis
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that a single system will eventually visit all microscopic states consistent with
the constraints. This would imply that, instead of accumulating statistics over
a large number of randomly prepared systems, one could simply measure a
single system for a long enough time. While this is a reasonable assumption for
systems that are large and chaotic, it is not true in general.

The phase space distribution of the system is given by

ρ(q, p;E) = CNδ(H (q, p)− E). (98)

The constant CN ensures that δ(H − E) dq dp is unitless and size-consistent.
Function δ(H −E) has units of inverse energy and should be multiplied by an
arbitrary reference energy E0. Each surface element dqidpi has units of actionWikipedia:

Action (physics)
(because qi and pi are conjugate variables) and, to make contact with the more
general quantum version of the same distribution, each one is divided by Plank
constant, h—which corresponds to the quantum of action.Wikipedia:

Plank constant

CN
def=

1
N !

E0

h3N
. (99)

The factor 1/N ! accounts for the fact that any of the N ! permutations of the N
identical particles corresponds to the same state of the system, which should be
counted only once. This factor would have a different form if the particles were
not all identical or if the system was described by quantum mechanics instead of
classical mechanics. The value of E0 has no incidence on any of the properties
of the system.

The collection of random identical systems distributed according to Eq. (98)
is called the microcanonical ensemble of the Hamiltonian H . The partition
function for this ensemble is

Ω(E, V, N) =
∫

dq dp ρ(q, p;E)

= CN

∫
dq dp δ(H (q, p)− E). (100)

In principle, the 3N “coordinate” integrals are performed over the entire space,
but it is assumed that those integrals have no contribution outside volume V ,
presumably because a single particle going through the walls of the container
would require the system to have an energy higher that E. Conventionally,
the volume dependence of Ω is represented by the domain of integration for
the 3N “coordinate” integrals. For a system with discrete energy levels, the
microcanonical partition function is simply the total number of micro-states
that have an energy E:

Ω(E, V, N) = n(E). (101)

The entropy S is related to the microcanonical partition function Ω by the
simple equation

eS = Ω(E, V, N). (102)

http://en.wikipedia.org/wiki/Action_(physics)
http://en.wikipedia.org/wiki/Planck_constant
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This equation is the fundamental connection between thermodynamics and sta-
tistical mechanics. It is commonly written as SB = kB lnΩ and serves as a Wikipedia:

Boltzmann constantdefinition of the thermodynamic entropy.
According to conventional thermodynamics, the temperature of the system

is defined in terms of the change of entropy under a (virtual) variation of the in-
ternal energy. Using the connection between the entropy and the microcanonical
partition function, we have

1
T

def=
(

∂SB

∂E

)
V,N

=
(

∂(kB lnΩ)
∂E

)
V,N

. (103)

Equivalently, we can write this definition in terms of the inverse temperature
β = 1/kBT :

β
def=

(
∂S

∂E

)
V,N

=
(

∂(lnΩ)
∂E

)
V,N

. (104)

4.2 Canonical ensemble

Let us now consider a system of N particles contained in a fixed volume V , but
kept at constant temperature T through heat exchange with a second system
that acts as a heat bath. This heat bath is considered large enough that any
energy transfer with the system leaves its temperature unaffected—and equal
to T . The probability density of finding such a system at point (q, p) in phase
space is

w(q, p;β) =
e−βH (q,p)∫

dq dp e−βH (q,p)
, (105)

were β is the inverse temperature of the heat bath. The combination “e−βE”
(where E is the energy of the system) is often called the “Boltzmann factor”,
and Eq. (105) simply states that the probability of finding a system in state
(q, p) is proportional to the Boltzmann factor of that state. (The denominator
is simply providing the correct normalization.) For a system existing only in
discrete states labelled ν = 0, 1, 2, etc. and having energies Eν , the probability
of each state is

pν(β) =
e−βEν∑

ν

e−βEν

. (106)

The expression for the probability in the microcanonical ensemble, proportional
to δ(H − E), was a direct consequence of the fundamental postulate, but this
new “e−βH ” expression needs to be proven.

We consider that the heat bath itself is formed of Nb particles of a type
different from the first N particles. The Hamiltonian of the overall system is

http://en.wikipedia.org/wiki/Boltzmann_constant
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the sum of the Hamiltonians of the two subsystems, plus a term W describing
their thermal interaction:

H ′(ω, ωb) = H (ω) + Hb(ωb) + W (ω, ωb). (107)

To shorten the notation, we have represented (q, p) as ω and (qb, pb) as ωb. If
we assume that the subsystems are very weakly coupled, we can neglect W and
write H ′ = H + Hb. The internal energy of the overall system is E′. The
energies of the subsystems may fluctuate, but their sum is always E +Eb = E′.
The microcanonical distribution function of the overall system is

ρ′(ω, ωb;E′) = CNCNbδ(H (ω) + Hb(ωb)− E′) (108)

and the corresponding microcanonical partition function is

Ω′(E′, V ′, N ′) =
∫

dω

∫
dωb ρ′(ω, ωb;E′)

= CNCNb

∫
dω

∫
dωb δ(H (ω) + Hb(ωb)− E′). (109)

We can write ρ, the distribution function for the system of N particles by
integrating the full distribution ρ′ over the “bath” variables, and normalizing:

ρ(ω;E′) =

∫
dωb ρ′(ω, ωb;E′)∫

dω

∫
dωb ρ′(ω, ωb;E′)

=
CNCNb

∫
dωb δ(H (ω) + Hb(ωb)− E′)

CNCNb

∫
dω

∫
dωb δ(H (ω) + Hb(ωb)− E′)

=
CN

Ω′(E′)
Ωb(E′ −H (ω)). (110)

We write the formula for ln ρ as a Taylor expansion around E′:

ln ρ(ω;E′) = lnCN − lnΩ′(E′) + lnΩb(E′ −H (ω))

= lnCN − lnΩ′(E′) + lnΩb(E′)−H (ω)
∂(lnΩb)

∂Eb

∣∣∣∣
E′

+ 1
2H 2(ω)

∂2(lnΩb)
∂E2

b

∣∣∣∣
E′
− . . . (111)

The first three terms are independent of the configuration ω of the system, and
can be assimilated to a single constant, lnC. Because the heat bath is a very
large system, ∂(lnΩb)/∂Eb is practically equal to ∂(lnΩ′)/∂E′, which corre-
sponds to β. Coefficient ∂2(lnΩb)/∂E2

b is negligible. We will see later that it
corresponds to the energy fluctuations of the heat bath, 〈E2

b〉c, which are neces-
sarily equal to 〈E2〉c, the energy fluctuations of the system itself (because E+Eb
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is constant), and which become negligible compared to E in the thermodynamic
limit N →∞. In the thermodynamic limit, we have

ln ρ(ω;β) = lnC − βH (ω). (112)

Consequently, ρ(ω;β) = Ce−βH (ω), which translates into Eq. (105) once con-
stant C is fixed by the normalization condition.

We define Z, the canonical partition function of the system, as

Z(β, V,N) = CN

∫
dq dp e−βH (q,p). (113)

Although we are not interested in using it, there is a similar partition function
for the heat bath: Zb(β, Vb, Nb). The two subsystems have distinct volumes
and numbers of particles, but because they are in thermal contact their ther-
modynamic equilibria are defined by a common variable, β.

The canonical partition function formally corresponds to the Laplace trans-
form of Ω̄ def= dΩ/dE, the density of states: Wikipedia:

Laplace transform

Z(β, V,N) =
∫

dE Ω̄(E, V, N)e−βE . (114)

For a system with discrete energy levels El,

Z(β, V,N) =
∑

l

n(El)e−βEl , (115)

where n(El) is the number of micro-states having an energy El. If the sum is
performed on states ν rather than energy levels l,

Z(β, V,N) =
∑

ν

e−βEν . (116)

The canonical partition function Z is related to Helmholtz free energy, −βF ,
in the same way the microcanonical partition function Ω is related to the en-
tropy:

e−βF = Z(β, V,N). (117)

Because −βF = ln Z (which itself has the form of a characteristic function), the
cumulants of the internal energy can be generated from the derivatives of −βF
with respect to −β. In particular,

〈E〉c = 〈E〉 =
(

∂(−βF )
∂(−β)

)
V,N

= −
(

∂lnZ

∂β

)
V,N

, (118)

〈E2〉c = 〈E2〉 − 〈E〉2 =
(

∂2(−βF )
∂(−β)2

)
V,N

=
(

∂2 lnZ

∂β2

)
V,N

. (119)

http://en.wikipedia.org/wiki/Laplace_transform
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4.3 Generalized ensembles

As we have shown, the partition function of the canonical ensemble is

Z(β, V,N) =
∫

dE Ω̄(E, V, N)e−βE (120)

and corresponds to the number of states of a system in thermal equilibrium with
a heat bath. The procedure used to derive this expression can be generalized to
any type of thermodynamic interactions. In general, the variation of entropy of
a system in interaction with its environment—which we will call a “reservoir”—
may have any of the following contributions [see Eq. (93)]:

dS = β dE + βp dV − βµ dN, (121)

or more generally

dS = β dE +
∑

i

ξi dXi, (122)

where Xi are extensive variables (V , N , etc.) and ξi are their conjugate intensive
variables (βp, −βµ, etc.). While all extensive variables involved in the inter-
action may fluctuate within the subsystem, they will remain constant for the
overall system, and the microcanonical partition function of this overall system
can be used to generate the partition functions of each of the subsystems.

4.3.1 Isothermal-isobaric ensemble

The isothermal-isobaric ensemble defines a system in thermal and mechanical
interaction with a reservoir (dE 6= 0 and dV 6= 0). Its partition function is

∆(β, βp, N) def=
∫

dV Z̄(β, V,N)e−βpV , (123)

where Z̄ is the canonical partition function obtained using a density of states
Ω̄ def= d2Ω/dE dV . In terms of the density of states,

∆(β, βp, N) =
∫

dE dV Ω̄(E, V, N)e−βEe−βpV

=
∫

dE dV Ω̄(E, V, N)e−βH , (124)

where H is the instantaneous enthalpy of the system (H = E + pV ).
The isothermal-isobaric partition function ∆ is related to Gibbs free energy

as following:

e−βG = ∆(β, βp, N). (125)
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The combination −βG can be used as a generating function of the cumulants
of the volume:

〈V 〉c = 〈V 〉 =
(

∂(−βG)
∂(−βp)

)
β,N

= −
(

∂ln∆
∂βp

)
β,N

, (126)

〈V 2〉c = 〈V 2〉 − 〈V 〉2 =
(

∂2(−βG)
∂(−βp)2

)
β,N

=
(

∂2 ln∆
∂(βp)2

)
β,N

. (127)

It can also be used to generate the cumulants of the enthalpy (E + pV ):

〈H〉c = 〈H〉 =
(

∂(−βG)
∂(−β)

)
βp,N

= −
(

∂ln∆
∂β

)
βp,N

, (128)

〈H2〉c = 〈H2〉 − 〈H〉2 =
(

∂2(−βG)
∂(−β)2

)
βp,N

=
(

∂2 ln∆
∂β2

)
βp,N

. (129)

Therefore, the average internal energy of the system is

〈E〉 = 〈H〉 − p〈V 〉 = −
(

∂ln∆
∂β

)
βp,N

+ p

(
∂ln∆
∂βp

)
β,N

. (130)

4.3.2 Grand-canonical ensemble

The grand-canonical ensemble defines a system in thermal and diffusive inter-
action with a reservoir (dE 6= 0 and dN 6= 0). Its partition function is

Ξ(β, V,−βµ) =
∫

dN Z̄(β, V,N)eβµN . (131)

where Z̄ is the canonical partition function obtained using a density of states
Ω̄ def= d2Ω/dE dN . We can also write

Ξ(β, V,−βµ) =
∫

dE dN Ω̄(E, V, N)e−βEeβµN (132)

For a system with discrete states ν,

Ξ(β, V,−βµ) =
∑

ν

e−βEν eβµNν . (133)

The thermodynamic potential of the grand-canonical ensemble, sometimes
called the “grand potential”, is defined as

e−βΦ def= Ξ(β, V,−βµ). (134)

The potential −βΦ is a function of β, V , and βµ. By analogy with Eq. (95),
it is equal to −βF + βµN , and therefore equal to βpV . It can be used as a
generating function of the cumulants of the number of particles:

〈N〉c = 〈N〉 =
(

∂(−βΦ)
∂βµ

)
β,V

=
(

∂ln Ξ
∂βµ

)
β,V

, (135)

〈N2〉c = 〈N2〉 − 〈N〉2 =
(

∂2(−βΦ)
∂(βµ)2

)
β,V

=
(

∂2 ln Ξ
∂(βµ)2

)
β,V

. (136)
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It can also be used to generate the cumulants of E − µN :

〈E − µN〉c =
(

∂(−βΦ)
∂(−β)

)
V,βµ

= −
(

∂ln Ξ
∂β

)
V,βµ

, (137)

〈E − µN |2〉c =
(

∂2(−βΦ)
∂(−β)2

)
V,βµ

=
(

∂2 ln Ξ
∂β2

)
V,βµ

. (138)

Therefore, the average internal energy of the system is

〈E〉 = 〈E − µN〉+ µ〈N〉 = −
(

∂ln Ξ
∂β

)
V,βµ

+ µ

(
∂ln Ξ
∂βµ

)
β,V

. (139)

4.4 Potentials as generating functions

The connection between the thermodynamic potentials S, −βF , −βG, and −βΦ
and the partition functions from statistical mechanics allows us to use a given
potential φ(ξi) as a generating function of the cumulants of the corresponding
extensive variable Xi:

〈Xm
i 〉c =

(
∂mφ

∂(−ξi)m

)
¬ξi

. (140)

The “¬ξi” (“not ξi”) notation means that all variables other than ξi are held
constant. (We use the notation “X” for an extensive variable and “ξ” for its
conjugate intensive variable.)

In practical terms, this means that many properties of the system can be
calculated—or measured—from derivatives of the free energies relative to tem-
perature, pressure, or chemical potential. We have seen that, for a system at
constant temperature, the internal energy can be obtained from Helmholtz free
energy:

〈E〉c = 〈E〉 =
(

∂(−βF )
∂(−β)

)
V,N

. (141)

The heat capacity at constant volume, CV , defined as the derivative of 〈E〉 with
respect to temperature, can therefore be expressed in terms of the variance of
the energy:

CV
def=

(
∂〈E〉
∂T

)
V,N

=
1

kBT 2

(
∂〈E〉
∂(−β)

)
V,N

=
1

kBT 2

(
∂2(−βF )
∂(−β)2

)
V,N

=
〈E2〉c
kBT 2

. (142)

Similarly, for a system at constant temperature and pressure, the enthalpy can
be obtained from Gibbs free energy:

〈H〉c = 〈H〉 =
(

∂(−βG)
∂(−β)

)
βp,N

, (143)
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and the heat capacity at constant pressure, Cp, can be expressed in terms of
the variance of the enthalpy:

Cp
def=

(
∂〈H〉
∂T

)
βp,N

=
1

kBT 2

(
∂〈H〉
∂(−β)

)
βp,N

=
1

kBT 2

(
∂2(−βG)
∂(−β)2

)
βp,N

=
〈H2〉c
kBT 2

. (144)

In other words, the heat capacity is related to enthalpy fluctuations at constant
pressure and to energy fluctuations at constant temperature.

The isothermal compressibility, κ, is defined as

κ
def= − 1

V

(
∂V

∂p

)
T

. (145)

It can be expressed in terms of the volume fluctuations in the isothermal-isobaric
ensemble:

κ
def= − 1

〈V 〉

(
∂〈V 〉
∂p

)
β,N

=
β

〈V 〉

(
∂〈V 〉

∂(−βp)

)
β,N

=
β

〈V 〉

(
∂2(−βG)
∂(−βp)2

)
β,N

=
β

〈V 〉
〈V 2〉c. (146)
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