Nuclear magnetic resonance spectroscopy

I. ¹H NMR

1. Chemical equivalence

- protons in chemically identical environments are chemically equivalent exhibit the same δ
- equivalence through symmetry considerations

1 signal for 12 ¹H

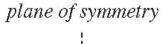
1 signal for 6 1H

- obvious non-equivalence

2 sets:

1 signal for 6 ¹H in CH₃ 1 signal for 4 ¹H in CH

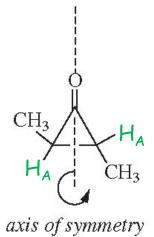
2 sets:


1 signal for 6 ¹H in OCH₃ 1 signal for 4 ¹H in CH₂

2 sets:

1 signal for 3 ¹H in CH₃ 1 signal for 3 ¹H in OCH₃

Example


Chemical and magnetic equivalence: Proton signal is a singlet

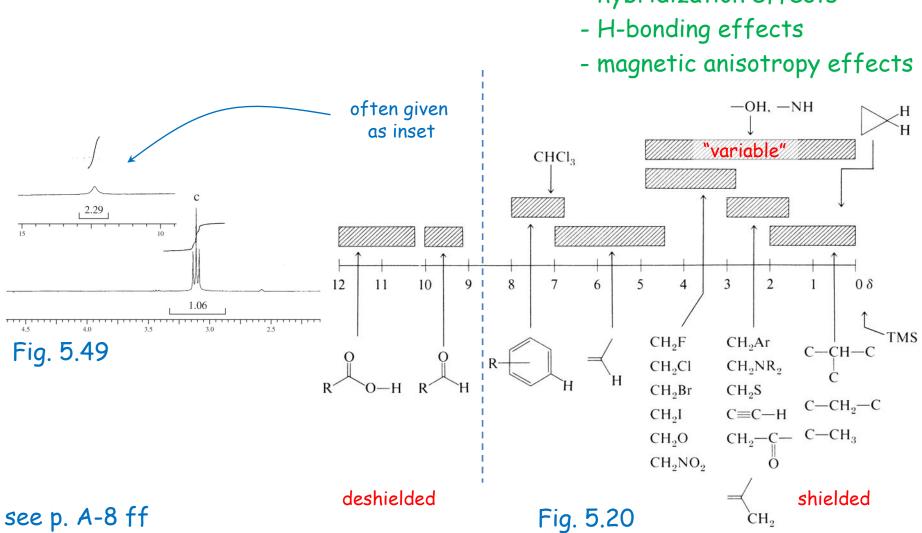
$$H \xrightarrow{H} H$$

$$Cl \atop H \atop H \atop Cl$$

$$plane of symmetry$$

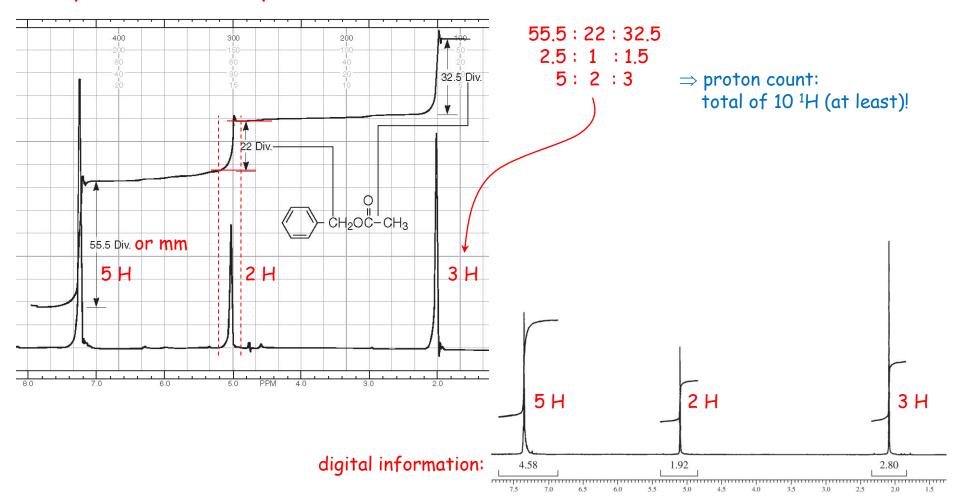
$$H_A$$
 H_3 C
 H_3
 H_4
 H_3 C

plane of symmetry

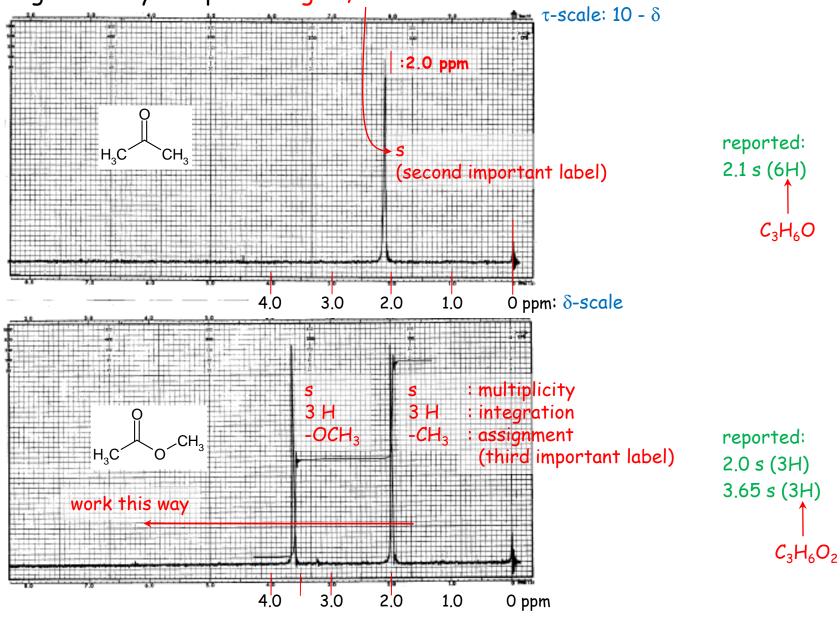

H_A H_{X'}

magnetic inequivalence:

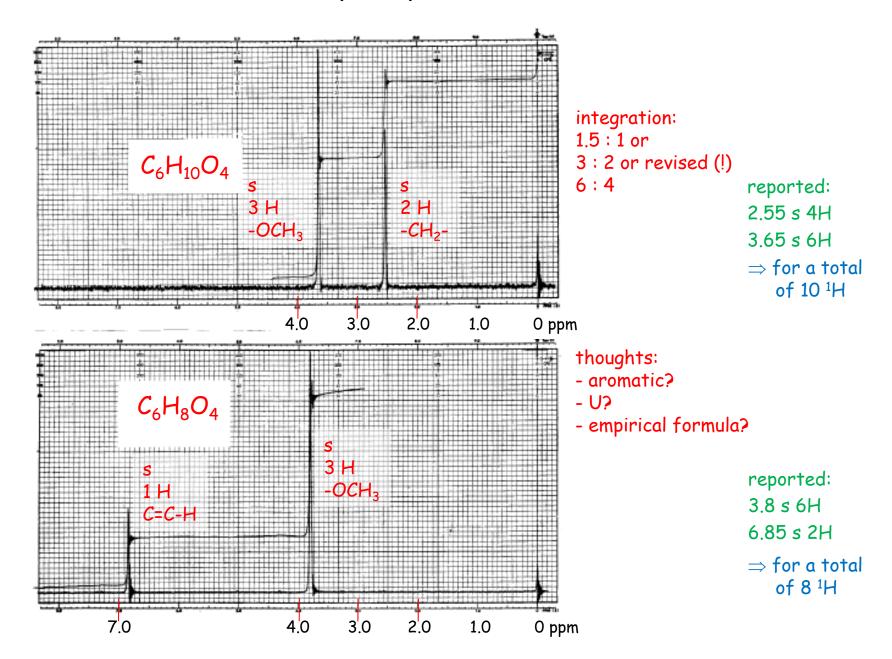
complicated spectrum: will not discuss!


1. Chemical equivalence continued

- spectral regions
 - chemical environment of the ¹H is important: electronegativity effects
 - hybridization effects


2. Integration

- determines the number of equivalent ¹H for a signal
- determined through the area under the signal
 - given through a step trace (need a ruler!)
- provides first important label



3. Simple (singlet) spectra

- signal is only one peak: singlet, s

3. Simple spectra continued

4. Estimation of $\delta^1 H$

- from increment systems

- for
$$X-CH_2-Y$$
 (and $X-CH_3$, where $Y=H$ adds zero)

$$\delta^{1}H$$
 (ppm) = 0.23 + increments for X and Y substituents

see p. A-18

$$\delta^{1}H_{a} = 0.23 + 1.55 + 0 = 1.78 \text{ ppm (exp. 2.0 ppm) compare: ok}$$

$$\delta^{1}H_{b} = 0.23 + 3.13 + 0 = 3.36 \text{ ppm (exp. 3.65 ppm) ok}$$

(appropriate?)

$$\delta^{1}H_{a} = 0.23 + 1.55 + 0.47^{?} = 2.25 \text{ ppm (exp. 2.55 ppm) ok}$$

 $\delta^{1}H_{b} = 0.23 + 3.13 + 0 = 3.36 \text{ ppm (exp. 3.65 ppm) ok}$

$$\delta^{1}H_{b} = 0.23 + 3.13 + 0 = 3.36 \text{ ppm (exp. 3.65 ppm) ok}$$

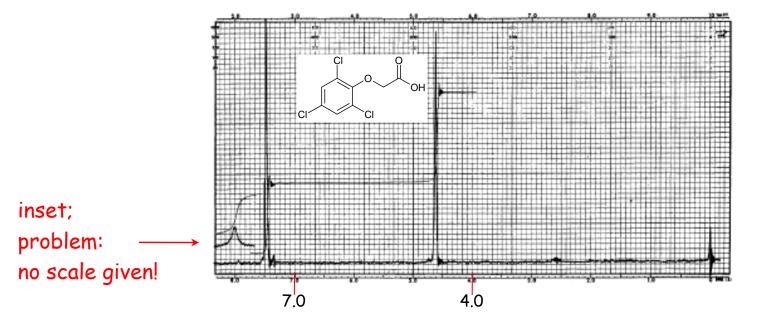
 δ^{1} H (ppm) = 5.25 + increments for gem, trans and cis substituents see p. A-19

$$\delta^{1}H_{a} = 0.23 + \frac{3.13^{2}}{OCOR} + 0 = 3.36 \text{ ppm (exp. 3.8 ppm) not reliable}$$

$$\delta^{1}H_{b}$$
 = 5.25 + 0.84 + 1.15 + 0 = 7.24 ppm (exp. 6.85 ppm) ok
gem cis trans
COOR COOR H

4. Estimation of δ^1H continued

- from an increment system

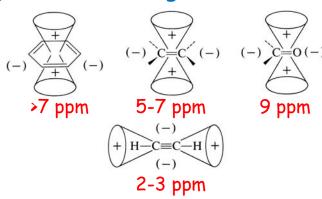

- for
$$\delta^{1}$$
H (ppm) = 7.27 + increments for substituents

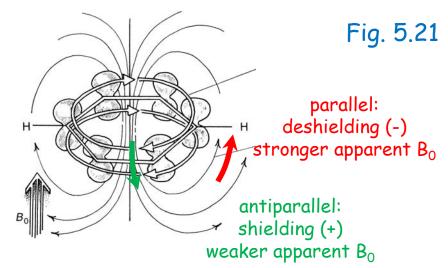
see p. A-20

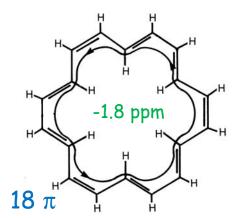
$$\delta^{1}H_{a} = 0.23 + \frac{1.55}{COOR} + \frac{3.23}{OC_{6}H_{5}} = 5.01 \text{ ppm (exp. 4.6 ppm)} \text{ ok?}$$

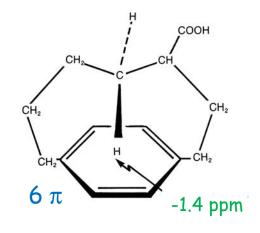
$$\delta^{1}H_{b} = 7.27 + 2.0.03 + (-0.09) + (-0.09) = 7.15 \text{ ppm (exp. 7.5 ppm) ok?}$$

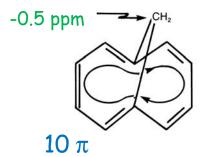
 $\delta^{1}H_{c}$ = 11-12 ppm (no increments; from Table 5.4 or p. A-8)


Not overly important for us


5. Magnetic anisotropy


- phenomenon observed for protons on or near π -systems
 - mobile π -electrons create local magnetic fields
 - shielding (+) and deshielding (-) regions
 - unusual chemical shifts


reasoning:


general shielding observations:

6. Spin-spin coupling

- between sets of chemically equivalent protons: signals are no longer singlets
- signal can be split into (use the red labels):
 - 2 lines: doublet, d
 - 3 lines: triplet, t
 - 4 lines, quartet, q
 - 5 lines, quintet, quint
 - 6 lines, sextet, sext
 - 7 lines, septet, sept

of lines depends on the number of neighbouring ¹H: n+1 rule:

n+1 lines in the signal for n equivalent neighbouring ¹H

$$\underset{R_{2}^{\prime}}{\text{H}} : d \text{ signal}$$

- protons can couple over
 - 2 bonds: ²J coupling

- 3 bonds: ³J coupling + C-C

Will get back to this in detail later

- 4 bonds or more: 4J, 5J coupling or "long-range" coupling (mostly not observed)

but observed across multiple bonds:

6. Spin-spin coupling continued

- signal multiplicity (number of lines) explained:

```
signal observed for this ¹H

¹H sees one ¹H on the next carbon atom:

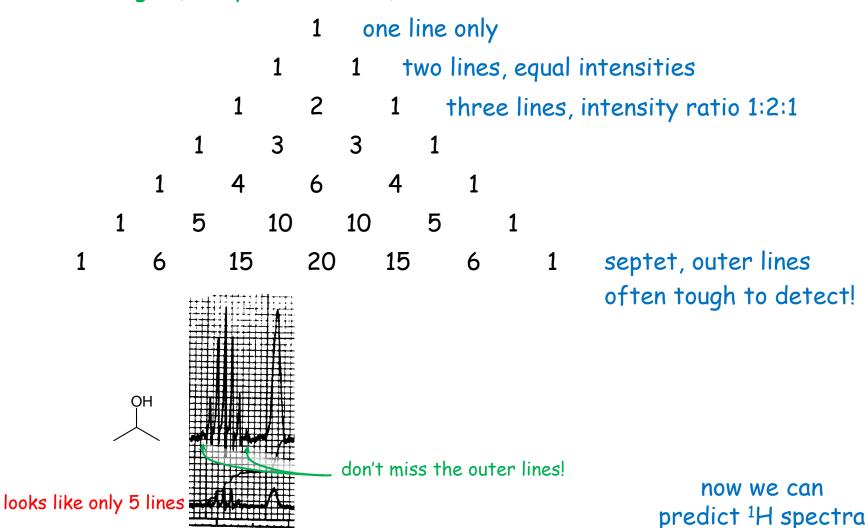
- total of 2 different spin situations: îîî and $\frac{1}{2}$

- signal for ¹H splits into 2 lines: doublet
```

equal probability

⇒ same area/height

⇒ intensity ratio in signal 1:1

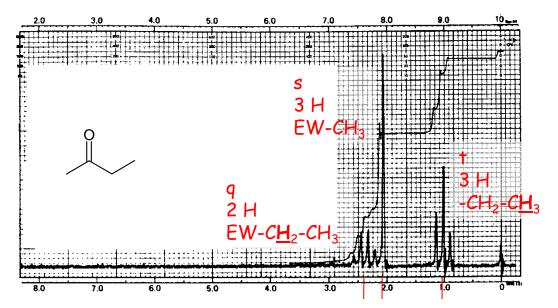

total spin observed by ${}^{1}H: +\frac{1}{2} -\frac{1}{2}$

⇒ intensity ratio in signal 1:2:1

total spin observed by ${}^{1}H: +1 \ 0 \ -1$

6. Spin-spin coupling continued

- for $I = \frac{1}{2}$, intensities of the lines within a signal follow the binomial distribution
- Pascal's triangle (easily constructed)



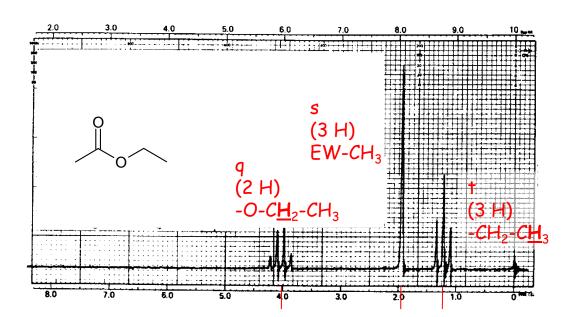
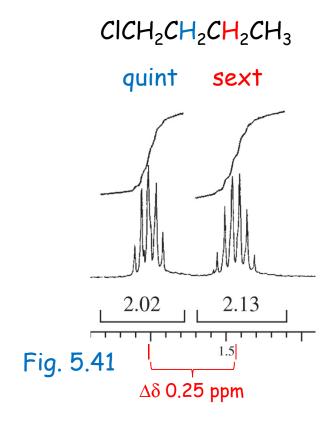
Example

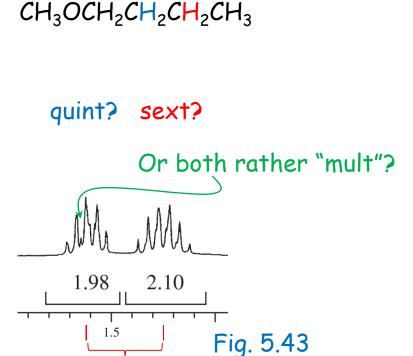
Better than problem 5.13!

Predict (draw) the 1H NMR spectrum for $^{\circ}$. First list (the calculated) δ , multiplicity and integration.

7. Spectra with simple multiplets

Do not forget that you need all three labels on a signal!

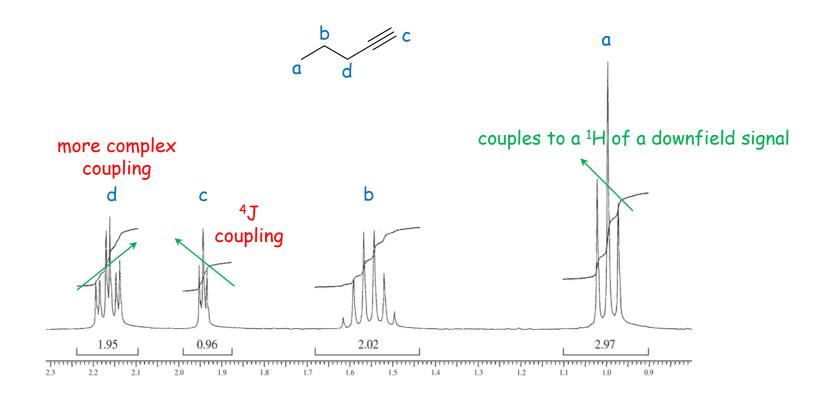

Table 5.8: examples of splitting patterns

7. Spectra with simple multiplets continued

- multiplet issues

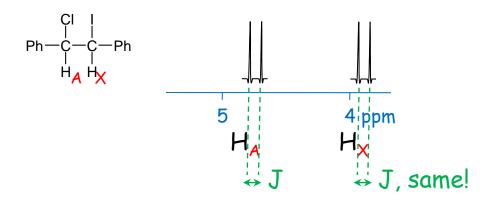
I. Multiplicity

Will discuss later in more detail, but for our purposes, these are still quint and sext!

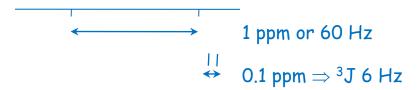

 $\Delta\delta$ 0.15 ppm

7. Spectra with simple multiplets continued

- multiplet issues


II. Skewing in multiplets

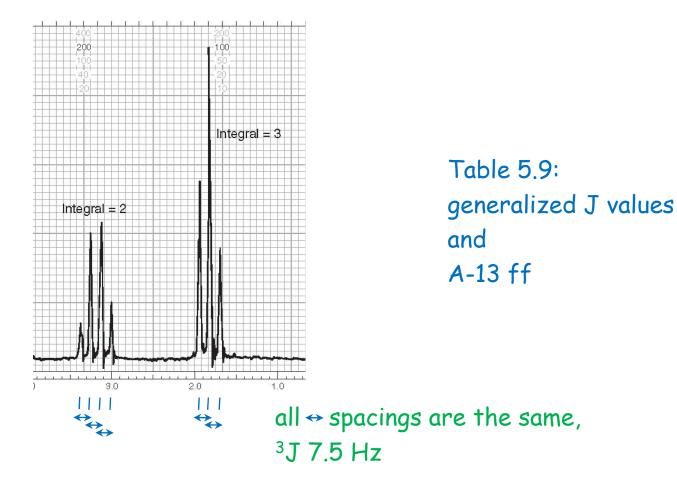
- first information on which protons are coupled



8. Coupling constant, J

- number assigned to the spread of the lines in a multiplet
 - more reliable information on which protons are coupled than skewing
 - for two multiplets from coupling protons, J is the same

if this spectrum was taken at 60 MHz:



AX spin system:

- Pople notation for coupling protons
- two chemically different protons, $\Delta\delta$ is (relatively) large

8. Coupling constant, J, continued

ICH₂CH₃

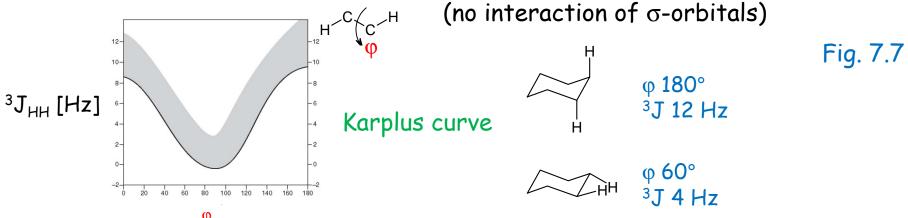
A_2X_3 spin system:

- Pople notation
- two sets of chemically different protons, $\Delta\delta$ is (relatively) large

Example

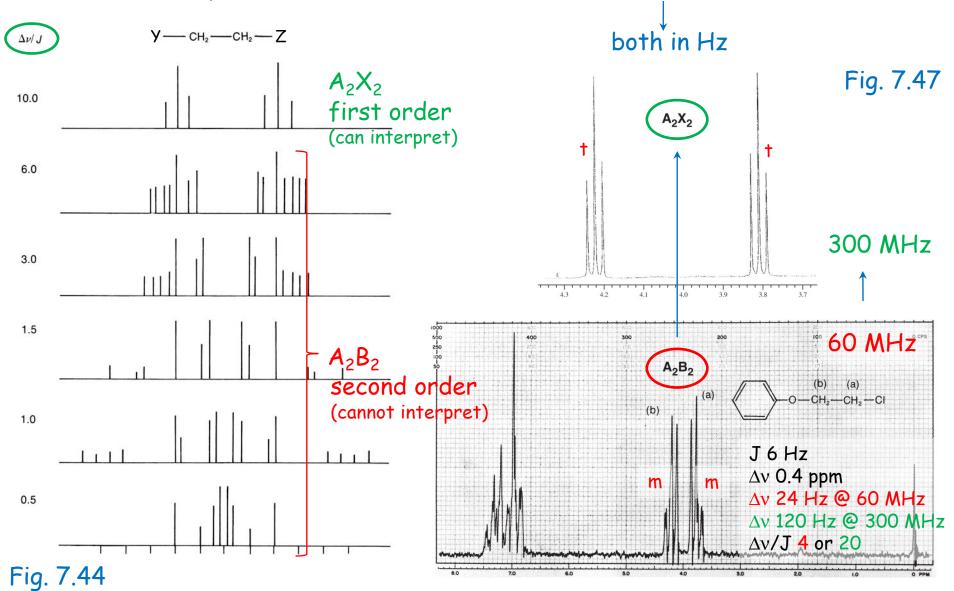
Assuming that ³J is greater upon Br-substitution, which structure is correct?

8. Coupling constant, J, continued


origin of the coupling: via the electrons in the bondsinteraction between spins of nuclei and electrons

size of J depends on the geometry:

- 2J depends on the HCH bond angle: larger J with smaller angle


(better interaction of σ -orbitals) ${}^{2}J_{HH} [Hz]_{20}^{40}$ 10 ${}^{90^{\circ}} 100^{\circ} 110^{\circ} 120^{\circ} 130^{\circ}$ 10 ${$

- 3J depends on the HCCH torsion angle: minimum function at 90°

9. First and second order spectra

- Second-order spectra are found for sets of nuclei if $\Delta v/J$ is too small

10. Non-equivalence within a group

- coupling within a group (CH_2 , e.g.) when protons are **not** chemically equivalent

- observed coupling here: ${}^3J_{AM} \neq {}^3J_{AX}$, ${}^2J_{MX}$
- we expect three different coupling constantssignals of different multiplicity than so far
- we can analyse coupling constants
 appearance of a signal through tree-diagrams

- analysis with a tree-diagram

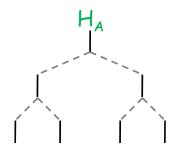
simple system: coupling to one type of ¹H

$$\begin{array}{c} H_{X} \Rightarrow \text{doublet for } H_{A} \\ C-C \end{array} \Rightarrow \begin{array}{c} H_{A} \leftarrow \text{undisturbed signal} \\ \downarrow \downarrow \leftarrow \text{signal split by } H_{X} \end{array}$$

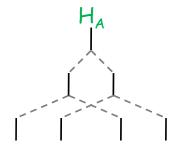
advanced system: coupling to two types of ¹H

 H_{M} \to one doublet for H_{A} with H_{M} , one doublet for H_{A} with H_{X}

 \Rightarrow doublet of doublets for H_A , dd


doublet with $H_X \rightarrow \int_{AX}^{3} J_{AX}$ doublet with $H_M \rightarrow \int_{AX}^{3} J_{AM}$

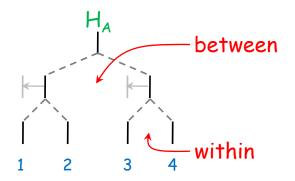
$$\Rightarrow$$
 1 signal, 4 lines


- two uses of a tree-diagram

towards a spectrum: what does the signal look like?

- use larger J first

not like this:


- stay symmetrical

: not like this, either!

from a spectrum: what are the coupling constants?

- take distance within and between the "sub-multiplets"

for a dd, measure

"within": distance of lines 1 and 2 or 3 and 4

"between": distance of lines 1 and 3 or 2 and 4

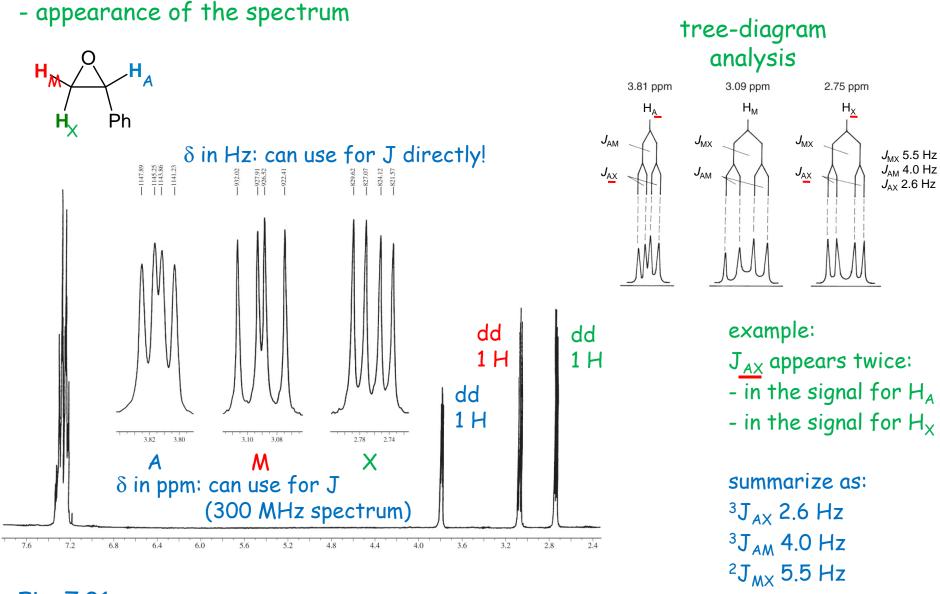
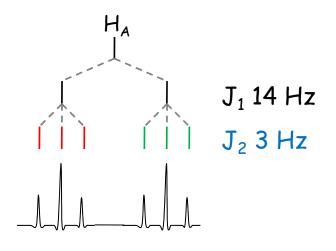
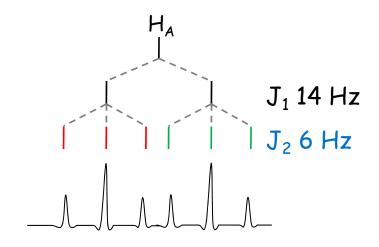


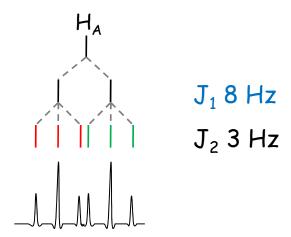
Fig. 7.31

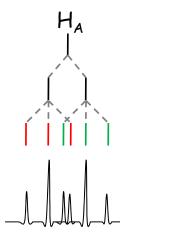
- two practice patterns

multiplicities:

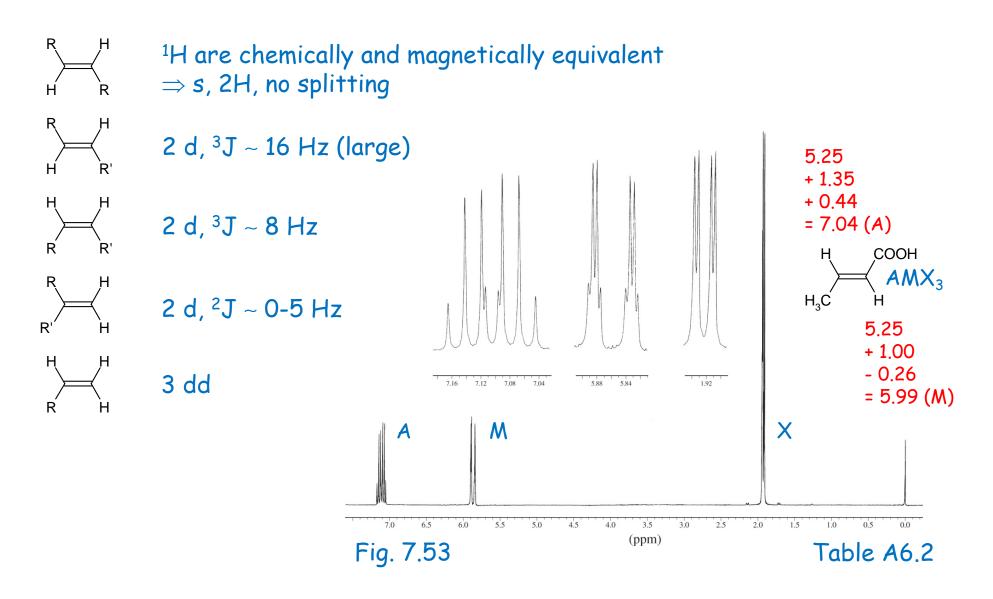

tree-diagram (assume $J_1 > J_2$):


multiplicities:


tree-diagram:

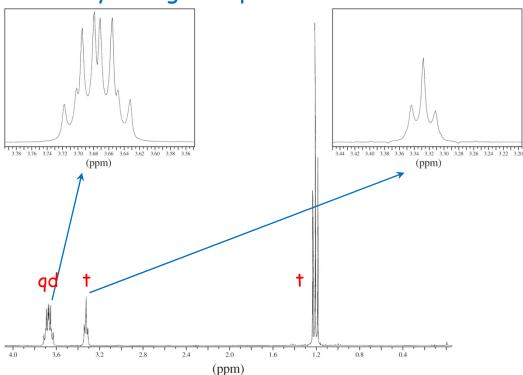

How do you determine which J is which?

- the appearance of a dt as J changes



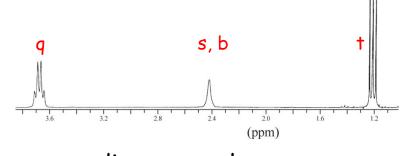
 J_1 6 Hz (bit less) J_2 3 Hz

- coupling examples in alkenes


11. Protons on oxygen

CH₃CH₂OH

- 2 issues


I. Lack of coupling

what you might expect to see

- ultrapure sample
- coupling to the OH proton observed

- ordinary sample
- coupling to the OH proton
 not observed

Fig. 8.3

11. Protons on oxygen continued

- Reason that coupling to protons on oxygen is not observed:
 - exchange takes place with other ROH, H2O, traces of acid...
 - OH proton is not attached long enough for coupling to be recorded
 - rate of exchange is too great

```
Examples of fast exchange (high rate):

CH_3OH + H_3O^+ \longrightarrow CH_3OH_2^+ + H_2O 108 L/mol·s

RSH + R'S^- \longrightarrow RS^- + R'SH 6·105 L/mol·s

Example of a slow exchange (low rate):

CH_3OH + H^*OH \longrightarrow CH_3OH^* + H_2O 3 L/mol·s
```

- for coupling to be observed, rate of exchange (1/s) \approx coupling constant J (Hz)

How would you slow down the rate of exchange?

Cooling?

H-bonding?

11. Protons on oxygen continued

- 2 issues

II. Variability in $\boldsymbol{\delta}$

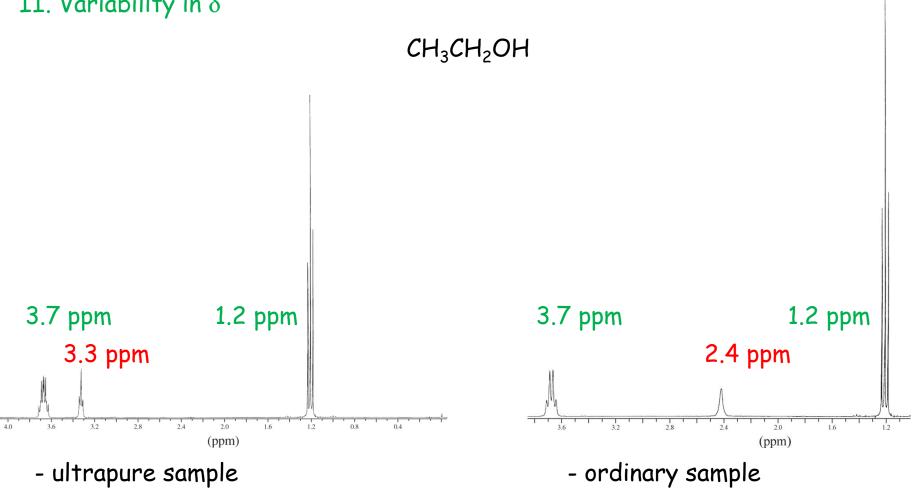
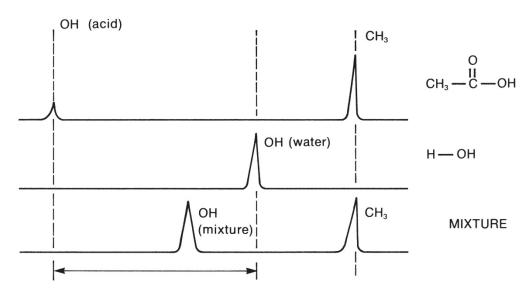



Fig. 8.3 Fig. 8.2

11. Protons on oxygen continued

- Reason for the variable δ :
 - rapid exchange with H₂O... (again)
 - OH signal position becomes the weighted average

exact position depends on the amount of water