Nuclear magnetic resonance spectroscopy

nuclear spin transitions

¹H, ¹³C, 2-dimensional

• which transitions?

wavelength and intensity; ppm

• what happens if we change the environment of the nucleus? substituent effects on the chemical shift, ...

prediction of a chemical shift

Reading: Pavia Chapter 5.1-5.7

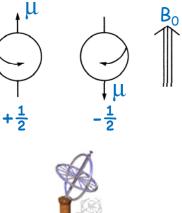
1. General

- region of radio frequency: least energetic radiation
- absorption leads to a nuclear spin transition

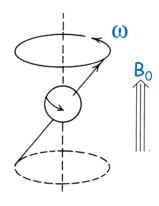
nucleus (e.g. ¹H): - charged particle

- has angular momentum (behaves like a spinning particle)
- creates a magnetic field
- has a magnetic moment, μ
- has a spin quantum number, I (for ${}^{1}H$, I = $\frac{1}{2}$)
- has allowed spin states 2I + 1 (e.g. two for ${}^{1}H$, $+\frac{1}{2}$ and $-\frac{1}{2}$)

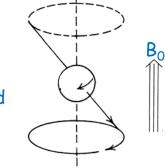
)


- states are degenerate
- \Rightarrow spin transition not possible
- \Rightarrow need to remove degeneracy to get an NMR signal

1. General continued

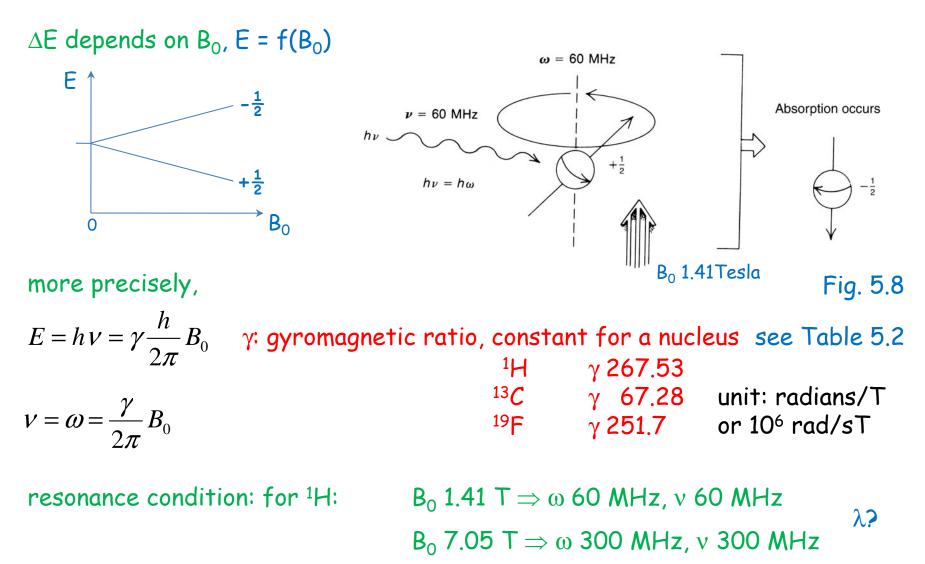


- \Rightarrow leads to two orientations: parallel and antiparallel
- $\Rightarrow \mu\text{-vector}$ rotates about the z-direction:


precession, with Larmor frequency, $\boldsymbol{\omega}$

z-direction

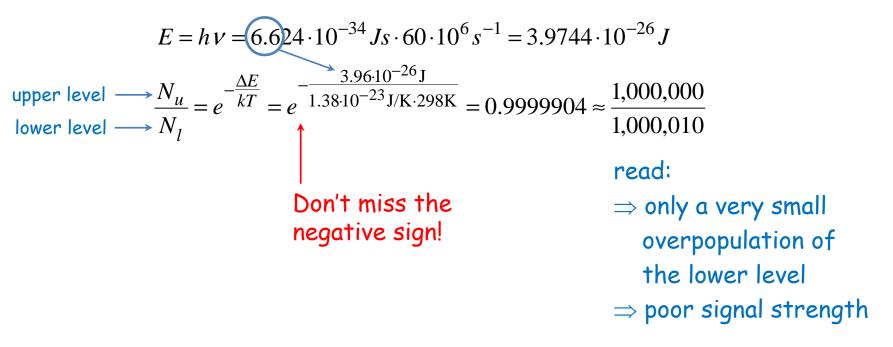
- state I = $+\frac{1}{2}$ - parallel with external field
- lower E state


state I = $-\frac{1}{2}$ - against external field - higher E state

 \Rightarrow states are no longer degenerate

E f spin excited state △E: absorbed energy, quantized spin ground state

http://www.cem.msu.edu/~reusch/ VirtualText/Spectrpy/nmr/nmr2.htm


1. General continued

1. General continued

Problem: ΔE is very small: at 1.41 T, ΔE is ≈ 0.02 J/mol

Question: How large is the energy gap needed (let's say at 60 MHz) and what does that imply for the population of the two states?

Solution: use stronger magnets

2. Spectrometer

Solution: use stronger magnets

300 MHz

see Table 5.2

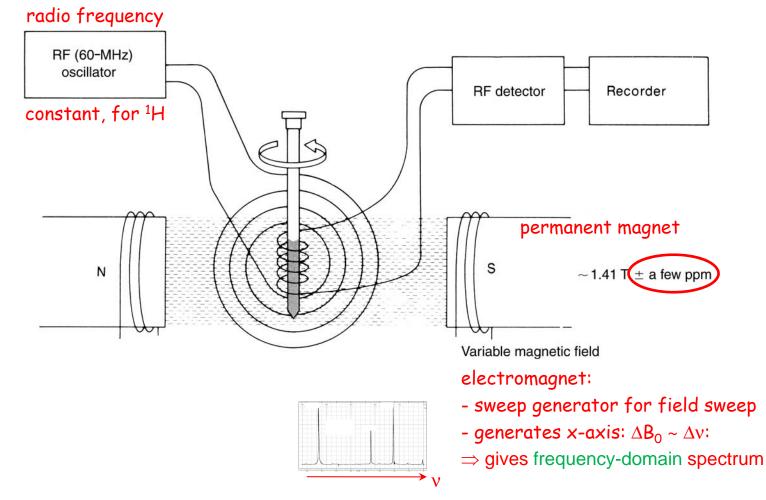
600 MHz


```
1 GHz NMR (2009, Lyon)
23.5 T
4.5 m
12 tonnes
```

http://www.tcuj.edu http://www.chemie.tu-berlin.de http://nmrresource.ucsd.edu

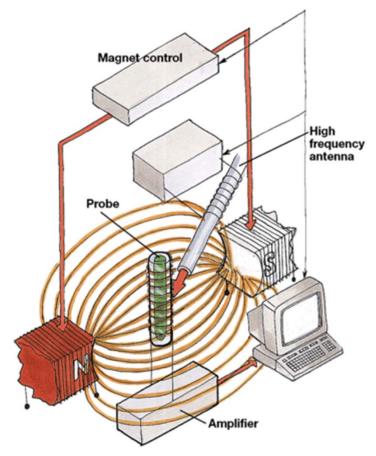
links no longer available

900 MHz



2. Spectrometer continued

Continuous-wave (CW) NMR spectrometer


- field-sweep at constant frequency

also possible: opposite configuration: frequency-sweep at constant field

2. Spectrometer continued

Fourier-transform (FT) NMR spectrometer

http://hiq.aga.cl/international/web/lg/spg /likelgspg.nsf/docbyalias/anal_nmr magnet: superconducting cryomagnet:

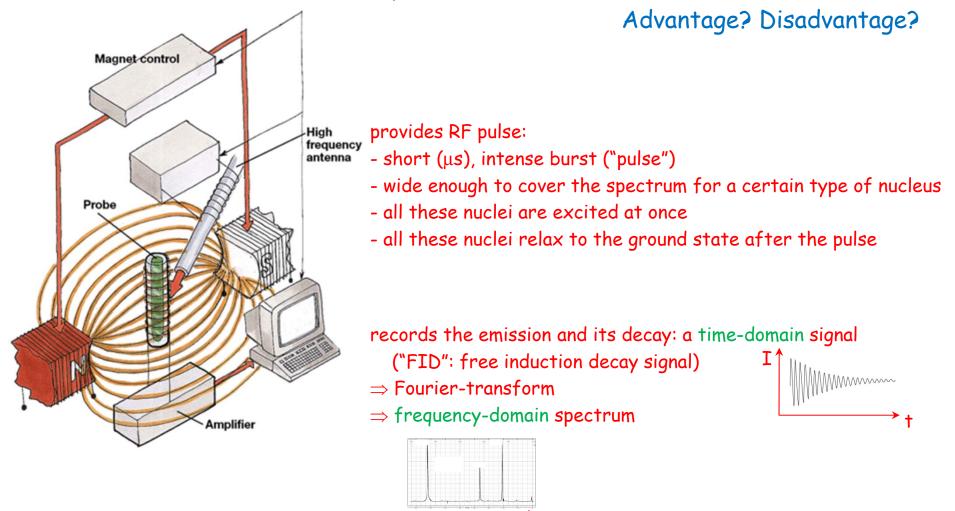
- cooled to -269 °C by $He_{(I)}$ that is cooled to -196 °C by $N_{2(I)}$
- for B_0 up to 23.5 T (v 1000 MHz for $^1\!H)$

The danger of the cryogens:

- 600 MHz, maybe 60 L of He₍₁₎:

The danger of high field strengths:

- 60 MHz, only 1.5 T:


The 5-G line safety:

https://www.youtube.com/watch?v=tPqduF5xBo&index=4&list=PLYwOwW_K_SUtUfetmnSVezDqlhiJ6RyA_ https://www.youtube.com/watch?v=7g5UVrOt2CI https://www.youtube.com/watch?v=byRIwDk21sw http://voo-mokinha.blogspot.ca/2011/02/really-really-nerdy-stuff_02.html

2. Spectrometer continued

Fourier-transform (FT) NMR spectrometer

http://hiq.aga.cl/international/web/lg/spg/likelgspg.nsf/docbyalias/anal_nmr

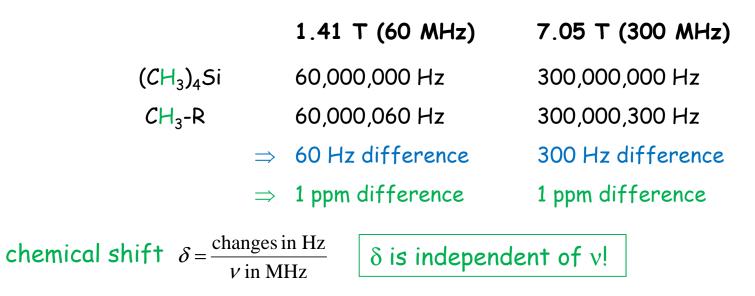
3. General ¹H spectrum

Question: sweeps: why do we need a small change from 1.41 T at 60 MHz?

Answer:

- nuclei are "shielded" to a different extent:
- a nucleus is surrounded by electrons
- electrons are moving charges that create magnetic fields
- create a "diamagnetic shielding" opposing ${\sf B}_0$
- \bullet shielded nucleus feels less of $B_{\rm 0}$
- has a smaller Larmor frequency, $\boldsymbol{\omega}$
- if we supply a constant RF, B_0 needs to be adjusted

adjustments are small:


1.41 T

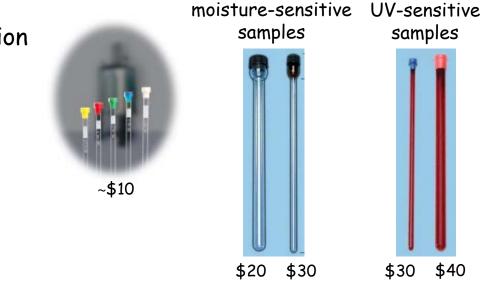
(CH ₃) ₄ Si	60,000,000 Hz	
CH ₃ -R	60,000,060 Hz	\Rightarrow 1 ppm difference
HCOR	60,000,480 Hz	\Rightarrow 8 ppm difference
adjustment:	1.41 T ± "a few" ppm	
	normal ¹ H range is about 10 ppm	

$$E = hv = h\omega = \gamma \frac{h}{2\pi} B_0$$

3. General ¹H spectrum continued

Use of the ppm scale

ppm-changes in ω on the order of Hz in a MHz (10⁶ Hz)

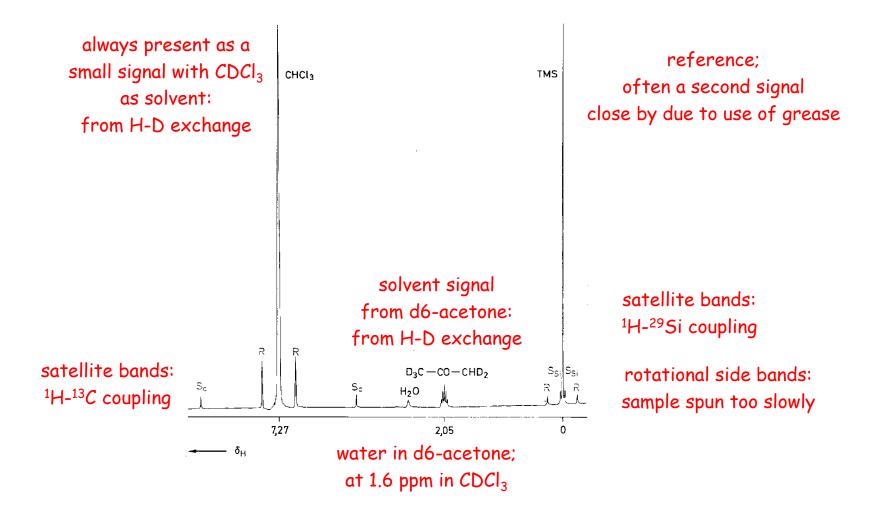

4. Materials

- standard: depends on the solvent
 - usually TMS: tetramethylsilane, $(CH_3)_4Si$
 - ¹H are considered "most shielded"

solvents: - usually deuterated organic solvents: CDCl₃, (CD₃)₂CO, C₆D₆, CD₃OD, D₂O

- or \mathcal{CCl}_4

- usually dry, otherwise H_2O signal see p. 478, bottom



sample tubes: - depend on the application - different glasses - different diameters

http://www.newera-spectro.com/

4. Materials continued

- signals from solvents and other nuisances

Hesse, Meier, Zeeh, Spektroskopische Methoden in der Organischen Chemie, Thieme, 1987