Chapter 1. Stereoisomerism

symmetry elements

symmetry planes, symmetry axes, inversion centers

• point groups

chiral point groups

enantiomers and diastereomers

in chiral point groups: chiral centers

chiral axes

planes of chirality

• notation: Fischer D,L

Cahn, Ingold, Prelog R,S

resolution of a racemic mixture

For symmetry, also check out http://www.reciprocalnet.org/edumodules/symmetry, a very nice site.

Little Eliel "Symmetry" p. 45-58

3. Stereoisomers

- diastereomers: two stereoisomers not related as object and mirror image

a) Center of chirality

- "asymmetric C-atom"

HO (H_3) or, in general (H_3) , where X = C, N, P, Si, Ge, As

- 4 different substituents on a tetrahedral central atom
- isotopes count as being different

- differentiation might not be sufficient: chiral compound might not show

optical activity: it is "crypto-chiral" $D \xrightarrow{(CH_2)_nH} (CH_2)_n H$

real-life example: a fat (glycerol triester) *CH₂-O-COR¹ *CH-O-COR²

- notations:
 - 1. Fischer D,L
 - mostly for sugars (OH defining) and $\alpha\text{-aminoacids}$ (NH_2 defining)
 - originally for glyceraldehyde

- notations:
 - 2. Cahn, Ingold, Prelog R, S (Prelog, ETH, Nobel Prize 1975)
 - chirality rule
 - The four substituents are given priorities.
 - The molecule is viewed with "4" to the back.

- $1 \rightarrow 2 \rightarrow 3$: clockwise is R (rectus), anticlockwise is S (sinister)
- sequence rules (determining the order of priority)
 - Priority increases with increasing atomic number. Ip<H<C<N<O<F<CI
 - When two atoms directly attached are identical,
 - use the "principle of outward exploration":

 $\begin{array}{cccc} & \mathsf{C}\mathsf{H}_3 \\ \mathsf{H}_3\mathsf{C}-\overset{\mathsf{C}\mathsf{H}_3}{\mathsf{C}-\mathsf{C}^{-}\mathsf{C}^{*}} & \mathsf{H} & \overset{\mathsf{O}}{\mathsf{C}} \\ & \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_2 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_2 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_2 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_2 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 \\ \mathsf{C}\mathsf{H}_3 \\ \mathsf{C}\mathsf{H}_3 & \mathsf{C}\mathsf{H}_3 \\ \mathsf{C}\mathsf{H}_$

- For isotopes: Priority increases with increasing mass. H<D<T

- example:

The CIP system is universal and unambiguous, but consider this:

- two special cases:
 - 1. The pseudo-asymmetric C-atom

C³ is **not** a C^{*}, but it is a stereogenic center ("pseudo-asymmetric")!

- number of stereoisomers:

for $n C^*$ there are 2^n stereoisomers

- enantiomers: differ in configuration at all \mathcal{C}^{\star}
- diastereomers: differ in configuration at least at one C* (but not at all)
- "epimers": differ in configuration at only one C* of multiple
 - for isomers with 2 C^* , the old nomenclature is

But this is often not without problems and therefore discouraged.

- two special cases:

2. The meso form

- achiral member in a set of diastereomers that also has chiral members
- reduces the number of actual stereoisomers (2 are identical)
- compare carefully to the pseudo-asymmetric C case!