Interlude on Spectroscopy

"interaction of radiation with matter"

- type of interaction depends on the energy of the radiation
- use of the full electromagnetic spectrum is possible
- interaction happens through absorption
- spectrum is a plot of the absorption as a function of the energy used

Chapter 2. Ultraviolet (and visible) spectroscopy

electronic transitions

which transitions?

wavelength and intensity, λ_{max} and ϵ

- what happens if we change the molecule? substituent effects on λ_{max} and ϵ
- \bullet laws for the prediction of λ_{max} in conjugated alkenes and ketones

Reading: Pavia Chapter 7 Don't need 7.13, 7.14D and E, 7.15

1. General

- range of radiation: \approx 200 800 nm
- absorption leads to excitation of electrons
 - E electronically excited state ΔE: absorbed energy, quantized electronic ground state of a molecule

Question: How large is the energy gap needed (let's say at 200 nm) and what does that imply for the population of the two states?

Planck's
law
$$E = hv = h\frac{c}{\lambda} = 6.6 \cdot 10^{-34} Js \cdot \frac{3 \cdot 10^8 m/s \cdot 10^9 nm/m}{200 nm} = 9.9 \cdot 10^{-19} J$$
Boltzmann
distribution
$$\frac{N_u}{N_l} = e^{-\frac{\Delta E}{kT}} = e^{-\frac{9.9 \cdot 10^{-19} J}{1.38 \cdot 10^{-23} J/K \cdot 298K}} = 0 \implies \text{read: "1 upper over all lower":}$$
all molecules are in
their electronic ground state

2. Nature of electronic excitations

A. Electronic states

• electronic levels for the lowest-energy transition are HOMO and LUMO

- E is quantized: only a specific ∆E leads to this promotion
 ⇒ we should observe a line spectrum
 - \Rightarrow true for an atom, but not for a molecule
 - \Rightarrow a molecule vibrates and rotates

2. Nature of electronic excitations continued

A. Electronic states

• every electronic state possesses vibrational and rotational states

2. Nature of electronic excitations continued

A. Electronic states

 \Rightarrow leads to line broadening: all ΔE are similar but slightly different

2. Nature of electronic excitations continued

B. Molecular orbitals

molecules?

• general orbital diagram

3. Selection rules

- govern which transitions are allowed, which forbidden
- allowed transition is observed
- forbidden transition is either not observed or very weak
 - the promoted electron does not change spin
 - only one electron is excited
 - transitions between orbitals of different symmetry are forbidden

hν

singlet

4

singlet

- $\Rightarrow \pi \rightarrow \pi^{\star}$ allowed
- \Rightarrow n $\rightarrow \pi^{\star}$ forbidden, but observed

4. Chromophores

• group of atoms that makes an absorption possible (at least two)

see Table 7.3

• probably the best-studied chromophore is the carbonyl group

 the combination of chromophores leads to shifts in band intensity: increased: hyperchromic effect decreased: hypochromic effect

wavelength: increased: longer λ_{max} :

- bathochromic effect
- red shifted $\pi \rightarrow \pi^*$ band
- less energetic light
- through conjugation

 $\lambda_{1,\max} < \lambda_{2,\max}$

decreased: shorter λ_{max} :

- hypsochromic effect
- blue shifted $\mathbf{n} \rightarrow \pi^{\star}$ band
- more energetic light
- through heteroatoms

- reason for a red shifted $\pi \to \pi^*$ band through conjugation: HOMO - LUMO gap becomes smaller upon conjugation
- acyclic conjugated:
 - MO (interaction) diagram for the π -orbitals of ethene and butadiene LCAO principle: linear combinations of atomic orbitals (p only)

• the red shift through conjugation can be dramatic:

β -carotene

 $C_{40}H_{56}$: U = 40 + 1 - $\frac{1}{2}(56 - 0)$ = 41 - 28 = 13, 11 conjugated $C=C \Rightarrow \lambda_{max}$ 465 nm

orange!

- reason for a red shifted $\pi \rightarrow \pi^*$ band through conjugation
- reason for a blue shifted $n\to\pi^{\star}$ band through heteroatoms: inductive effect: energy of n_{O} is lowered
- $\pi \rightarrow \pi^*$ still shows a bathochromic shift:

 $\pi\text{-system}$ is still extended through the heteroatom

5. Absorption

• follows the Lambert-Beer law

$$A = \log\left(\frac{I_0}{I}\right) = \varepsilon c l \qquad \qquad \underset{\text{source}}{\text{light}} \qquad \qquad \overbrace{\text{source}}{\text{solvent}} \qquad \qquad \overbrace{\text{solvent}}{\text{solvent}} \qquad \qquad I$$

 $\bullet \ \epsilon$ is determined by the size of the absorbing system probability of the transition

 $\epsilon < 1000 \implies \log \epsilon \approx 2-3$: low intensity absorption $\epsilon \gg 1000 \implies \log \epsilon \approx 4-5$: high intensity absorption

- plotted is A or ϵ or log ϵ

6. Materials

- Central question: Where does the material absorb?
- solvent: should be transparent in the region of interest
 - "ideal" UV-Vis spectrum:

• cuvette: quartz, transparent to $\approx 200 \text{ nm}$

polymer, transparent to \approx 220 nm (PMMA) optical glass, transparent to only \approx 350 nm

7. Spectrometer

• Beam in a UV-Vis spectrometer

http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab3.htm

http://www.gmi-inc.com/Categories/spectrophotometers.htm

8. Spectrum

- UV-Vis spectra are often not published
- x-y data of the extrema are reported instead

Info from this spectrum reported: λ_{max} 230 nm log ϵ 4.2 272 3.1 282 2.9

Info from this spectrum gained:

- no long-wavelength absorption:
 not highly conjugated
- longer-wavelength low intensity: probably forbidden, possibly $n \rightarrow \pi^*$
- shorter-wavelength high intensity: probably allowed, possibly $\pi \to \pi^*$

Interesting, but s-cis is not usually important in acyclic systems!

 \bullet use Woodward-Fieser rules to predict λ_{max}

- I. Dienes and higher conjugated C=CWoodward-Fieser rules
 - \bullet calculate λ_{max} from a base value...

R.B. Woodward Nobel Prize 1965

	acyclic (<i>s</i> -trans)	transoid	cisoid
base value [nm]	214	214	253

• ...plus increments for structural features...

• ...plus increments for other substituents

see Table 7.5

I. Dienes and higher conjugated C=C

Examples

I. Dienes and higher conjugated C=C

Examples

II. Enones and higher conjugated C=O (ketones only)

Woodward rules

• calculate λ_{max} from a base value...

II. Enones and higher conjugated C=O

III. Aromatic compounds

• good chromophore: 3 conjugated C=C, cis, in one ring

- conjugation effects as discussed earlier
- \bullet no quantitative treatment: λ_{max} not easy to predict for substitution

issues

Example

An alkene $C_{12}H_{16}$ and an unsaturated ketone $C_{11}H_{14}O$, both almost identical in structure (), show UV absorptions at 269 and 286 nm, respectively. Give their structures.