Interlude on Spectroscopy

“interaction of radiation with matter”

- type of interaction depends on the energy of the radiation
- use of the full electromagnetic spectrum is possible
- interaction happens through absorption
- spectrum is a plot of the absorption as a function of the energy used

\[A \]

\[\lambda, \text{ wavelength} \quad \Rightarrow \text{UV/Vis} \]

\[\tilde{\nu}, \text{ wavenumber} \quad \Rightarrow \text{IR} \]

\[\nu, \text{ frequency} \quad \Rightarrow \text{NMR} \]
Electromagnetic spectrum

- High energy
- Low energy
- High frequency
- Low frequency
- Short wavelength
- Long wavelength

Frequency (ν) in Hz

- 10^{19}
- 10^{17}
- 10^{15}
- 10^{13}
- 10^{10}
- 10^5

Wavelength (λ) in meters

- 10^{-6}
- 10^{-4}
- 10^{-1}
- 0.4
- 0.8
- 10^2
- 10^6
- 10^{10}

- Cosmic rays
- γ-rays
- X-rays
- Ultraviolet light
- Visible light
- Infrared radiation
- Microwaves
- Radio waves

- Ionization: $M + h\nu \rightarrow M^{++} + e^-$
- Electronic transitions: UV/Vis
- Molecular vibrations: IR
- Nuclear spin transitions: NMR
- Molecular rotations: microwave spectroscopy
Chapter 2. Ultraviolet (and visible) spectroscopy

electronic transitions

• which transitions?
 wavelength and intensity, λ_{max} and ε

• what happens if we change the molecule?
 substituent effects on λ_{max} and ε

• laws for the prediction of λ_{max} in conjugated alkenes and ketones

Reading:
Pavia
Chapter 7
Don’t need 7.13, 7.14D and E, 7.15
1. General

• range of radiation: \(\approx 200 - 800 \) nm
• absorption leads to excitation of electrons

Question: How large is the energy gap needed (let’s say at 200 nm) and what does that imply for the population of the two states?

Planck’s law

\[
E = h \nu = h \frac{c}{\lambda} = 6.6 \cdot 10^{-34} \text{Js} \cdot \frac{3 \cdot 10^8 \text{m/s} \cdot 10^9 \text{nm/m}}{200 \text{nm}} = 9.9 \cdot 10^{-19} \text{J}
\]

Boltzmann distribution

\[
\frac{N_u}{N_l} = e^{-\frac{\Delta E}{kT}} = e^{-\frac{9.9 \cdot 10^{-19}}{1.38 \cdot 10^{-23} J/K \cdot 298 K}} = 0 \quad \Rightarrow \text{read: “1 upper over all lower”: all molecules are in their electronic ground state}
\]
2. Nature of electronic excitations

A. Electronic states

• electronic levels for the lowest-energy transition are HOMO and LUMO

• E is quantized: only a specific ΔE leads to this promotion
 ⇒ we should observe a line spectrum
 ⇒ true for an atom, but not for a molecule
 ⇒ a molecule vibrates and rotates
2. Nature of electronic excitations continued

A. Electronic states

• every electronic state possesses vibrational and rotational states

\[\lambda: \text{nm} \quad \mu\text{m} \quad \text{cm} \]
2. Nature of electronic excitations continued

A. Electronic states

⇒ leads to line broadening: all ΔE are similar but slightly different

A

λ_{max} λ

(wavelength for maximum absorption)

⇒

A

λ_{max} λ

observed band due to poor resolution
2. Nature of electronic excitations continued

B. Molecular orbitals

- occupied MOs: \(n \) \(\sigma \) \(\pi \)
- unoccupied MOs: \(\sigma^* \) \(\pi^* \)

- general orbital diagram

possible transitions:
- \(n \to \pi^* \)
- \(n \to \sigma^* \)
- \(\pi \to \pi^* \)
- \(\pi \to \sigma^* \)
- \(\sigma \to \pi^* \)
- \(\sigma \to \sigma^* \)
3. Selection rules

• govern which transitions are allowed, which forbidden
• allowed transition is observed
• forbidden transition is either not observed or very weak

• the promoted electron does not change spin

• only one electron is excited
• transitions between orbitals of different symmetry are forbidden

⇒ $\pi \rightarrow \pi^*$ allowed
⇒ $n \rightarrow \pi^*$ forbidden, but observed
4. Chromophores

• group of atoms that makes an absorption possible (at least two)

important chromophores

\[R_2C=O, R_2C=S, R_2C=N-R \]
\[R-N=N-R \]
\[R-NO_2 \]
\[\text{R-} \overset{\text{O}}{\text{C=O}}, \overset{\text{O}}{\text{C}=\overset{\text{O}}{\text{C}},} \overset{\text{O}}{\text{C}=\overset{\text{NH}_2}{\text{C}}} \]

(aromatics in general)

less important chromophores

(first \(\lambda_{\text{max}} \) too small/short)

\[R-OH, R-O-R, R-NH_2 \]
\[R_2C=CR_2, R-C=\overset{\equiv}{\text{C}}-R, R-C=\overset{\equiv}{\text{N}} \]

see Table 7.3
4. Chromophores continued

• probably the best-studied chromophore is the carbonyl group

280–290 nm
but
forbidden, low intensity

180–190 nm
allowed, high intensity, but too short to be observed!
4. Chromophores continued

• “typical” UV-Vis spectrum of a carbonyl compound

What is this? C=O plus C=C?

π → π* becomes observable
4. Chromophores continued

• the combination of chromophores leads to shifts in band intensity: increased: hyperchromic effect
decreased: hypochromic effect

wavelength: increased: longer λ_{max}:
- bathochromic effect
- red shifted $\pi \rightarrow \pi^*$ band
- less energetic light
- through conjugation

\[
\begin{align*}
\text{C} & \quad \text{C} = \text{C} \quad \text{C} = \text{C} \\
\lambda_1,\text{max} & < \lambda_2,\text{max}
\end{align*}
\]

\[
\begin{align*}
175 & \quad 217
\end{align*}
\]

decreased: shorter λ_{max}:
- hypsochromic effect
- blue shifted $n \rightarrow \pi^*$ band
- more energetic light
- through heteroatoms

\[
\begin{align*}
\begin{array}{c}
\text{C} \quad \text{C} \quad \text{C} \quad \text{C} \\
\lambda_1,\text{max} & > \lambda_2,\text{max}
\end{array}
\end{align*}
\]

\[
\begin{align*}
204 & \quad 293
\end{align*}
\]
4. Chromophores continued

• reason for a red shifted $\pi \rightarrow \pi^*$ band through conjugation:
 HOMO - LUMO gap becomes smaller upon conjugation

• acyclic conjugated:

 MO (interaction) diagram for the π-orbitals of ethene and butadiene

 LCAO principle: linear combinations of atomic orbitals (p only)
4. Chromophores continued

• the red shift through conjugation can be dramatic:

\[
\beta\text{-carotene}
\]

\[
C_{40}H_{56}: U = 40 + 1 - \frac{1}{2}(56 - 0) = 41 - 28 = 13, 11 \text{ conjugated } C=C \Rightarrow \lambda_{\text{max}} 465 \text{ nm}
\]

orange!
4. Chromophores continued

• reason for a red shifted $\pi \rightarrow \pi^*$ band through conjugation

• reason for a **blue shifted** $n \rightarrow \pi^*$ band through heteroatoms:

 inductive effect: energy of n_O is lowered

• $\pi \rightarrow \pi^*$ still shows a bathochromic shift:

 π-system is still extended through the heteroatom

\[
\begin{align*}
\text{C} & \equiv \text{C} \\
\text{C} & \equiv \text{O}
\end{align*}
\]

$n \rightarrow \pi^*$ $\lambda_{1,\text{max}} > \lambda_{2,\text{max}}$

$\pi \rightarrow \pi^*$ $\lambda_{1,\text{max}} < \lambda_{2,\text{max}}$
5. Absorption

- follows the Lambert-Beer law
 \[A = \log \left(\frac{I_0}{I} \right) = \varepsilon c l \]

- \(\varepsilon \) is determined by the size of the absorbing system
 probability of the transition

- \(\varepsilon < 1000 \Rightarrow \log \varepsilon \approx 2-3 \): low intensity absorption
- \(\varepsilon \gg 1000 \Rightarrow \log \varepsilon \approx 4-5 \): high intensity absorption

- plotted is \(A \) or \(\varepsilon \) or \(\log \varepsilon \)
6. Materials

- **Central question:** Where does the material absorb?
- **solvent:** - should be transparent in the region of interest
 - “ideal” UV-Vis spectrum:

λ [nm]	A
200	
800	

 short-wavelength cutoff:
 - H₂O, CH₃CN 190 nm
 - CHCl₃ 240 nm

- **cuvette:** quartz, transparent to ≈ 200 nm
- **polymer,** transparent to ≈ 220 nm (PMMA)
- **optical glass,** transparent to only ≈ 350 nm

see Table 7.1
7. Spectrometer

- Beam in a UV-Vis spectrometer

Diode-array spectrophotometer

no movable parts:

faster

http://www.gmi-inc.com/Categories/spectrophotometers.htm

http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab3.htm
8. Spectrum

- UV-Vis spectra are often not published
- x-y data of the extrema are reported instead

Info from this spectrum reported:

\[\lambda_{\text{max}} \ 230 \text{ nm} \quad \log \varepsilon \ 4.2 \]
\[
\begin{array}{ccc}
272 & 3.1 \\
282 & 2.9 \\
\end{array}
\]

Info from this spectrum gained:

- no long-wavelength absorption:
 - not highly conjugated
- longer-wavelength low intensity:
 - probably forbidden, possibly \(n \rightarrow \pi^* \)
- shorter-wavelength high intensity:
 - probably allowed, possibly \(\pi \rightarrow \pi^* \)
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions

I. Dienes and higher conjugated C=C

Why do we write cisoid and not transoid? Conformation matters!

- acyclic dienes
 - butadiene
 - s-trans
 $\pi_1 \pi_2 \pi_3^* \pi_4^*$ 230 nm
 - s-cis
 $\pi_1 \pi_2 \pi_3^* \pi_4^*$ 271 nm

Interesting, but s-cis is not usually important in acyclic systems!

- cyclic dienes
 - transoid
 - cisoid

• use Woodward-Fieser rules to predict λ_{max}
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions continued

I. Dienes and higher conjugated C=C

Woodward-Fieser rules

- calculate λ_{max} from a base value...

\[
\begin{align*}
\text{acyclic (s-trans)} & \quad \text{transoid} & \quad \text{cisoid} \\
\text{base value [nm]} & \quad 214 & \quad 214 & \quad 253
\end{align*}
\]

- ...plus increments for structural features...

\[
\begin{align*}
\text{another conjugated C=C} & \quad \text{alkyl group or ring residue} & \quad \text{exocyclic C=C} \\
\text{increment [nm]} & \quad 30 & \quad 5 & \quad 5
\end{align*}
\]

- ...plus increments for other substituents

see Table 7.5
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions continued

I. Dienes and higher conjugated C=C

Examples

\[
\begin{align*}
214 + 5 &= 219 \text{ nm} \\
214 + 30 &= 244 \text{ nm} \\
214 + 2 \times 5 + 5 &= 229 \text{ nm} \\
214 + 3 \times 5 + 5 &= 234 \text{ nm} \\
234 + 6 &= 240 \text{ nm}
\end{align*}
\]

Colour code: base system increments not important for absorption
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions continued

I. Dienes and higher conjugated $C=C$

Examples

- Colour code: base system
 increments
 not important
 for absorption

\[
\begin{align*}
253 + 2 \times 5 &= 263 \text{ nm} \\
253 + 4 \times 5 + 2 \times 5 &= 283 \text{ nm} \\
253 + 2 \times 30 + 5 \times 5 + 3 \times 5 &= 353 \text{ nm}
\end{align*}
\]
9. Prediction of λ_{max} of $\pi \to \pi^*$ transitions continued

II. Enones and higher conjugated C=O (ketones only)

Woodward rules

- calculate λ_{max} from a base value...

\[
\begin{align*}
\text{acyclic (s-trans)} & : 215 \\
\text{6-membered ring} & : 215 \\
\text{5-membered ring} & : 202
\end{align*}
\]

- ...plus increments for structural features...

\[
\begin{align*}
\text{another conjugated C=C} & : 30 \\
\text{alkyl group or ring residue} & : \begin{align*}
in \alpha & : 10 \\
in \beta & : 12 \\
in \gamma & : 18
\end{align*} \\
\text{exocyclic C=C} & : 5 \\
\text{homocyclic (cisoid) diene} & : 39
\end{align*}
\]

- ...plus increments for other substituents

see Table 7.7
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions continued

II. Enones and higher conjugated C=O

Examples

$\text{ Colour code: base system increments not important for absorption}$

Example 1:

$215 + 10 + 12 = 237 \text{ nm}$

Example 2:

$215 + 30 + 10 = 255 \text{ nm}$

Example 3:

$215 + 12 = 227 \text{ nm}$

Example 4:

$215 + 30 + 39 + 18 = 302 \text{ nm}$

Example 5:

$202 + 12 = 214 \text{ nm}$

Example 6:

$202 + 30 + 12 + 18 + 5 = 267 \text{ nm}$
9. Prediction of λ_{max} of $\pi \rightarrow \pi^*$ transitions continued

III. Aromatic compounds

- good chromophore: 3 conjugated $C=C$, cis, in one ring

- conjugation effects as discussed earlier

- no quantitative treatment: λ_{max} not easy to predict for substitution
Example

An alkene $C_{12}H_{16}$ and an unsaturated ketone $C_{11}H_{14}O$, both almost identical in structure (□□□), show UV absorptions at 269 and 286 nm, respectively. Give their structures.