Nuclear magnetic resonance spectroscopy

I. ¹H NMR

Reading: Pavia Chapter 5.8-5.19 Chapter 7.1-7.3, 7.5, 7.6, 7.7 A-C and F, 7.8-7.10 Chapter 8.1, 8.2 A and C

1. Chemical equivalence

- protons in chemically identical environments are chemically equivalent exhibit the same δ
- equivalence through symmetry considerations

V″CH₃ CH₂ H₃C

1 signal for 12 ¹H

1 signal for 6 ¹H

- obvious non-equivalence

2 sets: 1 signal for 6 ¹H in CH₃ 1 signal for 4 ¹H in CH

2 sets: 1 signal for 6 ¹H in OCH₃ 1 signal for 4 ¹H in CH₂

2 sets: 1 signal for 3 ¹H in CH₃ 1 signal for 3 ¹H in OCH₃

Example

Chemical and magnetic equivalence: Proton signal is a singlet

1. Chemical equivalence continued

- spectral regions
 - chemical environment of the ¹H is important: electronegativity effects
 - hybridization effects
 - H-bonding effects
 - magnetic anisotropy effects

2. Integration

- determines the number of equivalent ¹H for a signal
- determined through the area under the signal
 - given through a step trace (need a ruler!)
- provides first important label

3. Simple spectra continued

4. Estimation of $\delta^1 H$

- from increment systems

- for X-CH₂-Y (and X-CH₃, where Y=H adds zero)

 δ^{1} H (ppm) = 0.23 + increments for X and Y substituents see p. A-18

 $\delta^{1}H_{a} = 0.23 + 1.55 + 0 = 1.78 \text{ ppm (exp. 2.0 ppm) compare: ok}$ $\delta^{1}H_{b} = 0.23 + 3.13 + 0 = 3.36 \text{ ppm (exp. 3.65 ppm) ok}$

- for trans gem

 δ^{1} H (ppm) = 5.25 + increments for gem, trans and cis substituents see p. A-19

 $\delta^{1}H_{a} = 0.23 + 3.13^{2} + 0 = 3.36 \text{ ppm} (exp. 3.8 \text{ ppm}) \text{ probably too low}$ $\delta^{1}H_{b} = 5.25 + 0.84 + 1.15 + 0 = 7.24 \text{ ppm} (exp. 6.85 \text{ ppm}) \text{ ok}$ $gem \quad cis \quad trans$

4. Estimation of $\delta^1 H$ continued

- from an increment system

Not overly important for us 5. Magnetic anisotropy

- phenomenon observed for protons on or near π -systems
 - mobile π -electrons create local magnetic fields
 - shielding (+) and deshielding (-) regions
 - unusual chemical shifts

reasoning:

6. Spin-spin coupling

- between sets of chemically equivalent protons: signals are no longer singlets
- signal can be split into:
 - 2 lines: doublet, d
 - 3 lines: triplet, **t**
 - 4 lines, quartet, q
 - 5 lines, quintet, quint
 - 6 lines, sextet, sext
 - 7 lines, septet, sept
- protons can couple over
 - 2 bonds: ²J coupling
 - 3 bonds: ${}^{3}J$ coupling ${}^{H}_{C-C}{}^{H}_{C-C}$

of lines depends on the number of neighbouring ¹H: n+1 rule: n+1 lines in the signal for n equivalent neighbouring ¹H

 $\begin{array}{c} H & H : d \ signal \\ R_{2}^{'} C - C \\ R_{2}^{'} \end{array} \qquad \begin{array}{c} H & H : f \ signal \\ R_{2}^{'} C - C \\ H \end{array}$

Will get back to this in detail later

- 4 bonds or more: ⁴J, ⁵J coupling or "long-range" coupling (mostly not observed)

but observed across multiple bonds:

6. Spin-spin coupling continued

- signal multiplicity (number of lines) explained:

6. Spin-spin coupling continued

- for I = $\frac{1}{2}$, intensities of the lines within a signal follow the binomial distribution - Pascal's triangle (easily constructed)

7. Spectra with simple multiplets

Do not forget that you need all three labels on a signal!

> Table 5.8: examples of splitting patterns

7. Spectra with simple multiplets continued

- multiplet issues

I. Multiplicity

Will discuss later in more detail, but for our purposes, these are still quint and sext!

7. Spectra with simple multiplets continued

- multiplet issues

- II. Skewing in multiplets
 - first information on which protons are coupled

8. Coupling constant, J

- number assigned to the spread of the lines in a multiplet
 - more reliable information on which protons are coupled than skewing
 - for two multiplets from coupling protons, J is the same

AX spin system:

- Pople notation
- two chemically different protons, $\Delta\delta$ is (relatively) large

8. Coupling constant, J, continued

 A_2X_3 spin system:

- Pople notation
- two sets of chemically different protons, $\Delta\delta$ is (relatively) large

Example

Assuming that ³J is greater upon Br-substitution, which structure is correct?

8. Coupling constant, J, continued

origin of the coupling: via the electrons in the bonds
 : interaction between spins of nuclei and electrons

size of J depends on the geometry:

- ²J depends on the HCH bond angle: larger J with smaller angle

9. First and second order spectra

- Second-order spectra are found for sets of nuclei if $\Delta v/J$ is too small

10. Non-equivalence within a group

- coupling within a group (CH_2 , e.g.) when protons are *not* chemically equivalent

- observed coupling here: ${}^{3}J_{AM} \neq {}^{3}J_{AX}$, ${}^{2}J_{MX}$
- we expect three different coupling constants
 signals of different multiplicity than so far
- we can analyse coupling constants
 - appearance of a signal
 - through tree-diagrams

- analysis with a tree-diagram

simple system: coupling to one type of ¹H

$$\begin{array}{c} H_{X} & H_{A} \\ C-C \end{array} \Rightarrow \text{doublet for } H_{A} \\ & \downarrow \\ & \downarrow \\ & \leftarrow \text{ undisturbed signal} \\ & \downarrow \\ & \downarrow \\ & \leftarrow \text{ signal split by } H_{X} \\ & & \frac{1}{\delta} \end{array}$$

$$\begin{array}{ccc} H_{X} & \to \text{triplet for } H_{A} \\ C - C \\ H_{X} \\ & \downarrow \\ H_{X} \\ & \downarrow \\ & \downarrow \\ & \leftarrow \text{ undisturbed signal} \\ & & \downarrow \\ & & \downarrow \\ & & \downarrow \\ & & \leftarrow \text{ signal split by } H_{X} \end{array}$$

advanced system: coupling to two types of ¹H

- two uses of a tree-diagram

towards a spectrum: what does the signal look like?

from a spectrum: what are the coupling constants?

- take distance within and between the "individual multiplets"

for a dd, measure

"within": distance of lines 1 and 2 or 3 and 4 "between": distance of lines 1 and 3 or 2 and 4

Fig. 7.31

- two practice patterns

 r_{Y} ch-ch₂-ch₂-c(ch₃) spin system:

multiplicities:

tree-diagram (assume $J_1 > J_2$):

multiplicities: tree-diagram:

How do you determine which J is which?

- the appearance of a dt as J changes

- coupling examples in alkenes

11. Protons on oxygen

- 2 issues

I. Lack of coupling

11. Protons on oxygen continued

- Reason that coupling to protons on oxygen is not observed:
 - exchange takes place with other ROH, H_2O , traces of acid...
 - OH proton is not attached long enough for coupling to be recorded
 - rate of exchange is too great

Examples of fast exchange (high rate): $CH_3OH + H_3O^+ \implies CH_3OH_2^+ + H_2O \quad 10^8 \text{ L/mol} \cdot \text{s}$ $RSH + R'S^- \implies RS^- + R'SH \quad 6\cdot 10^5 \text{ L/mol} \cdot \text{s}$

Example of a slow exchange (low rate): $CH_3OH + H^*OH \longrightarrow CH_3OH^* + H_2O = 3 L/mol \cdot s$

- for coupling to be observed,

rate of exchange (1/s) \approx coupling constant J (Hz)

How would you slow down the rate of exchange? Cooling? H-bonding?

11. Protons on oxygen continued

Fig. 8.3

11. Protons on oxygen continued

- Reason for the variable δ :
 - rapid exchange with $H_2O_{...}$ (again)
 - OH signal position becomes the weighted average

exact position depends on the amount of water