Nuclear magnetic resonance spectroscopy

I. ${ }^{1} \mathrm{H}$ NMR

Reading:
Pavia
Chapter 5.8-5.19
Chapter 7.1-7.3, 7.5, 7.6, 7.7 A-C and F, 7.8-7.10
Chapter 8.1, 8.2 A and C

1. Chemical equivalence

- protons in chemically identical environments - are chemically equivalent - exhibit the same δ
- equivalence through symmetry considerations

1 signal for $12^{1} \mathrm{H}$

- obvious non-equivalence

2 sets:
1 signal for $6{ }^{1} \mathrm{H}$ in CH_{3}
1 signal for $4{ }^{1} \mathrm{H}$ in CH

1 signal for $6{ }^{1} \mathrm{H}$

2 sets:
1 signal for $6^{1} \mathrm{H}$ in OCH_{3}
1 signal for $4{ }^{1} \mathrm{H}$ in CH_{2}

2 sets:
1 signal for ${ }^{1}{ }^{1} \mathrm{H}$ in CH_{3} 1 signal for $3{ }^{1} \mathrm{H}$ in OCH_{3}

Example

Chemical and magnetic equivalence: Proton signal is a singlet
plane of symmetry

axis of symmetry

plane of symmetry
axis of symmetry

magnetic inequivalence:

complicated spectrum: will not discuss!

1. Chemical equivalence continued

- spectral regions
- chemical environment of the ${ }^{1} \mathrm{H}$ is important: - electronegativity effects
- hybridization effects
- H-bonding effects
- magnetic anisotropy effects

2. Integration

- determines the number of equivalent ${ }^{1} \mathrm{H}$ for a signal
- determined through the area under the signal
- given through a step trace (need a ruler!)
- provides first important label

digital information:

3. Simple (singlet) spectra

- signal is only one peak: singlet, s

reported:

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

3. Simple spectra continued

integration:
1.5:1 or
$3: 2$ or revised (!)

```
                                    reported:
                                    2.55 s 4H
                                    3.65 s 6H
                                    f for a total
                                    of 10 ' H
```


thoughts:

- aromatic?
- U?
- empirical formula?
reported:
3.8 s 6 H
6.85 s 2 H
\Rightarrow for a total of $8^{1} \mathrm{H}$

4. Estimation of $\delta^{1} \mathrm{H}$

- from increment systems
- for $X-\mathrm{CH}_{2}-Y$ (and $X-\mathrm{CH}_{3}$, where $Y=H$ adds zero)
$\delta^{1} H(p p m)=0.23+$ increments for X and Y substituent

$$
\begin{aligned}
& \delta^{1} H_{a}=0.23+1.55+\underset{C O O R}{H}=1.78 \mathrm{ppm}(\exp .2 .0 \mathrm{ppm}) \text { compare: ok } \\
& \delta^{1} H_{b}=0.23+\underset{O C O R}{3.13}+\underset{H}{0}=3.36 \mathrm{ppm}(\exp .3 .65 \mathrm{ppm}) \text { ok }
\end{aligned}
$$

(appropriate?)

$$
\begin{aligned}
& \delta^{1} H_{a}=0.23+\underset{C O O R}{1.55}+\underset{R}{0.47} ?=2.25 \mathrm{ppm}(\exp .2 .55 \mathrm{ppm}) \mathrm{ok} \\
& \delta^{1} H_{b}=0.23+\underset{O C O R}{3.13}+\underset{H}{0}=3.36 \mathrm{ppm}(\exp .3 .65 \mathrm{ppm}) \mathrm{ok}
\end{aligned}
$$

$\delta^{1} H(p p m)=5.25+$ increments for gem, trans and cis substituent

4. Estimation of $\delta^{1} \mathrm{H}$ continued

- from an increment system
- for

$\delta^{1} \mathrm{H}(\mathrm{ppm})=7.27+$ increments for substituents
see p. A-20

$\left.\delta^{1} H_{b}=7.27+\underset{0 . C l}{2 \cdot 0.03}+\underset{p-C l}{(-0.09)}+\underset{m-0 \mathrm{R}}{(-0.09}\right)=7.15 \mathrm{ppm}($ exp. 7.5 ppm$)$ ok?
$\delta^{1} \mathrm{H}_{\mathrm{c}}=11-12 \mathrm{ppm}$ (no increments; from Table 5.4 or p. A-8)

Not overly important for us

5. Magnetic anisotropy

- phenomenon observed for protons on or near π-systems
- mobile π-electrons create local magnetic fields
- shielding (+) and deshielding (-) regions
- unusual chemical shifts reasoning:
general shielding observations:

10π

6. Spin-spin coupling

- between sets of chemically equivalent protons: signals are no longer singlets
- signal can be split into:
- 2 lines: doublet, d
- 3 lines: triplet, \dagger
- 4 lines, quartet, q
- 5 lines, quintet, quint
\# of lines depends on the number of neighbouring ${ }^{1} \mathrm{H}$: $n+1$ rule:
$n+1$ lines in the signal for n equivalent neighbouring ${ }^{1} \mathrm{H}$
- 6 lines, sextet, sext
- 7 lines, septet, sept

- protons can couple over
- 2 bonds: ${ }^{2}$ J coupling

Will get back to this in detail later

- 3 bonds: ${ }^{3} \mathrm{~J}$ coupling

- 4 bonds or more: ${ }^{4} \mathrm{~J},{ }^{5} \mathrm{~J}$ coupling or "long-range" coupling (mostly not observed) but observed across multiple bonds:

6. Spin-spin coupling continued

- signal multiplicity (number of lines) explained:
${ }_{\mathrm{C}-\mathrm{C}^{-1}} \mathrm{H}^{-}$signal observed for this ${ }^{1} \mathrm{H}$
$\Uparrow \quad \Uparrow \quad{ }^{1} H$ sees one ${ }^{1} H$ on the next carbon atom:
$\Downarrow \quad \Uparrow \quad$ - total of 2 different spin situations: $\Uparrow \Uparrow$ and $\Downarrow \Uparrow$
- signal for ${ }^{1} \mathrm{H}$ splits into 2 lines: doublet

equal probability
\Rightarrow same area/height
\Rightarrow intensity ratio in signal 1:1
total spin observed by ${ }^{1} \mathrm{H}:+\frac{1}{2}-\frac{1}{2}$

\Rightarrow intensity ratio in signal 1:2:1
total spin observed by ${ }^{1} \mathrm{H}:+1 \mathrm{O}-1$

6. Spin-spin coupling continued

- for $I=\frac{1}{2}$, intensities of the lines within a signal follow the binomial distribution
- Pascal's triangle (easily constructed)

Example

Predict (draw) the ${ }^{1} \mathrm{H}$ NMR spectrum for ${ }_{\mathrm{H}}$. Consider (list!) δ, multiplicity and integration.

7. Spectra with simple multiplets

Do not forget that you need all three labels on a signal!

Table 5.8: examples of splitting patterns

7. Spectra with simple multiplets continued

- multiplet issues
I. Multiplicity
$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
quint sext

$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Will discuss later in more detail, but for our purposes, these are still quint and sext!

7. Spectra with simple multiplets continued

- multiplet issues
II. Skewing in multiplets
- first information on which protons are coupled

8. Coupling constant, J

- number assigned to the spread of the lines in a multiplet
- more reliable information on which protons are coupled than skewing
- for two multiplets from coupling protons, J is the same

if this spectrum was taken at 60 MHz :

AX spin system:

- Pople notation
- two chemically different protons, $\Delta \delta$ is (relatively) large

8. Coupling constant, J, continued

$\mathrm{ICH}_{2} \mathrm{CH}_{3}$

$A_{2} X_{3}$ spin system:

- Pople notation
- two sets of chemically different protons, $\Delta \delta$ is (relatively) large

Example

Assuming that ${ }^{3} \mathrm{~J}$ is greater upon Br -substitution, which structure is correct?

8. Coupling constant, J, continued

- origin of the coupling: via the electrons in the bonds
: interaction between spins of nuclei and electrons
size of J depends on the geometry:
-2 J depends on the HCH bond angle: larger J with smaller angle (better interaction of σ-orbitals)

Fig. 7.4
-3 J depends on the HCCH torsion angle: minimum function at 90°

9. First and second order spectra

- Second-order spectra are found for sets of nuclei if $\Delta v / J$ is too small

10. Non-equivalence within a group

- coupling within a group (CH_{2}, e.g.) when protons are not chemically equivalent

all three ${ }^{1} \mathrm{H}$ are chemically different
\Rightarrow all will couple amongst each other

- observed coupling here: ${ }^{3} \mathrm{~J}_{A M} \neq{ }^{3} \mathrm{~J}_{A X},{ }^{2} \mathrm{~J}_{M X}$
- we expect - three different coupling constants
- signals of different multiplicity than so far
- we can analyse - coupling constants
- appearance of a signal
through tree-diagrams

10. Non-equivalence within a group continued

- analysis with a tree-diagram
simple system:
coupling to one type of ${ }^{1} \mathrm{H}$
$\underset{\mathrm{C}-\mathrm{C}}{\mathrm{H}_{\mathrm{X}^{2}}} \underset{\mathrm{H}_{A}}{ } \Rightarrow$ doublet for H_{A}

advanced system:
coupling to two types of ${ }^{1} \mathrm{H}$

AMX system
\Rightarrow one doublet for H_{A} with H_{M}, one doublet for H_{A} with H_{X}
\Rightarrow doublet of doublets for H_{A}, dd

10. Non-equivalence within a group continued

- two uses of a tree-diagram
towards a spectrum: what does the signal look like?
- use larger J first

not like this:

- stay symmetrical y not like this, either!
from a spectrum: what are the coupling constants?
- take distance within and between the "individual multiplets"

for a dd, measure
"within": distance of lines 1 and 2 or 3 and 4
"between": distance of lines 1 and 3 or 2 and 4

10. Non-equivalence within a group continued

- appearance of the spectrum

Fig. 7.31

10. Non-equivalence within a group continued

- two practice patterns

spin system:
multiplicities:
tree-diagram (assume $J_{1}>J_{2}$):

multiplicities:
tree-diagram:

How do you determine which J is which?
10. Non-equivalence within a group continued

- the appearance of a dt as J changes

10. Non-equivalence within a group continued

- coupling examples in alkenes

11. Protons on oxygen

- 2 issues
I. Lack of coupling
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
what you might expect to see

- ultrapure sample
- coupling to the OH proton observed

- ordinary sample
- coupling to the OH proton not observed

Fig. 8.3

11. Protons on oxygen continued

- Reason that coupling to protons on oxygen is not observed:
- exchange takes place with other $\mathrm{ROH}, \mathrm{H}_{2} \mathrm{O}$, traces of acid...
- OH proton is not attached long enough for coupling to be recorded
- rate of exchange is too great

```
Examples of fast exchange (high rate):
\[
\begin{array}{rlll}
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{3} \mathrm{O}^{+} & \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}_{2}^{+}+\mathrm{H}_{2} \mathrm{O} & 10^{8} \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~s} \\
\mathrm{RSH}+\mathrm{R}^{\prime} \mathrm{S}^{-} & \rightleftharpoons \mathrm{RS}^{-}+\mathrm{R}^{\prime} \mathrm{SH} & 6 \cdot 10^{5} \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~s}
\end{array}
\]
```

Example of a slow exchange (low rate):

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}^{\star} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}^{\star}+\mathrm{H}_{2} \mathrm{O} \quad 3 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~s}
$$

- for coupling to be observed, rate of exchange $(1 / s) \approx$ coupling constant $J(H z)$

How would you slow down the rate of exchange? Cooling?
H-bonding?

11. Protons on oxygen continued

- 2 issues
II. Variability in δ
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

- ultrapure sample

- ordinary sample

Fig. 8.3
Fig. 8.2

11. Protons on oxygen continued

- Reason for the variable δ :
- rapid exchange with $\mathrm{H}_{2} \mathrm{O}$... (again)
- OH signal position becomes the weighted average

exact position depends on the amount of water

Fig. 8.4

