Nuclear magnetic resonance spectroscopy

nuclear spin transitions

¹H, ¹³C, 2-dimensional

- which transitions?wavelength and intensity; ppm
- what happens if we change the environment of the nucleus?
 substituent effects on the chemical shift, ...
- prediction of a chemical shift

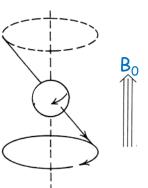
Reading: Pavia Chapter 5.1-5.7

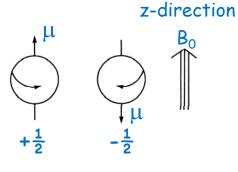
1. General

- region of radio frequency: least energetic radiation
- absorption leads to a nuclear spin transition

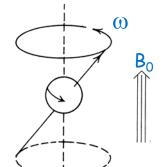
```
nucleus (e.g. <sup>1</sup>H): - charged particle
```

- has angular momentum (behaves like a spinning particle)
- creates a magnetic field
- has a magnetic moment, μ




- has a spin quantum number, I (for ${}^{1}H$, I = $\frac{1}{2}$)
- has allowed spin states 2I + 1 (e.g. two for ${}^{1}H$, $+\frac{1}{2}$ and $-\frac{1}{2}$)
 - states are degenerate
 - ⇒ spin transition not possible
 - ⇒ need to remove degeneracy to get an NMR signal

1. General continued


to get an NMR signal

- \bullet need to apply an external magnetic field, B_0
 - ⇒ leads to two orientations: parallel and antiparallel
 - \Rightarrow $\mu\text{-vector}$ rotates about the z-direction: precession, with Larmor frequency, ω

state $I = +\frac{1}{2}$

- parallel with external field
- lower E state

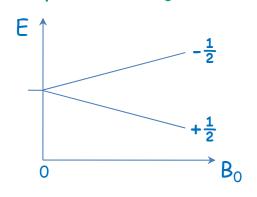
state $I = -\frac{1}{2}$

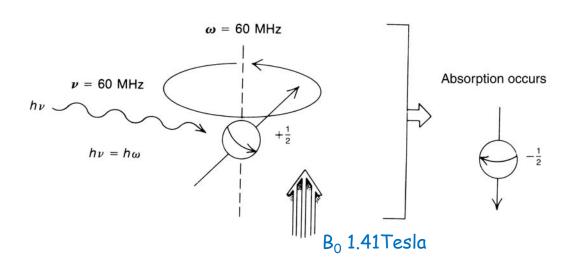
- against external field
- higher E state

 \Rightarrow states are no longer degenerate

E ↑ _ ↑

spin excited state


 ΔE : absorbed energy, quantized


spin ground state

http://www.cem.msu.edu/~reusch/ VirtualText/Spectrpy/nmr/nmr2.htm

1. General continued

ΔE depends on B₀, E = f(B₀)

more precisely,

$$E = h v = \gamma \frac{h}{2\pi} B_0$$
 γ : gyromagnetic ratio, constant for a nucleus see Table 5.2

$$v = \omega = \frac{\gamma}{2\pi} B_0$$

1H γ 267.53
 γ 67.28 unit: radians/T
 γ 251.7

resonance condition: for ¹H:

$$B_0$$
 1.41 T $\Rightarrow \omega$ 60 MHz, v 60 MHz
 B_0 7.05 T $\Rightarrow \omega$ 300 MHz, v 300 MHz

1. General continued

Problem: ΔE is very small: at 1.41 T, ΔE is ≈ 0.02 J/mol

Question: How large is the energy gap needed (let's say at 60 MHz) and what does that imply for the population of the two states?

$$E = h \, v = 6.624 \cdot 10^{-34} \, Js \cdot 60 \cdot 10^6 \, s^{-1} = 3.9744 \cdot 10^{-26} \, J$$
 upper level $\longrightarrow \frac{N_u}{N_l} = e^{-\frac{\Delta E}{kT}} = e^{-\frac{3.96 \cdot 10^{-26} \, J}{1.38 \cdot 10^{-23} \, J/\text{K} \cdot 298\text{K}}} = 0.99999904 \approx \frac{1,000,000}{1,000,010}$ read:

Don't miss the negative sign! \Rightarrow only a very small overpopulation of the lower level \Rightarrow poor signal strength

Solution: use stronger magnets

2. Spectrometer

Solution: use stronger magnets

300 MHz

600 MHz

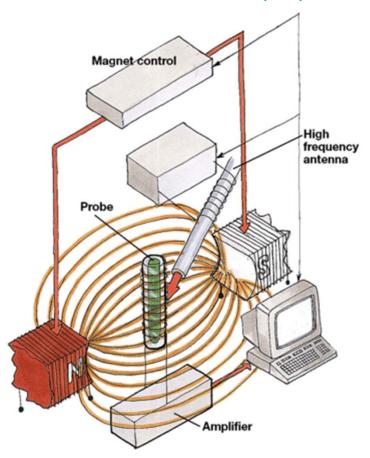
900 MHz

1 GHz NMR (2009, Lyon) 23.5 T 4.5 m 12 tonnes


http://www.chemie.tu-berlin.de http://nmrresource.ucsd.edu

2. Spectrometer continued

Continuous-wave (CW) NMR spectrometer


- field-sweep at constant frequency

also possible: opposite configuration: frequency-sweep at constant field

2. Spectrometer continued

Fourier-transform (FT) NMR spectrometer

http://hiq.aga.cl/international/web/lg/spg/likelgspq.nsf/docbyalias/anal_nmr

magnet: superconducting cryomagnet:

- cooled to -269 °C by $He_{(1)}$ that is cooled to -196 °C by $N_{2(1)}$
- for B_0 up to 23.5 T (v 1000 MHz for 1 H)

The danger of the cryogens:

- 600 MHz, maybe 60 L of $He_{(I)}$:

~2 min

The danger of high field strengths:

- 60 MHz, only 1.5 T:

10 s

The 5-G line safety:

https://www.youtube.com/watch?v=tPqduF5xBo&index=4&list=PLYwOwW_K_SUtUfetmnSVezDqlhiJ6RyA_

https://www.youtube.com/watch?v=7g5UVrOt2CI

https://www.youtube.com/watch?v=byRIwDk21sw

http://voo-mokinha.blogspot.ca/2011/02/really-really-nerdy-stuff_02.html

2. Spectrometer continued

Fourier-transform (FT) NMR spectrometer

Advantage? Disadvantage? Magnet control provides RF pulse: - short (μs), intense burst ("pulse") antenna - wide enough to cover the spectrum for a certain type of nucleus **Probe** - all these nuclei are excited at once - all these nuclei relax to the ground state after the pulse records the emission and its decay: a time-domain signal ("FID": free induction decay signal) ⇒ Fourier-transform ⇒ frequency-domain spectrum

http://hiq.aga.cl/international/web/lg/spg/likelgspg.nsf/docbyalias/anal_nmr

3. General ¹H spectrum

Question: sweeps: why do we need a small change from 1.41 T at 60 MHz?

Answer:

- nuclei are "shielded" to a different extent:
- a nucleus is surrounded by electrons
- electrons are moving charges that create magnetic fields
- create a "diamagnetic shielding" opposing B_0
- shielded nucleus feels less of B₀
- has a smaller Larmor frequency, ω
- if we supply a constant RF, B₀ needs to be adjusted

adjustments are small:

1.41 T

```
(CH_3)_4Si 60,000,000 Hz CH_3-R 60,000,060 Hz \Rightarrow 1 ppm difference CHCOR 60,000,480 Hz \Rightarrow 8 ppm difference adjustment: 1.41 T \pm "a few" ppm
```

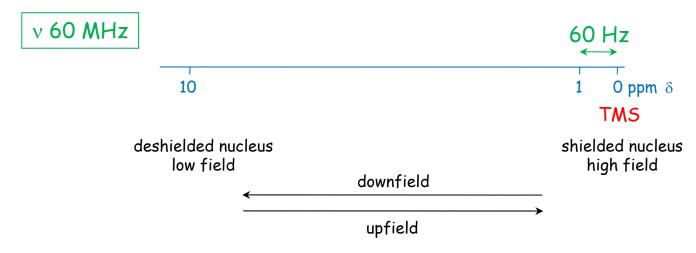
normal ¹H range is about 10 ppm

3. General ¹H spectrum continued

Use of the ppm scale

1.41 T (60 MHz) 7.05 T (300 MHz)

(CH₃)₄Si 60,000,000 Hz 300,000,000 Hz


CH₃-R 60,000,060 Hz 300,000,300 Hz

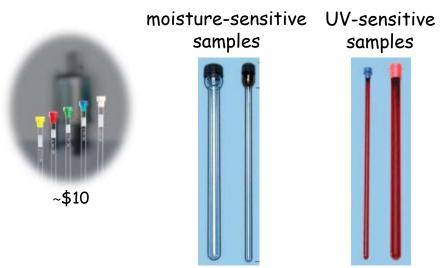
$$\Rightarrow$$
 60 Hz difference 300 Hz difference

 \Rightarrow 1 ppm difference 1 ppm difference

chemical shift $\delta = \frac{\text{changes in Hz}}{\text{vin MHz}}$ δ is independent of v!

ppm-changes in ω on the order of Hz in a MHz (10⁶ Hz)

4. Materials

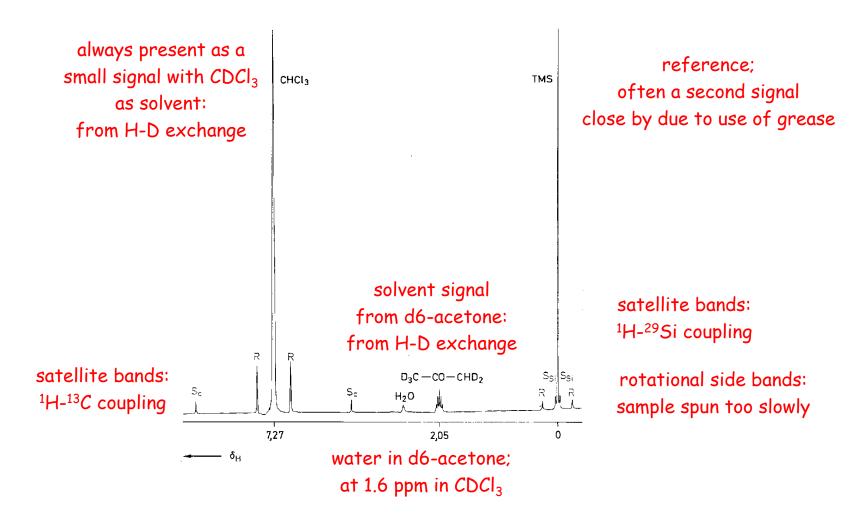

- standard: depends on the solvent
 - usually TMS: tetramethylsilane, $(CH_3)_4Si$
 - 1H are considered "most shielded"

solvents: - usually deuterated organic solvents: $CDCl_3$, $(CD_3)_2CO$, C_6D_6 , CD_3OD , D_2O

- or CCl₄
- usually dry, otherwise H₂O signal see p. 478, bottom

sample tubes: - depend on the application

- different glasses
- different diameters



\$20

\$30

4. Materials continued

- signals from solvents and other nuisances

Hesse, Meier, Zeeh, Spektroskopische Methoden in der Organischen Chemie, Thieme, 1987