Chapter 5. Mass spectrometry

ionization and fragmentation

which fragmentations?
 mass and frequency, m/z and count rate

Reading: Pavia Chapter 8 Don't need 8.3 B-D, 8.4 B-D Use the text to clarify what's covered on the slides.

1. General

- not a spectroscopic technique (no absorption of radiation)

and: sample is often destroyed through fragmentation

2. Spectrometer

- simplest version: electron ionization, magnetic sector mass analyzer

3. Mass spectrum

- from electron ionization (EI)

 $M + e^- \rightarrow M^{+\bullet} + 2 e^-$

- M^{+•}: radical cation (or cation radical)
 - : often incorrectly called "molecular ion, M⁺"
 - : often the last peak in the spectrum, largest m/z: gives molar mass
- most abundant fragment (relative 100%): "base peak"
- other peak intensities given as % of base peak
 - fragment "ions"

4. Molecular ion, M^{+•}

Difficulties:

- $M^{\scriptscriptstyle +\bullet}$ is not always the last peak in the mass spectrum
- last m/z can be
 - a) smaller than the molar mass
 - : M^{+•} is too unstable, fragments before it reaches the detector

4. Molecular ion, M⁺, continued

Difficulties:

- M^{+•} is not always the last peak in the mass spectrum
- last m/z can be

b1) greater than the molar mass, first case

: isotopes of higher mass are present in $M^{\scriptscriptstyle +\bullet}$

4. Molecular ion, M⁺, continued

Figure 8.18 Table 8.8

Br 1:1 is 100 to 98 Figure 8.80 Br₂ 1:2:1 is 51 to 100 to 49 or 100 to 195 to 95 Cl 10:3 is 100 to 33 Cl_2 10:6:1 is 100 to 65 to 11

4. Molecular ion, M⁺, continued

Difficulties:

- M^{+•} is not always the last peak in the mass spectrum
- last m/z can be

b2) greater than the molar mass, second case

- : M collects a proton: M⁺ + 1
- : sometimes for amines, hydrazines, azo compounds; carbonyls

5. Fragmentation considerations

a) Energy

- weak bonds break more readily
- fragmentations that lead to stabilized species are preferred
 - electron octet
 - resonance
 - charge on the most likely atom

 $[R-O-CH_2-CH_2...]^{+\bullet} \rightarrow [R-O-\overset{+}{C}H_2 \leftrightarrow R-\overset{+}{O}=CH_2] + radical$ preferred $\overset{+}{\not \rightarrow} R-O^{+} \text{ or } R-O-CH_2-\overset{+}{C}H_2$

but

$$\begin{bmatrix} Ar-O-CH_2-CH_2... \end{bmatrix}^{*\bullet} \rightarrow Ar-O^{*} \\ \begin{bmatrix} Ar-CH_2-CH_2... \end{bmatrix}^{*\bullet} \rightarrow Ar-CH_2 \end{bmatrix} + radical$$

resonance stabilization

5. Fragmentation considerations continued

b) Ions with an odd or even number of electrons

- I. Odd electron ions (OE+•)
 - possess an unpaired electron, such as M⁺
 - eliminate radicals ${\sf R}^{\bullet}$ or neutral, closed-shell species ${\sf N}$

(often small, stable molecules:

 $H_2O, HCI, CO, CO_2, C_2H_4, C_2H_2)$

II. Even electron ions (EE⁺)

- possess all paired electrons, such as M^+
- eliminate neutral, closed-shell species $\ensuremath{\mathsf{N}}$

$$EE^{+} \rightarrow EE^{+} + N$$

$$R - \overset{+}{O} = CH_{2} \rightarrow R^{+} + O = CH_{2}$$

* and • balance!

5. Fragmentation considerations continued

- c) Ionization energy, IE
 - follows from

 $OE^{+\bullet} \rightarrow OE^{+\bullet} + N$

- fragment with the smallest IE carries the charge (Stevenson's rule)

5. Fragmentation considerations continued

Important to remember:

- ionization is the first event: fragmentations start from M^{+•}, not from M
- + and balance
- H atom balance: it might be good to draw all H not to forget any
- mass balance
- R• and N are not detected, do not give signals:
 - \Rightarrow masses for R \bullet and N are listed differently:

15au indicating that for this particular one-molecule fragmentation there is no signal at m/z 15

6. Fragmentations

6. Fragmentations

a) α -cleavage continued

b) benzyl cleavage continued

d) McLafferty rearrangement - for longer chains with double bonds (C=O C=C C=N)

 β -cleavage + γ -H shift

if C=C is part of an aromatic ring, the aromaticity is destroyed!

or...

e) onium rearrangement - for compounds with X = O, N, P, S and charge on X Η + C₄H₈ 45 100oxonium 80ion CHa CH₃ **Relative Abundance** CHCH CH₃CH 60 -M.W. = 10243 40 - 42 20 -M+•

M(102)

100 105 110

95

20

25 30

15

35 40 45 50 55 60

80 85 90

75

65 70

m/z