Chapter 5. Mass spectrometry

ionization and fragmentation

- which fragmentations?
mass and frequency, m / z and count rate

Reading:
Pavia
Chapter 8
Don't need 8.3 B-D, 8.4 B-D
Use the text to clarify what's covered on the slides.

1. General

- not a spectroscopic technique (no absorption of radiation)
spectroscopy

spectrometry

count rate: usually in \%
: "relative abundance"
m / z : mass-to-charge ratio, here $z=1$
and: sample is often destroyed through fragmentation

2. Spectrometer

- simplest version: electron ionization, magnetic sector mass analyzer desired event:
$M+e^{-} \rightarrow M^{+}+2 e^{-}$

3. Mass spectrum

- from electron ionization (EI)

$$
M+e^{-} \rightarrow M^{+\cdot}+2 e^{-}
$$

$-M^{+\bullet}$: radical cation (or cation radical)
: often incorrectly called "molecular ion, M^{+1}
: often the last peak in the spectrum, largest m / z : gives molar mass

- most abundant fragment (relative 100\%): "base peak"
- other peak intensities given as \% of base peak
- fragment "ions"
- "isotope peaks"

Figure 8.38

Figure 8.40

4. Molecular ion, M^{+}

Difficulties:

- M^{++}is not always the last peak in the mass spectrum
- last m / z can be
a) smaller than the molar mass
: M^{++}is too unstable, fragments before it reaches the detector

detected: $M^{+\bullet}-18$

Figure 8.48

detected: $\mathrm{M}^{+\infty}-1$

Figure 8.36

4. Molecular ion, $\mathrm{M}^{+\bullet}$, continued

Difficulties:

- $M^{+\infty}$ is not always the last peak in the mass spectrum
- last m/z can be
b1) greater than the molar mass, first case : isotopes of higher mass are present in M^{+}

Figure 8.57

Figure 8.82

4. Molecular ion, $M^{+\bullet}$, continued

- isotope peak patterns for Cl - and Br -containing ions

Figure 8.18
Table 8.8

Br

$$
\begin{aligned}
& 1: 1 \text { is } 100 \text { to } 98 \text { Figure } 8.80 \\
& \mathrm{Br}_{2} \\
& 1: 2: 1 \text { is } 51 \text { to } 100 \text { to } 49 \\
& \text { or } 100 \text { to } 195 \text { to } 95 \\
& \mathrm{Cl}
\end{aligned}
$$

$10: 3$ is 100 to 33
Cl_{2}
$10: 6: 1$ is 100 to 65 to 11

4. Molecular ion, $\mathrm{M}^{+\bullet}$, continued

Difficulties:

- $M^{+\infty}$ is not always the last peak in the mass spectrum
- last m / z can be
b2) greater than the molar mass, second case
: M collects a proton: $M^{+}+1$
: sometimes for amines, hydrazines, azo compounds; carbonyls

Figure 8.14

5. Fragmentation considerations

a) Energy

- weak bonds break more readily
- fragmentations that lead to stabilized species are preferred
- electron octe†
- resonance
- charge on the most likely atom

$$
\begin{aligned}
{\left[\mathrm{R}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \ldots\right]^{+0} } & \rightarrow\left[\mathrm{R}-\mathrm{O}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2} \leftrightarrow \underset{\text { preferred }}{\left.\mathrm{R}-\stackrel{+}{\mathrm{C}} \mathrm{CH}_{2}\right]+ \text { radical }}\right. \\
& \nrightarrow \mathrm{R}-\mathrm{O}^{+} \text {or } \mathrm{R}-\mathrm{O}-\mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}
\end{aligned}
$$

but

$$
\left.\begin{array}{rl}
{\left[\mathrm{Ar}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \ldots\right]^{+\bullet}} & \rightarrow
\end{array} \underset{\mathrm{Ar}-\mathrm{O}^{+}}{\left[\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \ldots\right]^{+}} \rightarrow+\begin{array}{c}
\mathrm{Ar}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}
\end{array}\right]+ \text { radical }
$$

5. Fragmentation considerations continued

b) Ions with an odd or even number of electrons
I. Odd electron ions $\left(\mathrm{OE}^{+\bullet}\right)$

- possess an unpaired electron, such as $M^{+\bullet}$
- eliminate radicals R^{\cdot} or neutral, closed-shell species N
(often small, stable molecules:
$\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}\right)$
$\xrightarrow{O E^{++}} \mathrm{OE}^{+\bullet} \rightarrow \mathrm{EE}^{+}+\mathrm{R}^{\bullet}$

$\mathrm{OE}^{+\bullet} \rightarrow \mathrm{OE}^{+\bullet}+\mathrm{N}$

II. Even electron ions (EE ${ }^{+}$)
- possess all paired electrons, such as M^{+}
- eliminate neutral, closed-shell species N

$$
\begin{aligned}
& \mathrm{EE}^{+} \rightarrow \mathrm{EE}^{+}+\mathrm{N} \\
& \mathrm{R}-\stackrel{+}{\mathrm{O}}=\mathrm{CH}_{2} \rightarrow \mathrm{R}^{+}+\mathrm{O}=\mathrm{CH}_{2}
\end{aligned}
$$

5. Fragmentation considerations continued

c) Ionization energy, IE

- follows from

$$
\mathrm{OE}^{+\cdot} \rightarrow \mathrm{OE}^{+\cdot}+\mathrm{N}
$$

- fragment with the smallest IE carries the charge (Stevenson's rule)

+ || preferred: conjugated system has the higher HOMO
: easier to excite (UV-Vis)

: easier to ionize

5. Fragmentation considerations continued

Important to remember:

- ionization is the first event: fragmentations start from $M^{+\bullet}$, not from M
- + and •balance
- H atom balance: it might be good to draw all H not to forget any
- mass balance
- R• and N are not detected, do not give signals:
\Rightarrow masses for R^{\bullet} and N are listed differently:

(96)
(81) 15 au indicating that for this particular one-molecule fragmentation
there is no signal at $\mathrm{m} / \mathrm{z} 15$

6. Fragmentations

a) α-cleavage

- for carbonyls

- for R-X-R, $X=O, N, S$

(- for phenyl)

Which is more likely?

Figure 8.60

6. Fragmentations

a) α-cleavage continued

decarbonylation

(43)

not
observed

Figure 8.60
6. Fragmentations continued
b) benzyl and allyl cleavage - for aromatic compounds - for unsaturated compounds

Figure 8.44

highly delocalized, tropylium very stable
ion

delocalized: allyl cation

6. Fragmentations continued

b) benzyl cleavage continued

Figure 8.44

tropylium fragmentation

phenyl fragmentation

6. Fragmentations continued

c) retro-Diels-Alder cleavage - for 6-membered rings with double bonds

Figure 8.34
6. Fragmentations continued
c) retro-Diels-Alder cleavage continued

Figure 8.35

6. Fragmentations continued

d) McLafferty rearrangement - for longer chains with double bonds ($C=O$

$$
\begin{aligned}
& \beta \text {-cleavage }+\gamma \text {-H shift } \dagger
\end{aligned}
$$

if $C=C$ is part of an aromatic ring, the aromaticity is destroyed!

Figure 8.65

6. Fragmentations continued

e) onium rearrangement - for compounds with $X=O, N, P, S$ and charge on X

Figure 8.65

