1. (12 points) The following proton-decoupled ¹³C NMR spectra belong to three isomeric compounds U = 0 C₄H₁₀O. Identify the three compounds from their spectra. Support your structures by calculating the

carbon "a" as 2° would have led to a closer result here 2. (7 points) Which compounds show the following ¹³C NMR spectra? Support your structures with calculated chemical shifts.

	U=1 C	₄ H ₈ O ₂	4 signals: no symmetry-related C, no C accidentally the same						-2.3
		C	14.4q 20.9q 60.4t 170.7s		CH	2 CH ₃	CH3		+9.1 +56.5 $\cdot = 63.3$ ok
220	200 18	0 160 ester a s j	140 ester" (d llows yo tructure ust "C"	120 100 or COOR) ou to narro e: it must h won't get	80 60 is an importan ow down on the oe provided for you points	40 20 nt entry, as i e final full marks;	it	-2.3 +22.6 = 20.3 ok	$\begin{pmatrix} -2.3 \\ +9.1 \\ +6.5 \\ = 13.3 \\ \text{ok} \\ -2.3 \end{pmatrix}$
	U = 1 (C=C	C₄H ₇ Br	4 sig no C CH	nals: no syı accidental CH	nmetry-related ly the same 17.5 q 32.9 t	С, СН ₂ С	\mathbf{H}_3		-2.5 ⊦19.5 ⊦20 = 37.2 -ok —_Br
220	200 1	80 160		b	127.8 d 131.0 d			cb -2.3	Ы
		c: 12 +1 -7 +2 = ol	C=(23.3 10.6 7.9 2 128.0	C same h b: 123.3 +10.6 -7.9 = 126.0 ok	these fina configura a bit too l it should where and have to be	abel is impo abel is impo tion given a ow; it is unl be the Z cor other 1.1 pp e subtracted	the E re already ikely that ifiguration m would	y n,	

The signal-count observation (plus conclusions from it) is definitely important and required for full points!

Always remember not just to calculate a chemical shift, but to evaluate it against the increments available to you and/or the experimental value! An "ok" for a reasonable difference calculated with reasonable increments is fine. "Reasonable" depends on the problem: if there are multiple isomers available, even a difference of 4 ppm might be due to the fact that you've got the wrong one!