Lecture 11 - estimation is not as easy as we think:
challenges and solutions from 100 years ago that are

mainstream statistics!

Building long-term statistical intuition & knowledge

The statistical road: estimate with
uncertainty but with confidence

AVOID BIAS
NEXT EXIT N




WE NEED TO TRUST OUR SAMPLE ESTIMATORS FOR STATISTICS TO

WORK, IL.E., SAMPLES ESTIMATORS NEED TO BE UNBIASED

We know that under
random sampling, the
sample mean is an
unbiased estimator of
the population mean pu.

This is because the
mean of all sample
means equal the
population mean.

The bullseye is the population
mean u and
each dot is a sample mean X.



The shape of the frequency distribution of the population is not necessarily similar to the
frequency distribution of the sample estimates (e.g., here the distribution of sample mean values)
from the population. And regardless of the what the shape of the population distribution is (here
uniform), the sample mean is an unbiased estimator of the population mean.
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The shape of the frequency distribution of the population is not necessarily similar to the
frequency distribution of the sample estimates (e.g., here the distribution of sample mean values)
from the population. And regardless of the what the shape of the population distribution is (here
uniform), the sample mean is an unbiased estimator of the population mean.

T Sampling distributions for the sample
Frequency distribution of means of the gene population!
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Frequency

Sampling distribution of the means for a normally distributed
population follows a t-distribution (we say “is t-distributed”).
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Sampling distribution of the means for a normally distributed
population follows a t-distribution (we say “is t-distributed”).
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By now, you should suspect that one of the “inconveniences” is that the exact
value needed to be multiplied by SE to create 95% confidence intervals changes
as a function of sample size.

The sampling distribution of means that varies as a function of the sample size
(here v = degrees of freedom;v=n-1).

0.40
0.35} This t distribution (standardized) is a
0.30} sampling distribution of the the number
0.25} of sample standard errors away from

X 0.20} the mean (now always O after the

standardization) necessary to produce
a confidence interval of the desired
coverage (e.g., 95%).
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Even though the distribution of the population is asymmetric, the
sampling distribution of means tend to me symmetric. This is an
important property because it allows us to generalize sampling
distributions based on standard distributions such as the t-distribution. |
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WE NEED TO TRUST OUR SAMPLE ESTIMATORS FOR STATISTICS TO

WORK, IL.E., SAMPLES ESTIMATORS NEED TO BE UNBIASED

Accurate

Precise

Imprecise

Inaccurate

u

Low sampling variation
(sampling error) & low bias

Low sampling variation
(sampling error) & high bias

u

High sampling variation
(sampling error) & low bias

High sampling variation
(sampling error) & high bias

The mean is

an unbiased
estimator under
random sampling
because the mean
of all sample means
equal the population
mean.




Frequency

The variation among observations within samples (standard deviation) can

inform us about how far sample means in general might be from the true
population mean (estimate how wrong one could be).
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The ability to estimate variation within a sample
to estimate variation among samples (standard
error) is key to statistics and not only to
confidence interval.



The ability to estimate variation within a sample to estimate variation among samples
(standard error) is key to statistics and not only to confidence interval.

Sampling error - the difference between The standard deviation of the
sample means and the population mean. sampling distribution of the mean oy
The estimate of this error is the standard is called standard error and is

deviation of the sampling distribution,
l.e., the average difference between all
sample means and the true mean:

exactly the standard deviation of the
population o divided by v/n :
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The number of samples is so large that Given that we almost never know
can be considered infinite (o) the population standard deviation, we
estimate it with the sample value:
But can we trust the sample S

unbiased estimator of ¢ ?

standard deviation s? Is it an SEY — \/__
n




As we are going to see, the mean and standard deviation are key
sample statistics used in pretty much all standard statistical analysis

(i.e., not only confidence intervals)

Margin of error
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

Today we will study the case of the sample standard deviation as an
estimator of the true population standard deviation.

This has three goals:
- Develop stronger knowledge and intuition about statistics.
- How statisticians work to develop statistics that we can trust.

- Acquire greater knowledge about how the other statistical
frameworks we will learn in BIOL322 were developed. We won’t
revisit all sample estimators, but the type of work that was done for
the standard deviation can be “generalized” to most sample
statistics.




But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

1) The importance of corrections for creating unbiased sample
estimators for any statistic of interest [the case of degrees of
freedom].

2) The importance of the distribution of the population for creating
unbiased sample estimators for any statistic of interest [the case
of assumptions].

3) The importance of [data transformation] for making biased sample
estimators unbiased.




1) The importance of corrections for creating unbiased sample estimators
for any statistic of interest [the case of degrees of freedom)].

Why is the sample standard deviation calculated by dividing
the sum of the squared deviations from the mean divided by

n—1 and not n?

é But why?

S =

e (Y; —¥)?
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Let’s switch to variance s# (hang in there with me); and after all s =

Vs2. If it were possible to know the true mean of the population y, than
the best estimator (i.e., sampled based) for the variance of the entire
population based on a single sample would be:

n _ 2
2 izl(Yi ll)
§e =
n
But we almost never know the population mean u, so we could try
using the sample mean value Y:

n



Let’s use a computational approach to verify the quality of
these two estimators (i.e., sample based):

02=100; ¢=10




160

N\

N\

\

sample variances

e —

l

|

|

The mean of s2 for the estimator

based on the population mean
divided by n was unbiased (i.e.,
pretty much the population ¢?2;
would had been exactly % =100
with infinite sampling); whereas
the estimator based on the sample
Y divided by nis biased.

R —w? o, Zis(Y — V)7

S

n

n



Frequency

150000

50000

0

1 \SZ

o2 — 7i1=1(Yi _ﬂ)z

1 n

|
0

| | | | |
50 100 150 200 250

sample variances

|
300

Frequency

150000

50000

0

I I I I I
50 100 150 200 250

sample variances

300

Note the asymmetry of the
sampling distribution of
variances; hence the median is
not exactly equal to the mean.
But the variance is unbiased
when based on u but biased
when based on Y. Remember:
unbiased expectations are
based on means and not
medians.



But in most (if not all) cases, one doesn’t know the
parameter value u (true population mean).

2 1(Y — W)? é .
]




There Is a correction factor for the sample bias in
s? called Bessel’s correction (but seems that Gauss
1823 came up with it first)

§% =
7i1=1(Yi _ll)z ~ ?zl(yi — Y)Z é
n o n—1
Y —Y)?

s =
n

https://mathworld.wolfram.com/BesselsCor
rection.html



Let’s use a computational approach to verify the quality of
the three estimators (i.e., sample based):

o=10 -~ 04=100

imp Les eplicate( , rnorm(n ,mean
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Let’s take a small break — 2 minutes




BUT WHY does this bias happen???

But why is variance (or standard deviation) biased when
based on n instead of n-1?




Obviously, you don’t need to know the “math” but good to know

that someone did it for us!

Proof of Bessel's Correction

Bessel's correction is the division of the sample variance by N — 1 rather than N. | walk
the reader through a quick proof that this correction results in an unbiased estimator of

the population variance. Now note that since x,, is an i.i.d. random variable, any of the x,, € {x],x2,... x5} has the same

variance. Furthermore, recall that for any random variable ¥,

PUBLISHED

Var(Y) = E[Y?] - E[Y]? =  E[Y?] = Var(¥) + E[Y].

11 January 2019
So we can write
, E|xZ| = Var(x,) + E[x,]?
Consider N i.i.d. random variables, x1, X3, ..., X, and a sample mean x. When computing the [ ”] Cn) [xa]
sample variance sz, students are told to divide by N — 1 rather than N: =02+ /42
N
1
2 _ 52 2] _ Var(s -2
s = N_lglm 2. E[2] = var® + E[]
- 2
* O 5
When first learning about this fact, | was shown computer simulations but no mathematical proof of = F +u
why this must hold. The goal of this post is to provide a quick proof of why this correction makes
sense. Step * holds because
The proof outline is straightforward: we need to show that the estimator in Equation 1 below is _ 1 N
biased, and that we can correct this bias by dividing by N — 1 rather than N. For an estimator to be Var(x) = Var( ﬁ Z x,,)
unbiased, the expectation of that estimator must equal the population parameter. In our case, if the n=1
sample variance is 5% and the population variance is (rz, we want iid N Var(x,)
= — ar(x,
2 Z "
E[s*] = 62. n=1
N
Let's begin. _ 1 2 o2
- N2
N n=1
Proof o2
=N
Let’s prove that the following estimator for the population variance is biased: Finally, let's put everything together:
, :
X
2 Z .2 2
== Y@ -0 (1) 2 2 2 4 2
" Bl =%+ = (3 +47)
First, let's take the expectation of this estimator and manipulate it: — 0_2 (1 _ L) (3)
1 X L X N
E[ﬁ 3 - ;)Z] - [E[N 3 - 2,8 +;3)]
n=1 n=1
1 1 1< -
—El= 2 _pzl R o) . . . 1\ _ (N-1
= [E[N len 2 ;xn tN ”z:‘{x ] What we have shown is that our estimator is off by a constant, (1 - N) = (T) . If we want an

unbiased estimator, we should multiply both sides of Equation 3 by the inverse of the constant:

el(35)7] = el e -7 =

And this new estimator is exactly what we wanted to prove. Bessel's correction results in an
Note that step * holds because unbiased estimator for the population variance.

N
Z X, = NX.

n=1

1%

while step T holds because the data are i.i.d., i.e.

e[L 3 et = L S ela] - el Source: http://gregorygundersen.com/blog/2019/01/11/bessel/

n=1 n=



No Math then! Let’s try a more accessible way to understand the need for

]

a correction [*

To understand why we use n-1 instead of n, we need first to
understand that values in a sample are free to vary around
the population mean u but values in a sample are not free to
vary around the sample mean Y.

\ n—1

Free to vary

S =

N

n

Not free to vary



To understand why we use n-1 instead of n, we need first to
understand that values in a sample are free to vary around
the population mean u but values in a sample are not free to
vary around the sample mean Y.

Let’s say we have a series of 6 numbers and we hide one
number but we know the sample mean Y and want to know

the missing number: 1,5,7,???,9,12Y =7

1+5+7+7???2+9+12— 1

c =7 34 +7??7?2=6X7
—1

6 X7

.

So, there is always one number that is not free
?2??7=42-34=8 to vary around the sample mean Y



Suppose we know the population mean u = 6 (but this is just
to make the point here as usually you don’t know it).

_ 1+5+7+8+9+12
Y = . =7

Based on the sample mean Y:
s _ A= GE =D+ =D +B =7+ = 7)* +(12 = 7)

S

n
11
— — .;

Based on the population mean u

2 (=60 +(E -6+~ 6)°+(B = 6)* +(9 ~ 6)* +(12 — 6)°
n

76
= —=12.7
6 Note that the sample-based values was
smaller than population-based value



sum left=-7.5 Sum right=7.5
| 1

| | L 1
3.5 -25 -1.5 0.5 2.5 4.5
[ . 1 A \ [ — {—l—\ —— ——
1-45 2-4.5 3-4.5 5-4.5 7-4.5 9-4.5
/ 1 ‘/ | ‘[ I ‘ | 1 | 1 | 1
1 2 3 1 5 6 7 8 9
50
R é S Sum_left + sum_right =-7.5+7.5=0

Remember that the sample values will be always centered around
the sample mean; but that’s not the case for the population mean,
which is free to vary within the sample values.



The sample sum-of-squares is expected to be smaller (i.e., in average) than the
population sum-of-squares because the sample mean Y is within the range of
values of the sample but this is not necessarily the case of u which can be
anywhere within or outside the range of sample values.

1,5,7,8,9,12 v=7

The sample mean (7 here) is always within the range of values of the
sample, but the population value is free to vary and can be within the
sample, smaller or greater than any of these values (i.e., outside of the
range of the sample values).

If we use the population mean u rather than the sample mean Y to calculate the sum-of-
squares, we will always get a larger sum-of-squares than if we had used the sample mean
Y. So, the sample mean-based sum-of-squares is always smaller than the population mean
based sum-of-squares (unless Y= u ; which is not very probable)

n n
DH=7=70 o N w-6)2=76
=1 i=1
\ Y J \ ]

Y
Based on the original sample mean Based on the population mean




From our lecture on variance and standard deviation

Observations (Y;) Deviations (Y; — Y) Squared deviations (Y; — Y)?

0.9 -0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025 0.000625
1.4 0.025 0.000625
1.6 0.225 0.050625
2.0 0.625 0.390625
Sum 0.000 0.735

n v\ 2
— — — 0.11H
> n—1 3 — 1 :




From our lecture on variance and standard deviation

Observations (Y;) Deviations (Y; — Y) Squared deviations (Y; — Y)?

0.9 -0.475 0.225625
1.2 -0.175 0.030625
1.2 -0.175 0.030625
1.3 -0.075 0.005625
1.4 0.025 Because sum of 0.000625
1.4 0.025 deviationsis zero, (0.000625
1.6 0.225 thisimpactsthe ¢ 050625
2.0 0.625 Sum ofsquare 0.390625
Sum 0.000 » 0.735

N0 Y) = 0 (this sum is always zero
But greater or smaller than zero when the population
mean is used instead; as such the squared
deviations for the sample will be always smaller than
the population value)
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Bessel’'s demonstrated that
using n-1 in the
denominator, the sample
standard deviation based
on n would be corrected.
We say that the sample
standard deviation looses 1
degree of freedom.

i=1(Y; —Y)?




The average of all infinite s based on n-7 provides
an unbiased estimator because the mean of all
sample s values equals the population value o.

SZ _ ?zl(yi o 7)2
n—1
n Y. — Y 2
SZ . i=1( l )

n



Why is the sample standard deviation calculated by dividing
the sum of the squared deviations from the mean divided by n
— 1 and not n? NOW YOU KNOW!

2 (Y —Y)°

2
S
n—1

How did Bessel find that n — 1 would be the value that
would work and not n — 2 or n — 3, for example? That
needs some math and it’s often the task of statisticians to
find if estimates of statistics are biased and how to make

them unbiased!



The Statistical Road!!

/
AVOID BIAS |
NEXT EXIT N




Sample variance is not biased.
How about the sample standard deviation?

(Y, —Y)?
V n—1

, rnorm(n , Meall

(=samples,MARGIN=2,FUN=sd)

Population
standard deviation

/
=10




sample standard deviations

Sample variance is not biased.
How about the sample standard deviation? IT IS A BIT BIASED!
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standard deviation

/
.......................... o =10

A N N

—
~NOoOO OO -~NW
I




The sample standard deviation IS A BIT BIASED!

This bias relates to the
square root transformation
of the variance.

12 13

11

Difficult to establish a

TS
[N
N\
<
I
~I
-’
N
10

S = n—1 o general unbiased procedure
for the standard deviation
® as it will change with
~ sample sizes; but there are

! ! ! ! ! ! correction.
60 80 100 120 140 160

Only 100 samples are _
n(Y; —Y)?

plotted; 1000000 would g2 — &i=1tl

have been too many! n—1




The sample standard deviation IS A BIT BIASED!

Although there are correction for this bias for normally distributed
population, the bias "has little relevance to applications of statistics since its
need is avoided by standard procedures”. One example is the t-distribution
used to calculate confidence intervals and so many other important
statistical analysis (starting next lecture).

0.40 — . . . —
0.35} v=1 X — U
0.30} —v=2 L =

— v=>5 _ SEX

0.25

™

5 0.20 _
0.15 ;= X—u

n 2

010 S, (G — )
0.05 n—1
0.00==3 -2 0 2 4 \/ﬁ

Because the t-distribution is based on the sample standard deviation, it incorporates this
bias directly in its distribution, so that won’t cause issue with statistical analysis based on
the sample standard deviation.



But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

2) The importance of the distribution of the population for
creating unbiased sample estimators for any statistic of
interest [the case of assumptions].

3) The importance of [data transformation] for making biased sample
estimators unbiased.




Can we trust the sample estimator for variance when the population is
non-normal? So far we assumed normality!
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Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE CAN’T!
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But can we trust the sample standard deviation s?
Is it an unbiased estimator of ¢ ?

3) The importance of [data transformation] for making biased
sample estimators unbiased.




The log transformation make asymmetric distributions more

symmetric.
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The log transformation make asymmetric distributions more
symmetric.

XX

humanGenelLengths as.matrix(read.csv( _
replicate( , sample(humanGeneLengths, size
apply(log(geneSamplel00),MARGIN=2, FUN=sd)
gene.sample.sd, outlife ool

las=1, ylab )

Samples were log-
transformed here



Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE TRUST THEM WHEN SAMPLE
DATA ARE TRANSFORMED!
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Develop stronger knowledge and intuition about statistics

1) The importance of corrections for creating unbiased sample
estimators for any statistic of interest [the case of degrees of
freedom].

2) The importance of the distribution of the population for creating
unbiased sample estimators for any statistic of interest [the case
of assumptions]. We often assume normality because we know
whether estimators are biased or not (i.e., and how to remove their
biases using corrections, often called degrees of freedom).

3) The importance of [data transformation] for making biased sample
estimators unbiased.



Key goals today

Develop stronger knowledge and intuition about statistics.

Understand via the standard deviation case the work that
statisticians do so that you can trust the “standard statistics” (i.e.,
most used) you will use and apply in most of your future
professional careers.

Acquire greater (sophisticated) knowledge about how the other
statistical frameworks we will learn in BIOL322 were developed.
We won't revisit all sample estimators, but the type of work that
was done for the standard deviation can be “generalized” to most
sample statistics.



Now we can trust our estimates, let’s calculate confidence intervals in practice

Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 95% confidence interval for the population
mean

Y =8.778 mm s=0.398 mm .
0398 “symmetric” : z
_ s - (we can “trust” ¢
SEy 7o - 0.133 mm estimates) "
tOOS(Z),8 — 2_306 8.0 85 9.0 95

Y —2306x%x0.133 < u<Y +2.306 x0.133
3.47 mm < u < 9.08 mm




Now we can trust our estimates, let’s calculate confidence intervals in practice

Y =8.778 s=0.398

SEc ——=0.133 Y —2306x0.133< u<Y +2.306 x 0.133
8.47 mm < u < 9.08 mm

38.47 mm 9.08 mm
e

X =8.878 mm

to.05(2),8 = 2.306

I

Degrees of
freedom
(V, df) Two-sid

1

50% 60% | 70% | 80%  90% @ 95% @ 98% | 99% @ 99.5%  99.8% 99.9%
1.376  1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 127.3 |318.3 | 636.6

2 0.816 N\ 1.386  1.886  2.920 | 4.303 | 6.965 9.925 | 14.09 | 22.33 | 31.60
3 0.765 1.250 1.638  2.353|3.182 | 4.541 5.841 7453 | 10.21 | 12.92
4 0.741 | 0.941 1.5633 | 2.132 | 2.776 |3.747 | 4.604 | 5.598 |7.173 | 8.610
5 0.727 | 0.920 | 1.156 2.015| 2571 3.365 4.032 4.773 | 5.893 | 6.869
6 0.718 | 0.906  1.134 1.943 | 2.447 | 3.143 | 3.707 1 4.317 |5.208 | 5.959
7 0.711 | 0.896 | 1.119 | 1.415 2.365 | 2.998 3.499 4.029 |4.785 |5.408
8 0.706 | 0.889  1.108 | 1.397 | 1.860  2.306 | 2.896 | 3.355 | 3.833 |4.501 | 5.041
9 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 3.690 |4.297 | 4.781
10 0.700 | 0.879  1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 3.581 4.144 | 4.587
11 0.697  0.876 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 3.497 | 4.025 | 4.437

—
N
o
o))
©
a
o
©
\‘
w
—
o
©
@
—
w
a1
o)
—
N
©
N

2179 |2.681 3.055 3.428 | 3.930 4.318



In practice (today) we use software (e.g., R).

Y =8.778 s=0.398

SE; %;8 = 0.133

to.05(2),8 = 2.306
Y —2306%x0.133< u<Y +231x0.133

8.47 mm < u < 9.08 mm




Let’s consider a biological example: The stalk-eyed fly — the span in
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 99% confidence interval for the population
mean

Y =8.778 s=0.393

SE; &\/28 = 0.133

to.05(2),8 = 3.335

Y —3.355%x0.133 < u<Y +3.355x0.133
3.33mm < u < 9.22 mm




Y =8.778 s=0.398

SE; %;8 = 0.133

to.05(2),8 = 3-355

Y —3.355%x0.133 < u<Y +3.355 x0.133
8.33mm < u < 9.22 mm




In most cases, however, we report the 95% confidence

interval.

95% confidence interval:

8.47 mm < u < 9.08 mm

99% confidence interval:

8.33mm < u < 9.22 mm

Frequency

[ I I 1
8.0 8.5 9.0 9.5

Eye span (mm)




