
The statistical road: estimate with 
uncertainty but with confidence

Lecture 11 - estimation is not as easy as we think: 
challenges and solutions from 100 years ago that are 

mainstream statistics!

Building long-term statistical intuition & knowledge 



WE NEED TO TRUST OUR SAMPLE ESTIMATORS FOR STATISTICS TO 
WORK, I.E., SAMPLES ESTIMATORS NEED TO BE UNBIASED

We know that under 
random sampling, the 
sample mean is an 
unbiased estimator of 
the population mean 𝜇.

This is because the 
mean of all sample 
means equal the 
population mean.

The bullseye is the population 
mean 𝜇 and

each dot is a sample mean "𝑋. 



The shape of the frequency distribution of the population is not necessarily similar to the 
frequency distribution of the sample estimates (e.g., here the distribution of sample mean values) 
from the population. And regardless of the what the shape of the population distribution is (here 

uniform), the sample mean is an unbiased estimator of the population mean. 

n = 2 
Population

population: 1,2,3,4,5; 
𝜇 = 3.0

n = 4 

population values
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Frequency distribution of 
the gene Population

Sampling distributions for the sample
means of the gene population!

The shape of the frequency distribution of the population is not necessarily similar to the 
frequency distribution of the sample estimates (e.g., here the distribution of sample mean values) 
from the population. And regardless of the what the shape of the population distribution is (here 

uniform), the sample mean is an unbiased estimator of the population mean. 



Sampling distribution of the means for a normally distributed 
population follows a t-distribution (we say “is t-distributed”).

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚

William Sealy Gosset
(pseudonym: Student)

Student’s 1908 
Article “The 
Probable Error of 
a Mean” 

𝝁 = 𝟑𝟓𝟎

𝜇 ± 2×σ !-
𝜇 ± 1.96×σ !-



𝜇 ± 1.96×σ !-
𝑛 = 100

𝑛 = 10
𝜇 ± 2.26×σ !-

-X. ± t ×SE/0!t =
-X. − µ
SE/0!

Sampling distribution of the means for a normally distributed 
population follows a t-distribution (we say “is t-distributed”).

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚



By now, you should suspect that one of the “inconveniences” is that the exact 
value needed to be multiplied by SE to create 95% confidence intervals changes 
as a function of sample size.

The sampling distribution of means that varies as a function of the sample size 
(here v = degrees of freedom; v = n - 1).

This t distribution (standardized) is a 
sampling distribution of the the number 
of sample standard errors away from 
the mean (now always 0 after the 
standardization) necessary to produce 
a confidence interval of the desired 
coverage (e.g., 95%).

-X. ± t ×SE/0!

t

t =
-X. − µ
SE/0!



Even though the distribution of the population is asymmetric, the 
sampling distribution of means tend to me symmetric. This is an 
important property because it allows us to generalize sampling 
distributions based on standard distributions such as the t-distribution. I
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WE NEED TO TRUST OUR SAMPLE ESTIMATORS FOR STATISTICS TO 
WORK, I.E., SAMPLES ESTIMATORS NEED TO BE UNBIASED

Imprecise

Inaccurate

Accurate

Precise

Low sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & high bias

Low sampling variation 
(sampling error) & high bias

The mean is
an unbiased 
estimator under 
random sampling
because the mean 
of all sample means
equal the population 
mean.

𝜇 𝜇



sampling

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 !𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

The variation among observations within samples (standard deviation) can 
inform us about how far sample means in general might be from the true 

population mean (estimate how wrong one could be).

Variation within samples 

Variation among samples 

Variation within samples 
(among observations) can estimate 
certainty about uncertainty 
(variation among sample means)

The ability to estimate variation within a sample 
to estimate variation among samples (standard 
error) is key to statistics and not only to 
confidence interval. 



Sampling error - the difference between 
sample means and the population mean. 
The estimate of this error is the standard 
deviation of the sampling distribution, 
i.e., the average difference between all 
sample means and the true mean:

The number of samples is so large that
can be considered infinite (∞)

The standard deviation of the 
sampling distribution of the mean σ !"
is called standard error and is 
exactly the standard deviation of the 
population 𝜎 divided by 𝑛 :

𝜎 "# =
𝜎
𝑛σ !" = #

#$#

% $𝑌# − 𝜇 &

∞ =

SE "# =
𝑠
𝑛

Given that we almost never know
the population standard deviation, we 
estimate it with the sample value:

But can we trust the sample 
standard deviation 𝑠? Is it an 
unbiased estimator of 𝜎 ?

The ability to estimate variation within a sample to estimate variation among samples 
(standard error) is key to statistics and not only to confidence interval. 



As we are going to see, the mean and standard deviation are key 
sample statistics used in pretty much all standard statistical analysis 

(i.e., not only confidence intervals)

"Y ± t! ×SE "# ∴ SE'" =
𝑠
𝑛

!𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎; 𝒔 = 𝟏𝟏𝟒. 𝟐 𝒄𝒎 351.5𝑐 ± t(×
114.2
100

328.66 cm               374.34 cm

Margin of error

,𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎



But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?

Today we will study the case of the sample standard deviation as an 
estimator of the true population standard deviation.   

This has three goals:

- Develop stronger knowledge and intuition about statistics.

- How statisticians work to develop statistics that we can trust.

- Acquire greater knowledge about how the other statistical 
frameworks we will learn in BIOL322 were developed.  We won’t 
revisit all sample estimators, but the type of work that was done for 
the standard deviation can be “generalized” to most sample 
statistics.



1) The importance of corrections for creating unbiased sample 
estimators for any statistic of interest [the case of degrees of 
freedom].

2) The importance of the distribution of the population for creating 
unbiased sample estimators for any statistic of interest [the case 
of assumptions].

3) The importance of [data transformation] for making biased sample 
estimators unbiased.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?



Why is the sample standard deviation calculated by dividing 
the sum of the squared deviations from the mean divided by 
n – 1 and not n?

𝑠 =
∑#$)( 𝑌# − $𝑌 &

𝒏 − 𝟏
𝑠 =

∑#$)( 𝑌# − $𝑌 &

𝒏

1) The importance of corrections for creating unbiased sample estimators 
for any statistic of interest [the case of degrees of freedom].

But why?



Let’s switch to variance 𝑠! (hang in there with me); and after all 𝑠 =
𝑠!. If it were possible to know the true mean of the population 𝜇, than 

the best estimator (i.e., sampled based) for the variance of the entire 
population based on a single sample would be:

𝑠& =
∑#$)( 𝑌# − 𝛍 &

𝑛
But we almost never know the population mean 𝜇, so we could try 
using the sample mean value 3𝑌:

𝑠& =
∑#$)( 𝑌# − =𝐘 &

𝑛



Let’s use a computational approach to verify the quality of 
these two estimators (i.e., sample based): 

𝑠& =
∑#$)( 𝑌# − 𝜇 &

𝑛
𝑠& =

∑#$)( 𝑌# − $𝑌 &

𝑛

𝜎!=100; 𝜎=10



𝑠2 =
∑3456 𝑌3 −𝝁 2

𝑛
𝑠2 =

∑3456 𝑌3 − /𝒀 2

𝑛

The mean of 𝑠# for the estimator 
based on the population mean 𝜇
divided by n was unbiased (i.e., 
pretty much the population 𝜎#; 
would had been exactly 𝜎# =100 
with infinite sampling); whereas 
the estimator based on the sample 
"𝑌 divided by n is biased.



𝑠2 =
∑3456 𝑌3 −𝝁 2

𝑛

𝑠2 =
∑3456 𝑌3 − /𝒀 2

𝑛

sample variances sample variances

Note the asymmetry of the 
sampling distribution of 
variances; hence the median is
not exactly equal to the mean.
But the variance is unbiased
when based on 𝝁 but biased 
when based on ,𝒀. Remember: 
unbiased expectations are 
based on means and not 
medians. 



𝑠! =
∑"#$% Y& − 𝛍 !

𝑛

𝑠! =
∑"#$% 𝑌" − )𝐘 !

𝑛

𝜎&

𝜎&

But in most (if not all) cases, one doesn’t know the 
parameter value 𝜇 (true population mean).



There is a correction factor for the sample bias in 
𝑠" called Bessel’s correction (but seems that Gauss 
1823 came up with it first)

∑)*+
, 𝑌) − %𝑌 -

𝒏 − 𝟏

𝑠- =
∑)*+, 𝑌) − %𝑌 -

𝒏

𝑠! =
∑!"#
$ #% $𝛍 &

&
≅

https://mathworld.wolfram.com/BesselsCor
rection.html



Let’s use a computational approach to verify the quality of 
the three estimators (i.e., sample based): 

𝑠$ =
∑%&'
( 𝑌% − 𝝁 $

𝒏
𝑠$ =

∑%&'
( 𝑌% − )𝐘 $

𝒏

𝜎=10 ∴ 𝜎!=100

𝑠$ =
∑%&'
( 𝑌% − )𝐘 $

𝒏 − 𝟏



𝑠2 =
∑3456 𝑌3 −𝝁 2

𝒏

𝑠2 =
∑3456 𝑌3 − /𝒀 2

𝒏

The sample based on 
the sample mean
divided by n-1 is
unbiased!

𝑠$ =
∑%&'
( 𝑌% − )𝐘 $

𝒏 − 𝟏



𝑠2 =
∑3456 𝑌3 −𝝁 2

𝒏

Note though that:

𝑠$ =
∑%&'
( 𝑌% − )𝐘 $

𝒏 − 𝟏

𝑠2 =
∑3456 𝑌3 −𝝁 2

𝒏
is slightly more 
precise then:

𝑠$ =
∑%&'
( 𝑌% − )𝐘 $

𝒏 − 𝟏



wake up

@cjlortie

Let’s take a small break – 2 minutes



But why is variance (or standard deviation) biased when
based on n instead of n-1?

BUT WHY does this bias happen???

But why?

𝑠 =
∑)*+
, 𝑌) − %𝑌 -

𝒏 − 𝟏
𝑠 =

∑)*+
, 𝑌) − %𝑌 -

𝒏



Source: http://gregorygundersen.com/blog/2019/01/11/bessel/

Obviously, you don’t need to know the “math” but good to know 
that someone did it for us!



To understand why we use n-1 instead of n, we need first to 
understand that values in a sample are free to vary around 
the population mean 𝝁 but values in a sample are not free to 
vary around the sample mean !𝑌.

No Math then! Let’s try a more accessible way to understand the need for 
a correction [“a gentle introduction to degrees of freedom’]

Free to vary Not free to vary

𝑠 =
∑)*+
, 𝑌) − %𝑌 -

𝒏 − 𝟏
𝑠 =

∑)*+
, 𝑌) − %𝑌 -

𝒏



1 + 5 + 7 + ??? + 9 + 12
6

= 7 ∴ 34 + ??? = 6 × 7

??? = 42 - 34 = 8

Let’s say we have a series of 6 numbers and we hide one 
number but we know the sample mean !𝑌 and want to know 
the missing number:  1, 5, 7, ???, 9, 12 #𝑌 = 7

To understand why we use n-1 instead of n, we need first to 
understand that values in a sample are free to vary around 
the population mean 𝝁 but values in a sample are not free to 
vary around the sample mean !𝑌.

So, there is always one number that is not free 
to vary around the sample mean "𝑌

6 × 7



&𝐘 =
1 + 5 + 7 + 8 + 9 + 12

6
= 7

Suppose we know the population mean 𝝁 = 6 (but this is just 
to make the point here as usually you don’t know it). 

𝑠$ =
(1 − 7)$+(5 − 7)$+(7 − 7)$+(8 − 7)$ +(9 − 7)$ +(12 − 7)$

𝑛
=
70
6
= 11.7

Based on the sample mean /𝐘:

Based on the population mean 𝝁

𝑠$ =
(1 − 6)$+(5 − 6)$+(7 − 6)$+(8 − 6)$ +(9 − 6)$ +(12 − 6)$

𝑛
=
76
6
= 12.7

Note that the sample-based values was
smaller than population-based value



Remember that the sample values will be always centered around
the sample mean; but that’s not the case for the population mean, 

which is free to vary within the sample values.

𝝁



The sample sum-of-squares is expected to be smaller (i.e., in average) than the 
population sum-of-squares because the sample mean "𝑌 is within the range of 
values of the sample but this is not necessarily the case of 𝜇 which can be 
anywhere within or outside the range of sample values.

1, 5, 7, 8, 9, 12 #𝑌 = 7
The sample mean (7 here) is always within the range of values of the 
sample, but the population value is free to vary and can be within the 
sample, smaller or greater than any of these values (i.e., outside of the 
range of the sample values).

If we use the population mean 𝜇 rather than the sample mean *𝑌 to calculate the sum-of-
squares, we will always get a larger sum-of-squares than if we had used the sample mean
*𝑌. So, the sample mean-based sum-of-squares is always smaller than the population mean 
based sum-of-squares (unless *𝑌= 𝝁 ; which is not very probable)

9
%&'

(

(𝑌% − 6)$= 76

Based on the original sample mean

9
%&'

(

(𝑌% − 7)$= 70

Based on the population mean

<



68 Chapter 3  Describing data

Based on the histogram in Figure 3.1-1, we see that the value of the sample mean is 
close to the middle of the distribution. Note that the sample mean has the same units 
as the observations used to calculate it. In Section 3.6, we review how the sample 
mean is affected when the units of the observations are changed, such as by adding a 
constant or multiplying by a constant.

The sample mean is the sum of all the observations in a sample divided by n, 
the number of observations.

Variance and standard deviation

The standard deviation is a commonly used measure of the spread of a distribu-
tion. It measures how far from the mean the observations typically are. The standard 
deviation is large if most observations are far from the mean, and it is small if most 
measurements lie close to the mean.

The standard deviation is calculated from the variance, another measure of 
spread. The standard deviation is simply the square root of the variance. The standard 
deviation is a more intuitive measure of the spread of a distribution (in part because it 
has the same units as the variable itself ), but the variance has mathematical properties 
that make it useful sometimes as well. The standard deviation from a sample is usu-
ally represented by the symbol s, and the sample variance is written as s2.

To calculate the variance from a sample of data, we must fi rst compute the devi-
ations. A deviation from the mean is the difference between a measurement and the 
mean (Yi - Y ).  Deviations for the measurements of snake undulation rate are listed in 
Table 3.1-1.

The best measure of the spread of this distribution isn’t just the average of the 
deviations (Yi - Y ),  because this average is always zero (the negative deviations 

Table 3.1-1  Quantities needed to calculate the standard deviation and variance of snake 
undulation rate (Y51.375 Hz).

Observations (Yi) Deviations (Yi - Y ) Squared deviations (Yi - Y )2

 0.9 –0.475  0.225625
 1.2 –0.175 0.030625
 1.2 –0.175 0.030625
 1.3 –0.075 0.005625
 1.4 0.025 0.000625
 1.4 0.025 0.000625
 1.6 0.225 0.050625
 2.0 0.625 0.390625

 Sum 0.000 0.735

© Roberts and Company Publishers, ISBN: 9781936221486, due June 16, 2014, For examination purposes only
FINALPAGES

From our lecture on variance and standard deviation

𝑠& =
∑#$)( 𝑌# − $𝑌 &

𝑛 − 1
=
0.735
8 − 1

= 0.11 Hz&
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© Roberts and Company Publishers, ISBN: 9781936221486, due June 16, 2014, For examination purposes only
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∑$%&! 𝑌$ − 4𝑌 = 0 (this sum is always zero
But greater or smaller than zero when the population 
mean is used instead; as such the squared 
deviations for the sample will be always smaller than 
the population value)

Because sum of
deviations is zero, 
this impacts the 
sum of square

From our lecture on variance and standard deviation



𝑠2 =
∑3456 𝑌3 −𝝁 2

𝒏

𝑠2 =
∑3456 𝑌3 − /𝒀 2

𝒏

Bessel’s demonstrated that
using n-1 in the 
denominator, the sample
standard deviation based
on n would be corrected. 
We say that the sample
standard deviation looses 1 
degree of freedom.

𝑠$ =
∑%&'
( 𝑌% − )𝐘 $

𝒏 − 𝟏

∑$%&' 𝑌$ − ,𝒀 #<= ∑$%&' 𝑌$ − 𝝁 #



The average of all infinite s based on n-1 provides 
an unbiased estimator because the mean of all 
sample s values equals the population value 𝜎.

𝑠- =
∑)*+
, 𝑌) − %𝑌 -

𝑛 − 1

𝑠- =
∑)*+, 𝑌) − %𝑌 -

𝑛



Why is the sample standard deviation calculated by dividing 
the sum of the squared deviations from the mean divided by n
– 1 and not n? NOW YOU KNOW!

How did Bessel find that n – 1 would be the value that 
would work and not n – 2 or n – 3, for example? That 
needs some math and it’s often the task of statisticians to 
find if estimates of statistics are biased and how to make 
them unbiased!

𝑠! =
∑'()& 𝑌' − '𝑌 !

𝑛 − 1



The Statistical Road!!

wake up

@cjlortie



𝑠 =
∑:;<= 𝑌: − #𝑌 !

𝑛 − 1

Sample variance is not biased.  
How about the sample standard deviation? 

𝜎 = 10

Population 
standard deviation



𝑠 =
∑:;<= 𝑌: − #𝑌 !

𝑛 − 1

Sample variance is not biased.  
How about the sample standard deviation? IT IS A BIT BIASED! 

𝜎 = 10

Population 
standard deviation



The sample standard deviation IS A BIT BIASED! 

𝑠# =
∑$%&
' 𝑌$ − "𝑌 #

𝑛 − 1

𝑠 =
∑$%&
' 𝑌$ − "𝑌 #

𝑛 − 1

This bias relates to the 
square root transformation 
of the variance.  

Difficult to establish a 
general unbiased procedure 
for the standard deviation 
as it will change with 
sample sizes; but there are 
correction.

Only 100 samples are 
plotted; 1000000 would 
have been too many!



The sample standard deviation IS A BIT BIASED! 

Although there are correction for this bias for normally distributed
population, the bias "has little relevance to applications of statistics since its
need is avoided by standard procedures”. One example is the t-distribution
used to calculate confidence intervals and so many other important
statistical analysis (starting next lecture).

𝑡 =
4𝑋 − 𝜇
𝑆𝐸 !:

𝑡 =
?𝑋 − 𝜇

∑%&'
( 𝑌% − ?𝑌 $

𝑛 − 1
𝑛

Because the t-distribution is based on the sample standard deviation, it incorporates this 
bias directly in its distribution, so that won’t cause issue with statistical analysis based on 
the sample standard deviation.



1) The importance of corrections for creating unbiased sample 
estimators for any statistic of interest [the case of degrees of 
freedom].

2) The importance of the distribution of the population for 
creating unbiased sample estimators for any statistic of 
interest [the case of assumptions].

3) The importance of [data transformation] for making biased sample 
estimators unbiased.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?



Can we trust the sample estimator for variance when the population is
non-normal? So far we assumed normality!

v

𝑠# =
∑$%&
' 𝑌$ − "𝑌 #

𝑛 − 1
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𝑠 =
∑$%&' 𝑌$ − "𝑌 #

𝑛 − 1
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Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE CAN’T!

𝜎
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1) The importance of corrections for creating unbiased sample 
estimators for any statistic of interest [the case of degrees of 
freedom].

2) The importance of the distribution of the population for creating 
unbiased sample estimators for any statistic of interest [the case 
of assumptions].

3) The importance of [data transformation] for making biased 
sample estimators unbiased.

But can we trust the sample standard deviation 𝑠? 
Is it an unbiased estimator of 𝜎 ?
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The log transformation make asymmetric distributions more 
symmetric.



The log transformation make asymmetric distributions more 
symmetric.

Samples were log-
transformed here



Can we trust the sample estimator for variance when the population is
non-normal? IN MANY CASES WE TRUST THEM WHEN SAMPLE 
DATA ARE TRANSFORMED!

log(𝜎)
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Develop stronger knowledge and intuition about statistics

1) The importance of corrections for creating unbiased sample 
estimators for any statistic of interest [the case of degrees of 
freedom].

2) The importance of the distribution of the population for creating 
unbiased sample estimators for any statistic of interest [the case 
of assumptions]. We often assume normality because we know 
whether estimators are biased or not (i.e., and how to remove their 
biases using corrections, often called degrees of freedom).

3) The importance of [data transformation] for making biased sample 
estimators unbiased.



- Develop stronger knowledge and intuition about statistics.

- Understand via the standard deviation case the work that 
statisticians do so that you can trust the “standard statistics” (i.e., 
most used) you will use and apply in most of your future 
professional careers.

- Acquire greater (sophisticated) knowledge about how the other 
statistical frameworks we will learn in BIOL322 were developed.  
We won’t revisit all sample estimators, but the type of work that 
was done for the standard deviation can be “generalized” to most 
sample statistics.

Key goals today



Let’s consider a biological example: The stalk-eyed fly – the span in 
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 95% confidence interval for the population 
mean

"𝑌 = 8.778 mm s	=	0.398	mm

SE #$
%.'()
(

= 0.133 mm

/Y − 2.306 × 0.133 < 𝜇 < /Y + 2.306 × 0.133

𝑡'.') * ,8 = 2.306

8.47 mm < 𝜇 < 9.08 mm

Now we can trust our estimates, let’s calculate confidence intervals in practice

“symmetric” 
(we can “trust” 

estimates)



"𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

= 0.133 ,Y − 2.306 × 0.133 < 𝜇 < ,Y + 2.306 × 0.133

𝑡'.') * ,8 = 2.306
8.47 mm < 𝜇 < 9.08 mm

Now we can trust our estimates, let’s calculate confidence intervals in practice

8.47 mm 9.08 mm

,𝐗 = 𝟖. 𝟖𝟕𝟖 𝒎𝒎Degrees of 
freedom
(v, df)



In practice (today) we use software (e.g., R).

"𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

= 0.133

/Y − 2.306 × 0.133 < 𝜇 < /Y + 2.31 × 0.133

𝑡'.') * ,8 = 2.306

8.47 mm < 𝜇 < 9.08 mm



"𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

= 0.133

/Y − 3.355 × 0.133 < 𝜇 < /Y + 3.355 × 0.133

𝑡'.') * ,8 = 3.355

8.33 mm < 𝜇 < 9.22 mm

Let’s consider a biological example: The stalk-eyed fly – the span in 
millimeters of nine male individuals are as follows:

8.69 8.15 9.25 9.45 8.96 8.65 8.43 8.79 8.63

Let’s estimate the 99% confidence interval for the population 
mean



"𝑌 = 8.778 s	=	0.398

SE #$
%.'()
(

= 0.133

/Y − 3.355 × 0.133 < 𝜇 < /Y + 3.355 × 0.133

𝑡'.') * ,8 = 3.355

8.33 mm < 𝜇 < 9.22 mm



In most cases, however, we report the 95% confidence 
interval.

95% confidence interval:

8.47 mm < 𝜇 < 9.08 mm

99% confidence interval:

8.33 mm < 𝜇 < 9.22 mm


