1. Think about how to transform the scientific question into a statistical question.
2. State the null (parameter for a theoretical population of no interest) and alternative hypotheses based on population values.
3. Compute the appropriate test statistic based on the sample (usually involving a combination of mean and standard error - so far).
4. Determine the p-value by contrasting the sample value with a sampling distribution that assumes the null hypothesis to be true (theoretical population), i.e., probability of finding the observed, or a more extreme value in the sampling distribution of the theoretical population.
5. Draw a conclusion by comparing the observed P -value against the significance level (α). If P -value greater than α, then do not reject H_{0}; if P -value smaller than or equal to α, then reject H_{0}.

1

Normal human body temperature, as kids are taught in North America, is $98.6^{\circ} \mathrm{F}$. But how well is this supported by data?

Because we testing these hypotheses based on a single sample of 25 individuals using the t-test, we refer to this as a one-sample t test
H_{0} (null hypothesis): the mean human body temperature is $98.6^{\circ} \mathrm{F}$. \qquad
H_{A} (alternative hypothesis): the true population is different from $98.6^{\circ} \mathrm{F}$.

2

\qquad

The effects of increasing sample size on hypothesis testing: body temperature revisited

\qquad
\qquad
\qquad
4

The effects of larger sample size on hypothesis testing:
 body temperature revisited

\qquad
Let's say that we took a new sample of 130 individuals (instead of 25 as in our previous sample). The values for the new \qquad sample are:
$Y=98.25^{\circ} \mathrm{F}$
$t=\frac{98.25-98.6}{0.064}=-5.47$
$s=0.733^{\circ} \mathrm{F}$

5

The effects of larger sample size on hypothesis testing: body temperature revisited	
$n=25$	$n=130$
$Y=98.524$	$Y=98.25^{\circ} \mathrm{F}$
$s=0.678$	$s=0.733^{\circ} \mathrm{F}$
$\mathrm{SE}_{Y} \frac{0.678}{\sqrt{25}}=0.136$	$\mathrm{SE}_{Y} \frac{0.733}{\sqrt{130}}=0.064$
$t=\frac{98.524-98.6}{0.136}=-0.56$	$t=\frac{98.25-98.6}{0.064}=-5.47$
$\operatorname{Pr}[\mathrm{t}<-0.56]+\operatorname{Pr}[\mathrm{t}>0.56]=$	$\operatorname{Pr}[\mathrm{t}$ < -5.47] $+\operatorname{Pr}[\mathrm{t}$ > 5.47] =
$\begin{aligned} & 2 \operatorname{Pr}[t>\operatorname{abs}(0.56)]= \\ & 0.58 \end{aligned}$	$\begin{aligned} & 2 \operatorname{Pr}[t>\operatorname{abs}(5.55)]= \\ & 0.000002 \end{aligned}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The effects of larger sample size on hypothesis testing: body temperature revisited - in line of new and stronger evidence:
H_{0} (null hypothesis): the mean human body temperature is $98.6^{\circ} \mathrm{F}$.
H_{A} (alternative hypothesis): the true population is different from $98.6^{\circ} \mathrm{F}$. \qquad

THE NEW SAMPLE LEADS TO A P-VALUE $=0.0000002$ ($\mathrm{P}<\alpha=0.05$), SO WE REJECT THE NULL HYPOTHESIS IN LINE OF THIS NEW EVIDENCE.

Therefore, we have NEW AND STRONGER (larger sample size) evidence to state that it is very likely that the true value of human body temperature is different from $98.6^{\circ} \mathrm{F}$ (note that we are not saying that it is not 98.6 F)

7

The effects of larger sample size on hypothesis testing: body temperature revisited - in line of new and stronger evidence:

As we saw in previous lectures, sample size decreases the standard error, which makes the t value (test statistic) increase, which in turn eads to smaller p-values.

Smaller P values allows rejecting the null hypothesis. As such, increased sample values lead to greater statistical power (smaller Type II errors) to reject the null hypothesis when it is not true! \qquad
$t_{i}=\frac{Y-\mu}{\frac{s}{\sqrt{n}}}$

Remember: The power of a test $(1-\beta)$ is the probability of rejecting the null hypothesis when is truly false; it is difficult to estimate (advanced stats). This probability increases as sample size increases.

8

Again, because we only have one sample,

 we call this a one-sample t testH_{0} (null hypothesis): the mean human body temperature is $98.6^{\circ} \mathrm{F}$.
H_{A} (alternative hypothesis): the true population is different from $98.6^{\circ} \mathrm{F}$.
Assumptions of the one-sample t test (very important):

1) The data are a random sample from the population (either from the theoretical) or any of the other possible populations from which the sample may have been sampled from. This assumption is shared by all tests covered in this course and used to test biostatistical hypothesis. \qquad
2) The variable (e.g., human temperature) is normally distributed in the population. \qquad
\qquad

9

Statistical hypothesis testing for comparing two samples described by a quantitative variable

10

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11

Examples of statistical hypothesis testing for \qquad comparing two sample means:

Do female hyenas differ from male hyenas in body size?

Do patients treated with a new drug live \qquad longer than those treated with an old drug?
\qquad
Do students perform better on tests if they stay up late studying or get a good night's rest?

Statistical hypothesis testing for comparing two sample means
Scientific question: Does clear-cutting a forest affect the number of salamanders present?

- There are two treatments: clear cutting / no clearcutting (control).
- Statistical question: Does the mean number of salamanders differ between the two treatments?
- Treatment is a categorical variable and number of salamanders is a numerical variable.

13

14

Paired design for comparing two sample means

Paired comparison of two means

Scientific question: Does clear-cutting a forest affect the number of salamanders present?

The advantage of the paired design is that it reduces the effects of variation among sampling units that has nothing to do with the treatment itself (e.g., local environmental differences among units). It reduces confounder variables.

Paired design

16

Paired comparison of two means

Scientific question: Does clear-cutting a forest affect the number of
\qquad salamanders present?

The advantage of the paired design is that it reduces the effects of variation among sampling units that has nothing to do with the treatment itself
\qquad (e.g., local environmental differences among units). It reduces confounder variables.
\qquad predominated dry soils. If soil moisture is important to salamanders, then this nonrandom distribution of observation units could affect the conclusion

17

Paired comparison of two means

The advantage of the paired design is that it reduces the effects of variation among sampling units that has nothing to do with the treatment itself (e.g., local environmental features).
Other examples of paired study designs:

- Comparing patient weight before and after hospitalization

Comparing fish species diversity in lakes before and after heavy metal contamination.

- Testing effects of sunscreen applied to one arm of each subject compared with a placebo applied to the other arm

Testing effects of smoking in a sample of smokers, each of which is compared with an non-smoker closely matched by age, weight, and ethnic background.

Testing effects of socioeconomic condition on dietary preferences by comparing identical twins raised in separate adoptive families that differ in their socioeconomic conditions.

It gives an "arm" (or a pedipalp) for a female spider.
Running speed (cm / s) of male Tidarren spiders before and after voluntary amputation of one pedipalp.
Tidarren (spider)

Spider	Speed before	Speed after
9	2.98	3.70
10	3.55	4.70
11	2.84	4.94
12	1.64	5.06
13	3.22	3.22
14	2.87	3.52
15	2.37	5.45
16	1.91	3.40

\qquad
\qquad
\qquad
\qquad
\qquad
19

Paired comparison of two means - an empirical example

In many species, males are more likely to attract females if males have high testosterone levels.

Research question: Are males with high testosterone paying a cost for this extra mating success in other ways (trade-offs)?

Behavioral Ecology Vol. 12 No. 1: 93-97
\qquad
Humoral immunocompetence correlates with \qquad date of egg-laying and reflects work load in female tree swallows

Dennis Hasselquist, ${ }^{\text {a }}$ Matthew F. Wasson, ${ }^{\text {b }}$ and David W. Winkler ${ }^{\text {b }}$
Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY Department of Neurobiology and Behavior, Seeley G. Mudd Harr, Biology Corson Hall, Cornell University, Ithaca, NY 14853-2702, USA \qquad
\qquad
20

Paired comparison of two means - an empirical example
In many species, males are more likely to attract females if males have high testosterone levels.

Research question: Are males with high testosterone paying a cost for this extra mating success in other ways (trade-offs)?

Males with high testosterone might be less able to fight off disease (levels of testosterone reduce their immunocompetence).

Hasselquist et al. (1999) experimentally increased the testosterone levels of 13 male red-winged blackbirds (implant of a small tube that releases testosterone).

Immunocompetence was measured (rate of antibody production in response to a non-pathogenic antigen in each bird's blood serum both before and after the testosterone implant).
\qquad
et al. = abbreviation of latin "et alia" = "and others"

Antibody production rates measure optically $\ln [\mathrm{mOD} / \mathrm{min}]=\log$ optical density per minute		After - Before difference between treatments (positive
	Antitad mpoldumicion d	
${ }_{1}^{\text {number }}$		
301	${ }_{430} 3^{3.39}$	difference more
49	498 007	antibody production
450	4.6 -0.06	after testosterone
488	5.000	implant).
$15 \quad 4$	$8.01 \quad 0.13$	
$16 \quad 488$	$436 \quad 0.18$	
$17 \quad 4$	8.08 0.04	
${ }^{19}$ 487	473	
${ }^{20}$ 476	$4.77 \quad 0.12$	
$23 \quad 470$	$4.80 \quad-0.10$	
$24 \quad 488$	5.01 0.18	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

23
Are males with high testosterone paying a cost for this extra mating success in
other ways (trade-offs)? implants is zero.
H_{A} : The mean change in antibody production in the population after testosterone implants is different from zero.
$\mathrm{H}_{0}: \mu_{d}=0 \quad \mu_{d}$ is the population mean difference
$\mathrm{H}_{\mathrm{A}}: \mu_{d} \neq 0$

\qquad
\qquad
$\begin{aligned} & \text { Are males with high testosterone paying a cost for this extra mating success in } \\ & \text { other ways (trade-offs)? } \\ & \mathrm{H}_{0}: \mu_{d}=0 \\ & \mathrm{H}_{\mathrm{A}}: \mu_{d} \neq 0 \\ & S_{d}=0.159\end{aligned}$
$\mathrm{SE}_{d}=\frac{13}{\sqrt{13}}=0.056$
25

26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Paired comparison of two means (paired t-test)

an empirical example

\qquad

$$
\begin{array}{ll}
\mathrm{H}_{0}: \mu_{d}=0 & \begin{array}{l}
d=0.056 \\
s_{d}=0.159
\end{array} \\
\mathrm{H}_{A}: \mu_{d} \neq 0 & \begin{array}{l}
n=13 \\
\mathrm{SE}_{d}=\frac{0.159}{\sqrt{13}}=0.044 \\
\text { freedom }=13-1=12
\end{array} \\
t=\frac{\bar{d}-0\left(\mathrm{Ho}: \mu_{d}\right)}{\mathrm{SE}_{d}}=\frac{0.056-0}{0.044}=1.27
\end{array}
$$

\qquad
\qquad
\qquad

$$
P=0.23 \begin{aligned}
& \text { Decision based on alpha }=0.05: \\
& \text { do not reject } H_{0}
\end{aligned}
$$

29

Paired comparison of two means (paired t-test) -

 an empirical example$\mathrm{H}_{0}: \mu_{d}=0$
The standardization process in relation to
the parameter assumed under H_{0}. The value
$\mathrm{H}_{\mathrm{A}}: \mu_{d} \neq 0 \quad$ for the mean of the population is 0 in this case.

$$
\begin{aligned}
& \text { For the standardized } 1 \text {-distribution, the } \\
& \text { parameter value under the } \mathrm{H}_{\mathrm{o}} \text { is zero. } \\
& t=\frac{d-0\left(H o: \mu_{d}\right)}{\mathrm{SE}_{d}}=\frac{0.056-0}{0.044}=1.27 \\
& \begin{array}{l}
\text { To make our sample compatible with } \\
\text { the standardized t-distribution, we }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { subtract our value under the } \mathrm{Ho} \text { which } \\
\text { here is the } 98.60^{\circ} \text {. }
\end{array} \\
& \text { Contrast with our } \\
& \text { one sample test } \\
& t=\frac{98.524-98.6\left(\mathrm{Ho}: \mu_{d}\right)}{0.136}=-0.56 \\
& \text { for human body } \\
& \text { temperature } \\
& \text { - }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Paired comparison of two means (paired t-test) an empirical example
 $P=0.23 \begin{aligned} & \begin{array}{l}\text { Decision based on alpha }=0.05: \\ \text { do not reject } H_{0}\end{array}\end{aligned}$

H_{0} : The mean change in antibody production in the population after testosterone implants is zero.

SCIENTIFIC CONCLUSION: We lack evidence that testosterone affects immunocompetence in redwinged blackbirds.

31

32

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
34

Two-sample comparison of means (independent sampling) \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 37

Two-sample (means) t-test			
Lizard group	Sample mean $(\mathbf{m m})$	Sample standard deviation $(\mathbf{m m})$	Sample size \boldsymbol{n}
Living	24.28	2.63	154
Killed	21.99	2.71	30

\qquad
H_{0} : Lizards killed by shrikes and living lizard do not differ in \qquad mean horn length (i.e., $\mu_{1}=\mu_{2}$).
H_{A} : Lizards killed by shrikes and living lizard differ in mean horn length (i.e., $\mu_{1} \neq \mu_{2}$).
\qquad
\qquad
\qquad
\qquad
\qquad
38

Two sample (means) t-test			
Lizard group	Sample mean (mm)	Sample standard deviation (mm)	Sample size n
Living	24.28	2.63	154
Killed	21.99	2.71	30
$t=\frac{\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\mathrm{SE}_{Y_{1}-Y_{2}}}$ The sampling distribution of the difference between two sample means is t distributed! Aren't we lucky?!!			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

40

Two sample (means) t-test			
Lizard group	Sample mean (mm)	Sample standard deviation (mm)	Sample size n
Living	24.28	2.63	154
Killed	21.99	2.71	30
$t=\frac{(24.28-21.99)-0}{0.527}=\frac{2.29}{0.527}=4.35$			
$\begin{aligned} & \mathrm{SE}_{Y_{1}-Y_{2}}=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{6.98\left(\frac{1}{154}+\frac{1}{30}\right)}=0.527 \\ & s_{p}^{2}=\frac{d f_{1} s_{1}^{2}+d f_{2} s_{2}^{2}}{d f_{1}+d f_{2}}=\frac{153\left(2.63^{2}\right)+29\left(2.71^{2}\right)}{153+29}=6.98 \end{aligned}$			

41

\qquad
\qquad
\qquad
\qquad

Decision based on alpha $=0.05$:
reject H_{0}

Two sample (means) t-test
 $P=0.000023$

Decision based on alpha $=0.05$: reject \boldsymbol{H}_{0}
H_{A} : Lizards killed by shrikes and living lizard differ in mean horn length (i.e., $\mu_{1} \neq \mu_{2}$).

STASTISTICAL CONCLUSION: we have evidence that lizards killed by shrikes and living lizard differ in mean horn length.

SCIENTIFIC CONCLUSION: we have evidence that horn size is a protection against predation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
43

44

45

Two sample (means) t-test

Assumptions (very important):

- Each of the two samples is a random sample from its population.
- The variable (e.g., horn length) is normally distributed in each population.
- The standard deviation (and variance) of the variable is the same in both populations (we will assume this for now but see later on how to test it).

46

