Let's summarize the steps involved in statistical hypothesis testing

- 1. Think about how to transform the scientific question into a statistical question.
- 2. State the null (parameter for a theoretical population of no interest) and alternative hypotheses based on population values.
- 3. Compute the appropriate test statistic based on the sample (usually involving a combination of mean and standard error - so far).
- Determine the p-value by contrasting the sample value with a 4. sampling distribution that assumes the null hypothesis to be true (theoretical population), i.e., probability of finding the observed, or a more extreme value in the sampling distribution of the theoretical population.
- 5. Draw a conclusion by comparing the observed P-value against the significance level (α). If P-value greater than α , then do not reject H₀; if P-value smaller than or equal to α , then reject H₀.

1

2

Pr[t < -0.56] + Pr[t > 0.56] =2 Pr[t > abs(0.56)] = 0.58 (t is symmetric around μ)

By not rejecting H₀, we cannot state that the true population value is 98.6°F; all we can say is that we have no evidence to state that it

BUT there is always possibility for new evidence to be put together in the future to reject the original conclusion. HOW?

The effects of increasing sample size on hypothesis testing: body temperature revisited

		۱	
-		,	

_				

The effects of larger sample size on hypothesis testing: body temperature revisited – *in line of new and stronger evidence*:

 H_0 (null hypothesis): the mean human body temperature is 98.6°F.

H_A (alternative hypothesis): the true population is different from 98.6°F.

THE NEW SAMPLE LEADS TO A P-VALUE = 0.0000002 (P< α =0.05), SO WE REJECT THE NULL HYPOTHESIS IN LINE OF THIS NEW EVIDENCE.

Therefore, we have NEW AND STRONGER (larger sample size) evidence to state that it is very likely that the true value of human body temperature is different from 98.6°F (note that we are not saying that it is not 98.6F)

7

The effects of larger sample size on hypothesis testing: body temperature revisited – *in line of new and stronger evidence*:

As we saw in previous lectures, sample size *decreases* the standard error, which makes the t value (test statistic) increase, which in turn leads to smaller p-values.

Smaller P values allows rejecting the null hypothesis. As such, increased sample values lead to greater **statistical power** (smaller Type II errors) to reject the null hypothesis when it is not true!

$$t_i = \frac{Y - \mu}{\frac{S}{\sqrt{n}}} \longleftarrow$$

Remember: The power of a test $(1-\beta)$ is the probability of rejecting the null hypothesis when is truly false; it is difficult to estimate (advanced stats). This probability increases as sample size increases.

8

Again, because we only have one sample, we call this a one-sample t test

 H_0 (null hypothesis): the mean human body temperature is 98.6°F.

H_A (alternative hypothesis): the true population is different from 98.6°F.

Assumptions of the one-sample t test (very important):

- The data are a random sample from the population (either from the theoretical) or any of the other possible populations from which the sample may have been sampled from. This assumption is shared by all tests covered in this course and used to test biostatistical hypothesis.
- 2) The variable (e.g., human temperature) is normally distributed in the population.

Statistical hypothesis testing for comparing two samples described by a quantitative variable

10

11

Examples of statistical hypothesis testing for comparing two sample means:

Do female hyenas differ from male hyenas in body size?

Do patients treated with a new drug live longer than those treated with an old drug?

Do students perform better on tests if they stay up late studying or get a good night's rest?

Statistical hypothesis testing for comparing two sample means

Scientific question: Does clear-cutting a forest affect the number of salamanders present?

- There are two treatments: clear cutting / no clearcutting (control).
- Statistical question: Does the mean number of salamanders differ between the two treatments?
- Treatment is a *categorical variable* and number of salamanders is a *numerical variable*.

13

14

Paired design for comparing two sample means

17

Paired comparison of two means

The advantage of the paired design is that it reduces the effects of variation among sampling units that has nothing to do with the treatment itself (e.g., local environmental features).

Other examples of paired study designs:

- Comparing patient weight before and after hospitalization.
- Comparing fish species diversity in lakes before and after heavy metal contamination.
- Testing effects of sunscreen applied to one arm of each subject compared with a placebo applied to the other arm.
- Testing effects of smoking in a sample of smokers, each of which is compared with an non-smoker closely matched by age, weight, and ethnic background.
- Testing effects of socioeconomic condition on dietary preferences by comparing identical twins raised in separate adoptive families that differ in their socioeconomic conditions.

Tridarren (spider) Spieder Spieder Spieder Spieder Spieder		gn.	pedipalp)	arm" (or a p spider.	ives an " a female	A pre	
It gives an "arm" (or a pedipalp) for a female spider. Tidarren (spider) Tidarren (spider) Spider Spider Spider Spider Spider Spider Spider			oedipalp)	arm" (or a p spider.	ives an " a female	lt g	
It gives an "arm" (or a pedipalp) for a female spider. Fidarren (spider) Tidarren (spider) Spied			oedipalp)	arm" (or a p spider.	ives an " a female	lt g	
Tidarren (spider) Speed				spider.	a female		
Tidarren (spider) Running speed (cm/s) of male Tidarren spi and after voluntary amputation of one pedi Spider Speed Speed Speed Spider before before after Spider before		المأحدة مرهدين				for	and and
Running speed (cm/s) of male Tidarren spi and after voluntary amputation of one pedi Tidarren (spider) Spied Speed Speed <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
and after voluntary amputation of one pedip Tidarren (spider) Speed Speed <td< td=""><td>ders before</td><td><i>rren</i> sola</td><td>of male <i>Tida</i></td><td>eed (cm/s)</td><td>nnina sp</td><td>Bu</td><td>Care .</td></td<>	ders before	<i>rren</i> sola	of male <i>Tida</i>	eed (cm/s)	nnina sp	Bu	Care .
Tidarren (spider) Speed	naln	no nodin	outation of a	duntary amr	d after vo	200	-
Speed Speed Speed Speed Speed	paip.	ne peupe	Julation of 0	numary amp		- an	Tidarren (spider)
Speed Speed Speed Speed Speed							
	Speed	Speed	Spider	Speed	Speed	Spider	
1 125 240 9 208	3 70	2.08		2.40	1.25	1	RV - STA
2 294 350 10 355	4 70	3 55	10	3.50	2.94	2	and II
3 2.38 4.49 11 2.84	4.94	2.84	10	4.49	2.38	3	1 Part 1
4 3.09 3.17 12 1.64	5.06	1.64	12	3.17	3.09	4	
5 3.41 5.26 13 3.22	3.22	3.22	13	5.26	3.41	5	AN ANT
		2.87	14	3.22	3.00	6	
6 3.00 3.22 14 2.87	3.52				2 21	7	CONTRACTOR OF A DESCRIPTION OF A DESCRIP
6 3.00 3.22 14 2.87 7 2.31 2.32 15 2.37	3.52 5.45	2.37	15	2.32	2.31	/	
$\begin{bmatrix} 1 & 1.25 & 2.40 & 9 & 2.98 \\ 2 & 2.94 & 3.50 & 10 & 3.55 \\ 3 & 2.38 & 4.49 & 11 & 2.84 \\ 4 & 3.09 & 3.17 & 12 & 1.64 \\ 5 & 3.41 & 5.26 & 13 & 3.22 \end{bmatrix}$	3.7 4.7 4.9 5.0 3.2	2.98 3.55 2.84 1.64 3.22	9 10 11 12 13	2.40 3.50 4.49 3.17 5.26	1.25 2.94 2.38 3.09 3.41	1 2 3 4 5	

Paired comparison of two means – an empirical example

- In many species, males are more likely to attract females if males have high testosterone levels.
- **Research question:** Are males with high testosterone paying a cost for this extra mating success in other ways (trade-offs)?

Behavioral Ecology Vol. 12 No. 1: 93-97

Humoral immunocompetence correlates with date of egg-laying and reflects work load in female tree swallows

Dennis Hasselquist,* Matthew F. Wasson,* and David W. Winkler* *Department of Neurobiology and Behavior, Seeley G. Mudd Hall, Cornell University, Ithaca, NY 14853-2702, USA, and *Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853-2702, USA

20

Paired comparison of two means – an empirical example

- In many species, males are more likely to attract females if males have high testosterone levels.
- **Research question:** Are males with high testosterone paying a cost for this extra mating success in other ways (trade-offs)?
- Males with high testosterone might be less able to fight off disease (levels of testosterone reduce their immunocompetence).
- Hasselquist et al. (1999) experimentally increased the testosterone levels of 13 male red-winged blackbirds (implant of a small tube that releases testosterone).
- Immunocompetence was measured (rate of antibody production in response to a non-pathogenic antigen in each bird's blood serum both before and after the testosterone implant).

et al. = abbreviation of latin "et alia" = "and others"

Are males with high testosterone paying a cost for this extra mating success in other ways (trade-offs)?

 $\ensuremath{\text{H}_0}\xspace$ The mean change in antibody production in the population after testosterone implants is zero.

 ${\sf H}{\sf a}{:}$ The mean change in antibody production in the population after testosterone implants is different from zero.

$$\begin{array}{l} {}_{\mathsf{H}_{\mathsf{0}}:}\,\mu_{d}=0\\ \\ {}_{\mathsf{H}_{\mathsf{A}}:}\,\mu_{d}\neq 0 \end{array}$$

 μ_d is the population mean difference between treatments

Paired comparison of two means (paired t-test) –
an empirical exampleH_0:
$$\mu_d = 0$$
 $d = 0.056$
 $s_d = 0.159$ Degrees of
freedom = 13-1=12H_A: $\mu_d \neq 0$ $n = 13$
 $SE_d = \frac{0.159}{\sqrt{13}} = 0.044$ $t = \frac{\overline{d} - 0 (Ho: \mu_d)}{SE_d} = \frac{0.056 - 0}{0.044} = 1.27$ $P = 0.23$ Decision based on alpha = 0.05:
do not reject H_0

-
,
/

	Two-sample (means) t-test				
Lizard group	Sample mean	Sample standard	Sample		

	(mm)	deviation (mm)	size n
Living	24.28	2.63	154
Killed	21.99	2.71	30

H₀: Lizards killed by shrikes and living lizard *do not differ* in mean horn length (i.e., $\mu_1 = \mu_2$).

H_A: Lizards killed by shrikes and living lizard *differ* in mean horn length (i.e., $\mu_1 \neq \mu_2$).

Two sample (means) t-test					
Lizard group	Sample mean (mm)	Sample standard deviation (mm)	Sample size n		
Living	24.28	2.63	154		
Killed	21.99	2.71	30		
$t = \frac{(24.28 - 21.99) - 0}{0.527} = \frac{2.29}{0.527} = 4.35$ $SE_{Y_1 - Y_2} = \sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})} \qquad s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$					
$df_1 = n_1 - 1 = 153$ $df_2 = n_2 - 1 = 29$ $dp_1 = n_1 - 1 = 153$ $df_2 = n_2 - 1 = 29$ $dp_2 = n_2 - 1 = 29$					

Two sample (means) t-test

P = 0.000023

Decision based on alpha = 0.05: *reject H*₀

H_A: Lizards killed by shrikes and living lizard differ in

mean horn length (i.e., $\mu_1 \neq \mu_2$).

STASTISTICAL CONCLUSION: we have evidence that lizards killed by shrikes and living lizard *differ* in mean horn length.

SCIENTIFIC CONCLUSION: we have evidence that horn size is a protection against predation.

43

Two sample (means) t-test

Assumptions (very important):

- Each of the two samples is a random sample from its population.

- The variable (e.g., horn length) is normally distributed in each population.

- The standard deviation (and variance) of the variable is the same in both populations (we will assume this for now but see later on how to test it).

