Analysis of variance (ANOVA designs)

BIOL322 Lecture 17

Isabella Richmond & Dr. Pedro Peres-Neto 11/10/22

Learning Goals

- *Understand* what an ANOVA is
- *Understand* when/how to use an ANOVA
- *Understand* what a F-statistic is and where it comes from
- *Differentiate* between statistical & research conclusions

When do I use an ANOVA?

- You have groups!
- We are explaining *continuous* dependent variables using **categorical** independent variables
 - i.e., if you want to know if there are differences between more than two groups

What is an ANOVA?

- One-way = **one** categorical explanatory variable
- Statistical test used to compare variation across means of 2+ groups

History of ANOVAs

- Invented by Sir R.A.
 Fisher ("father of modern statistics")
- Used to prove differences between groups to support eugenics (among other things)

Wikipedia

Example - knees are the new eyeballs??

Background: photoreceptor cells influence our circadian rhythm based on how much light they receive & when

- Mammals thought to only have these cells in our eyes
- Did experiment to test if these cells are present behind the knees (Campbell & Murphy, 1998)
- 33 trials of 2 groups: control or experimental (knee)
- Found evidence light exposure to knees can change circadian rhythm! But...

Example - knees are the new eyeballs??

Figure 1. Phase Delay

Figure 2. Phase Advance

Example - knees are not the new eyeballs!

- One huge problem in the study highlighted in a rebuttal paper (Wright Jr. & Czeisler 2002)
- Initial study did not cover patients eyes during the experiment!
- New study with 3 groups: control, light exposure with blindfold (knee), light exposure without blindfold (eyes)
- No effect of light exposure to knees

Example - knees are not the new eyeballs!

- 2 minute brain break!

Statistical Hypothesis Testing

Null hypothesis & alternative hypothesis framework:

- H₀ = there is no difference in the means across groups
- H_A = at least two groups differ in their means
- we either:
 - a. reject the null hypothesis
 - b. fail to reject the null hypothesis (**we do not accept H**₀)
- Statistical significance != biological significance

One-Way ANOVAs

- One-way ANOVAs test if there is a statistically significant difference between the means of 2+ groups using the F-statistic
- The more different the groups are, the more likely we are to reject the null hypothesis and determine them as significantly different

The Sensitivity of the F-Statistic

- The F-statistic penalizes for variance **within groups**
 - as variance within groups increases, F-statistic decreases even when the between group variance is the same

The Sensitivity of the F-Statistic

- These groups have a lower F-statistic (and therefore are less likely to be statistically significant), even though they have the same means (between group variance) as the last slide
 - they just have more within group variance

Analysis of Variance (AMONG MEANS)

ANOVAs are only variance among means, not variance in general

$$F = rac{s^2 \ between}{s^2 \ within} = rac{{{{\sum\limits_{i = 1}^{g} {{\left({X \ i - X}
ight)}^2 } } }}{{{\left({g - 1}
ight)}}}}{{{{\sum\limits_{i = 1}^{g} {{\left({X - X \ i} \
ight)}^2 } } }}{{{{\left({x - X \ i} \
ight)}^2 } }}}$$

F-Statistic

- Numerator: between group variation from the global mean
- Need to divide by number of groups (g) because as group number increases, sum of variation will increase

F-Statistic

- Denominator: within group variation from the global mean
- As within group variation increases, F-statistic gets smaller
 - penalizes for within group variation

F-Statistic

• Penalization for within group variation is important because it makes **sampling error** very important

$$F=rac{s_{between}^2}{s_{within}^2}=rac{rac{\sum\limits_{i=1}^g (ar{X}_i-ar{X})^2}{(g-1)}}{\sum\limits_{i=1}^g (X-ar{X}_i)^2}$$

• 2 min brain break

Data in R

- 1 # read in data
- 2 df <- read.csv("/biol322/data/chap15e1KneesWhoSayNight.csv")</pre>
- 3 View(df)

ANOVAs in R

```
1 # read in data
2 df <- read.csv("/biol322/data/chap15elKneesWhoSayNight.csv")
3 View(df)
4
5 # ensure that your group variable is coded as a factor
6 df$treatment <- as.factor(df$treatment)
7
8 # use function `aov` to perform an anova
9 anova <- aov(shift ~ treatment, data = df)
10
11 # look at summary table
12 summary(anova)
```

Comparison of Two Groups

• $t^2 = F$ when you are comparing two groups

```
1 # read in data
2 df <- read.csv("/biol322/data/chap15e1KneesWhoSayNight.csv")
3 View(df)
4
5 # ensure that your group variable is coded as a factor
6 df$treatment <- as.factor(df$treatment)
7
8 # subset to 2 groups - control & knees
9 df_s <- df[df$treatment == "control" | df$treatment == "knee", ]
10
11 # use function `aov` to perform an anova
12 anova <- aov(shift ~ treatment, data = df_s)
13
14 # use function `t.test` to perform a two sample t-test
15 ttest <- t.test(shift ~ treatment, data = df_s)</pre>
```


Df	Sum Sq	Mean Sq 1	F value
1	0.003	0.0027	0.005
13	6.422	0.4940	
	Df 1 13	Df Sum Sq 1 0.003 13 6.422	Df Sum Sq Mean Sq 1 1 0.003 0.0027 13 6.422 0.4940

t-test:

Welch Two Sample t-test data: shift by treatment t = 0.072846, df = 11.343, p-value = 0.9432 alternative hypothesis: true difference in means between group control and group knee is not equal to O 95 percent confidence interval: -0.7847452 0.8386737 sample estimates: mean in group control mean in group knee

Statistical Conclusion

- We reject H₀, the groups are significantly different from one another (statistically)
- ANOVAs only tell us if there is a difference, this is the entire statistical conclusion
- We **do not accept H**₀, we only fail to reject

Reporting ANOVAs

- When reporting ANOVAs we always use a clean and organized table to report the:
 - a. sum of squares
 - b. degrees of freedom
 - c. mean square
 - d. F statistic
 - e. p-value

Reporting ANOVAs

Table 1. ANOVA summary table presenting results from **aov**, testing if mean changes in circadian rhythm are statistically different across treatment groups.

	df	Sum of Squares	Mean Squares	F	p- value
treatment	2	7.2	3.6	7.3	0.0045
Residuals	19	9.4	0.50	NA	NA

• two minute brain break!

ANOVA R Output

```
1 # use function `aov` to perform an anova
2 anova <- aov(shift ~ treatment, data = df)
3
4 # look at raw output
5 print(anova)
6
7 # look at summary table
8 summary(anova)
```

Output:

Estimated effects may be unbalanced

ANOVA R Output

```
1 # use function `aov` to perform an anova
2 anova <- aov(shift ~ treatment, data = df)
3
4 # look at raw output
5 print(anova)
6
7 # look at summary table
8 summary(anova)
```

Output:

```
Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 7.224 3.612 7.289 0.00447 **
Residuals 19 9.415 0.496
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

ANOVAs are one-tailed tests

- We are only interested in when F is large
- Large F = large variation among group means

"The pdf of the F distribution" by IkamusumeFan is licensed under CC BY-SA 4.0

Research Conclusion

- Statistical conclusion = H₀ is rejected, groups are statistically different
- Research conclusion = there is a difference in the changes of circadian rhythm between control, knee, and eyes groups
 - Previously reported study may be wrong
 - We could do some post-hoc tests to determine where the differences are

ANOVA Assumptions

- Randomly sampled
- Independent observations & groups
- Standard deviation of each group is approximately the same
- Each group has a large n (n > 20 is guide) or is ~ normal
 - The more skewed the data, the higher the n required

Questions?

- Thank you!!
- Extra videos on course bookdown