Residuals - the unexplained variation in Y (age in years) by
the regression model

Y =0.879 +10.647X + ¢
A%
Y =0.879 + 10.647X
e=YY
14 €
12 \ Y (y hat) stands for predicted values.
- 10
§ 8 & (epsilon) stands for residuals.
& € Residual values € are the difference (deviation)
<4 between the observed and predicted values.
2
0 ! Each observation in the data has a residual

T T T
0 0.2 0.4 0.6 08  value.

Proportion black
Sustainable trophy hunting of African lions

Whitman et al. (2004), Nature, 428: 175-178.
Whitlock & Schiuter, The Analysis of Bological Data, 3¢ © 2020 W. . Freeman and Company.
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Residual values ¢ are the difference (deviation) between the observed and
predicted values. Predicted values ¥ for each observation is on the regression

line. As such, given an X value we can predict the Y value. Each observation in
the data has a predicted & residual value.
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Age (years)
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Proportion black

o

¥ =0.879 4+ 10.647x0.51
6.31 = 0.879 + 10.647x0.51
£=54 — 631 =-091

5.4 =0.879 +10.647x0.51 — 0.91

How to fit the model?
Aim of linear regression is to fit a straight line to data that generates
(in average) the best prediction of y for any value of x.
Predicted values for Y are on the regression line, i.e., given an X
value we can predict the Y value.
The line minimises the average distance between data and fitted
line, i.e., the residuals.

=

To find the best line, we must
minimise the sum of the squares of
the residuals; as such we need to
find model coefficients (a, b) that
minimize the sum of squares of
residuals:

n n ~
2 2 T T T T 1
ES'ZE(Y‘_Y) 0 02 04 06 08
1 1 1
i=1

i=1 Proportion black

Age (years)
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How to fit the model?
To find the best line we must minimise Regression unulysis
the sum of the squares of the residuals; ~ fizmearies Zh
as such we need to find model L]
coefficients (a & b) that minimize the ;";“;?‘;:,*:m,‘g:
sum of of squares residuals: bt el
LINE HAS THE FORM
n n ~ ) y=aths
26=2-1) "
i=1 i=1 12
There is only one such combination & 10
of a and b coefficients!!! There is a a"; 8
simple algorithm (method) that > 6
finds that combination: the <4
“Ordinary Least Squares (OLS). 2
0- 1

Y =a + bX 0 02 04 06 08

Proportion black
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How to fit the model? In R R

QUALITATIVELY: Age increases
with proportion of black.

QUANTITAVELY: Age increases
10.647 years per one unit of
proportion black, i.e.,

b = 10.647 years/proportion
of black.

Y =0.879 + 10.647X

Statistical hypothesis testing in regression

Ho: the statistical population slope f =0 (i.e., Y can’t be
predicted by X).

Ha: the population slope 8 # 0 (i.e., Y can be predicted by X).

14 .
e As for any other estimate
(i.e., based on sample
7 10 data), slopes can differ
g 87 from 0 even if they came
G 6 from a statistical
< 4 population where the
24 regression slope is zero.
0 1

T T T
0 0.2 0.4 0.6 0.8
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-
As for any other estimate (i.e., 0.2 |
based on sample data), slopes g |
can differ from 0 even if they 2 00 - .
came from a statistical % :
population where the -0.2 !
regression slope is zero. 04 !
.
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Testing whether the regression slope differs from zero:

[1] using a t-test

H,: the statistical population slope f =0 (i.e., Y can’t be
predicted by X).

H,: the population slope 8 # 0 (i.e., Y can be predicted by X).
The regression slope b divided by its standard error can be

used to test the null hypothesis that g =0. This is similar to
the one-sample t-test:

Age (years)

_b=Bu, _b—0

t
SE, SE,

0 0.2 04 0.6 08
Proportion black

Testing whether the regression slope differs from zero:
[1] using a t-test (loss of two degrees of freedom by using variance
of X and Y to estimate the regression coefficients; df = 32-2=30)

t= 1064 _ 7.053395
T 151

The t-test for the intercept is
not important for the
purposes of BIOL322 and
simple applications of linear
regressions.

P < 0.05; reject the Hp and conclude that the regression model can
predict age of lions.

But can we trust its predictions? More on that later.




Testing whether the regression slope differs from zero:
[2] using ANOVA (same Hy and Ha).

_10.64

t= H: 7.053395

F =49.75 =
t%=7.0533952 =
49.75

In simple regression, the t-
test for slopes and ANOVA
for the regression model are
the same thing; in more
complex models, ANOVA
plays a different role (not
covered in BIOL322).

loss of two degrees of freedom by using variance of X and Y to estimate
the regression coefficients; df = 32-2=30

2022-11-24
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Residuals (not the slope) influence its error and statistical testing
(some simulated data)
50
N o Y =10.13 + 8.39X
0f e b 839 o
T SE, 038
2 1 0 1 2
X
% Y =11.05+8.76X
K =370 549
T 1596
2 1 0 1 2
X
11

We can measure the fraction of variation in Y (age) that is “explained” by X

in the estimated linear regression model using a quantity called “coefficient
of determination” or the “famous” R2:

RZ = SSregression
SStotal

The maximum amount of variation in age that could be explained by any
linear regression model is the total sum-of-squares of Y (age):
n=32

SSioral = Z (Y, — ¥ )2= 222.09
i=1

12
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The amount of variation in age that the regression model with proportion of
black spots as a predictor is the regression sum-of-squares:

n=32

SSregression = Z (}71 -Y )2: 138.54
i=1

We can measure the fraction of variation in Y (age) that is “explained” by X

in the estimated linear regression model using a quantity called “coefficient
of determination” or the “famous” R2:

Rz _ SSregression_ 138.54

= = 0.6238
222.09 222.09
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We can measure the fraction of variation in Y (age) that is “explained” by X

in the estimated linear regression model using a quantity called “coefficient
of determination” or the “famous” R2:

Rz _ SSregression_ 138.54
222.09 222.09

= 0.6238

We state then that the regression model explains 62.38% of the total
variation in age.

The adjusted-R? is a
more complex
estimator and we leave
it for BIOL422.

R? =0.6238
14
Residuals (not the slope) influence the ability of a regression model to
explain variation in Y (some simulated data)
50 Y =10.13 + 8.39X
> Yo _b 839 .
0f Aot ~ SEp 038 :
2 _ —
— R? = 0.8289 = 83.89%
X
Y =11.05+8.76X
50
> e= 270 549
. 1596
R? =0.2275 =22.75%
2 1 0 1 2
X
15



The last sum-of-squares involved in a regression:

n=32

SSresiduals = Z eiz = 83.54
i=1
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All the sum-of-squares involved:

n=32 n=32

SSregression = . (i —¥)?= 13854 S = ) (% —¥ )= 222,09
i=1 =1
n=32

SSresiduals = Z eiz =83.54
=1

Sstotal = Ssregression + Ssresiduals

222.09 = 138.544 + 83.544

17

All the sum-of-squares involved in a regression and its relation to F:

F = SSregression/dfregression_

SSresidual/dfresidual

SSregression/1 _ 138.54/1 = 4975

SSresidual/(n—2) B 83.54/30




Let’s take a power break — 2 minutes
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Using regressions to make predictions

(regression of Y on X does not always imply dependency)
SPURIOUS CORRELATION

“Predictive capacity without explanatory capacity is worthless. Mere
clairvoyance, irrespective of its sharpness, does not itself have scientific
standing. Only predictive capacity that arises out of having coherent and
communicable explanations has scientific standing. The power to predict
is subsidiary to the power to explain. Explanation without prediction is
sufficient, but prediction without explanation is of no consequence from a
scientific standpoint.”

— Harvey Leibenstein (1966), in “Beyond Economic Man”.
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Using regressions to make predictions

(regression of Y on X does not always imply dependency)
SPURIOUS CORRELATION

“Predictive capacity without explanatory capacity is worthless. Mere
clairvoyance, irrespective of its sharpness, does not itself have scientific
standing. Only predictive capacity that arises out of having coherent and
communicable explanations has scientific standing. The power to predict
is subsidiary to the power to explain. Explanation without prediction is
sufficient, but prediction without explanation is of no consequence from a
scientific standpoint.”

— Harvey Leibenstein (1966), in “Beyond Economic Man”.

As George E. P. Box said: “All models are wrong but
some are useful”

21
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Regression of Y on X does not always imply dependency
SPURIOUS CORRELATION: correlation between two variables
having no causal relation.

92
P 2001 2002 2003 2004 2005 2006 2007 2008 2009

The Regression of Divorce rate in Main on per capita
consumption of margarine (US) is R = 0.985

https://tylervigen.com/old-version.html
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Regression of Y on X does not always imply dependency
SPURIOUS CORRELATION: correlation between two variables
having no causal relation.

2001 2002 2003 2004 2005 2006 2007 pI]

The Regression of Civil engineering doctorates (US) on per capita
consumption of mozzarella cheese is R? = 0.919

https://tylervigen.com/old-version.html
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Confidence interval for regression lines: confidence bands
A regression model aims at predicting the average Y based on X; i.e.,
predict the average male lion based on their proportion of black spots
confidence bands ° §
5 95% confidence bands for
the predicted mean age of
10 male lions at every value of
2 . proportion of black on their
o noses.
Q6
<
4
2
02 04 0.6 08
Proportion black
24
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Confidence interval for predictions: prediction interval

Prediction interval . o
1 95% prediction intervals
for the predicted age of
10 single lions.

Age (years)
(>}

0.2 0.4 0.6 0.8
Proportion black
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Confidence interval for predictions: prediction interval

Let’s say a lion with 50% of
their noses covered by black
spots is being considered for
hunting?

12
—~10

The prediction is 6.2 years of

Age! How much can we trust
this prediction?

Age (years
oON B O

Unfortunately, the confidence
is not very good! Under

g normality assumptions, we

B 2 i are 95% confident (a good
02 04 0.6 0.8 chance)that an individual
Proportion black with 50% of black spots could
be between 1.7 and 9.7 years.
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Issues involving extrapolation:
predicting Y for X-values beyond the range of the data

Ear length=55.9+0.22(age)
Our ears grow longer about
0.22mm per year.

2

80
The intercept predicts ear
length at birth (X=0 years); a
baby does not have ears of
5.6cm!!

70

Length of ear (mm)

60

So predictions hold well within

T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100 the range of X values but not
outside.

50

Age (years)

The relationship between year
and age is not linear from birth;

we wouldn’t know this based on
these data.

Whitlock & Schi




Ensure that the distribution of predictor value is approximately uniform
within the sampled range:
the standard error cannot tell you that

Appropriate sampling design Biased sampling design,
leading to a Type | error

2022-11-24

A o ° L B
- . s L0
5 - ‘ . .. '..
PR
.a L ] : ;.‘:o' M
) B
’ s L, &
e o
D ] H
Y =10.13 + 0.39X Y =9.84 + 4.05X
039 t= 205 10.5 (P < 0.00001
t = g = 102 (P =031) =g3ass — 105 € . )
R?=0.011=11% R? = 0.86 = 86.0%
28
Let’s take a break — 1 minute
[assumptions coming next]
29
Assumptions of regression models: [1] linearity
Appropriate data for a linear model Non-appropriate data for a linear model
AZ P B i
>2
10 k
- 1 0 1 2 2 1 0 1 2
X X
It is critical to graph the data
30

10



Assumptions of regression models: [1] linearity

Appropriate data for a linear model  Non-appropriate data for a linear model

Ao . B .

residuals
residuals

Plotting the residuals against predictor values is critical in assessing whether a linear
model is appropriate. The horizontal line is the average of residuals (which is always zero
as a result of the fitting method). If variance if greater in different parts of the line, this
indicates lack of linearity or heteroscedasticity (more on that in a few slides).

2022-11-24
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Assumptions of regression models: [2] all observations have
similar influences on the regression model

Francis Anscombe’s quartets: it comprises four data sets that have nearly identical simple
descriptive statistics and regression models. Yet, they have very different distributions and appear
very different when graphed. These data demonstrate both the importance of graphing data
before analyzing it and the influence of influential observations (outliers).
All Quartets have the same
regression model and R2:

Quartet 1 . o{ Quartet2

= N Y=-1.0+1.33X
7. ] R?>=0.63 =63%
i M 3 e Quartet 1 is the only appropriate in the
131 Quartet3 Quartet4 sense that all observations have the

same influence on the model, i.e.,
removal of one observation won't affect

> o > s the model much. There are different
- e methods to estimate the influence of
. each observation on the model

(advanced level).
See also https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Assumptions of regression models: [3] residual variation is
normally distributed

remember: A regression model aims at predicting the average Y based on X, i.e., predict

the average Y based on X. . .
Normality assumption: At each

value of X, there is a normally
distributed population of
Y-values with the mean on the
true regression line.
Y=atpX One can estimate the model even
if residuals are not normally
distributed, but one cannot
generalize the model to predict
other observations in the
statistical population or make
inferences (e.g., p-value,
confidence intervals, t-tests,
13 % X% X ANOVAs).

Whitlock & Schiuter, The Analysis of Biological Data, 3¢ © 2020 W. H. Freeman and Company.
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Assumptions of regression models: [4] residual variation is
homoscedastic (constant across the range of X values)

4 each value of X, there is a normally
J 2| distributed population of

N Y-values with the mean on the true
regression line. The variance of the Y-
values is assumed to be the same for
every value of X.

y ® Heteroscedasticity assumption: At
1000 W

500

One can estimate the model even if
residuals are not heteroscedastic,
but one cannot generalize the model
to predict other observations in the
3 %% %o 75 100 statistical population or make
inferences (e.g., p-value, confidence
intervals, t-tests, ANOVASs).

-500
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Assumptions of regression models: [4] residual variation is
homoscedastic (constant across the range of X values)

400

Another example of
heteroscedasticity
w0 of residuals
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Assumptions of regression models: [4] residual variation is
homoscedastic (constant across the range of X values)

Yet another
example of
heteroscedasticity
of residuals

36
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Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)

11,00

10.50 -
0,50 y=16751x-50384 9@ .
10,00 R?=0,6638 b
9,50

9,00

8,50

8,00

7,50

7,00

7,00 7,50 8,00 8,50 9,00 9,50
Bacterial abundance [Log transformed]

Viral abundance
[Log transformed]

y =1,689x -5,3474
R?=0,7159

Viral abundance
(log transformed)

Bacterial abundance (log transformed)

If we assume here that bacterial and viral abundance have the same measurement errors,
then we can’t use the regular regression model (the authors used a type II regression
that is appropriate for this issue).

Corinaldesi et al. (2003); APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May: 2664-2673.
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Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)
But first we need to understand (revisit) that the regression model

based on samples are an unbiased estimate of the true intercepts
and slopes. Let’s assume the following population regression model:

Y =0.879 + 1.300X

16 ==
144
1300
N —
Q i i
S104 — :
08 _4_— 0.879
061 —
slope intercept

Sampling variation in estimates
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Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)

Red dots are X values “measured”
without error, whereas the smaller
black does are X values “measured”
with error.

2 1 g 4 B In this case there is little
consequence because the error is
small (0.1).

39
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Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)

.0 . Y = 0.929 4+ 1.23X without error in X
Y =0.977 + 0.498X witherrorinX

2022-11-24

L]
0
-2
2 0 x 4
BI_'UE line = Re.gressmn model Red dots are X values “measured” without
without error in X. error, whereas the smaller black does are X
values “measured” with error.
BLACK line = Regression model with
errorinX. The consequence here is much bigger for
estimating the regression model because
ERROR IN X REDUCES SLOPES. the error is large (L.0).
Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)
Y =0.879 4+ 1.300X True population model
Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)
Y =0.879 4+ 1.300X True population model
1.6
1.4
@ 1.2
S i
8 1.0
» 0.8 1
0.6
0.4 + : -
No measurement Measurement
errorin X errorin X
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Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)

One approach to this problem is the so called Type Il regression models
(not covered in BIOL322 in details)

-
-
-
-
- -

vertical offsets perpendicular offsets

Residuals for Type | regression Residuals for Type Il regression
Errorin Y but not in X Error in both Y and X

2022-11-24

43

Assumptions of regression models: [5] values of X (predictor)
is measured without error (hard to assess, often assumed)

Y =0.879 4+ 1.300X True population model

One approach to this problem is the so called Type Il regression models
(not covered in BIOL322)

! Type Il regression is not
biased but greater standard
error (sampling variation):
- —_ I no “free lunch”. This is

slopes
O

xohdrOD®
L1

.8 | obvious because both X and
0.6 == Y have errors.

0.4 - —

No measurement ~ Measurement Measurement
errorin X errorin X errorin X
(Type | regression)  (Type | regression) (Type Il regression)
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Assumptions of regression models: [6] residuals are
independent: this is the assumption in which data are sampled
randomly

h |d el
-~ N o e o

Territory size

bt
0

0 5 10 15 20
Body size

©0000000000000000000000

When residuals are non independent, one should be careful
about making inferences (e.g., p-value, confidence intervals,
t-tests, ANOVAs); more of this issue in advanced BIOL422.
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