
Residuals - the unexplained variation in Y (age in years) by 
the regression model

!𝑌 = 0.879 + 10.647𝑋
𝜀 = Y- !𝑌

𝑌 = 0.879 + 10.647𝑋 + 𝜀

/𝑌 (y hat) stands for predicted values.

𝜀 (epsilon) stands for residuals.

Residual values 𝜀 are the difference (deviation) 
between the observed and predicted values.

Each observation in the data has a residual 
value.
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Sustainable trophy hunting of African lions 
Whitman et al. (2004), Nature, 428: 175-178.



Residual values 𝜀 are the difference (deviation) between the observed and 
predicted values. Predicted values "𝑌 for each observation is on the regression 
line.  As such, given an X value we can predict the Y value. Each observation in 
the data has a predicted & residual value.
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!𝑌 𝜀𝑋 𝑌

!𝑌 = 0.879 + 10.647×0.51
6.31 = 0.879 + 10.647×0.51

𝜀 = 5.4 − 6.31 = −0.91
5.4 = 0.879 + 10.647×0.51 − 0.91



How to fit the model?
Aim of linear regression is to fit a straight line to data that generates 
(in average) the best prediction of y for any value of x. 
Predicted values for Y are on the regression line, i.e., given an X 
value we can predict the Y value.
The line minimises the average distance between data and fitted 
line, i.e., the residuals.

To find the best line, we must 
minimise the sum of the squares of 
the residuals; as such we need to 
find model coefficients (a, b) that 
minimize the sum of squares of 
residuals:

   
ε i =

i=1

n

∑ (Yi −Yi
!)2

i=1

n

∑2
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To find the best line we must minimise 
the sum of the squares of the residuals; 
as such we need to find model 
coefficients (a  &  b) that minimize the 
sum of of squares residuals:

There is only one such combination 
of a and b coefficients!!! There is a 
simple algorithm (method) that 
finds that combination: the 
“Ordinary Least Squares (OLS).

How to fit the model?
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𝑌 = 𝑎 + 𝑏𝑋



How to fit the model? In R

𝑌 = 0.879 + 10.647𝑋

QUALITATIVELY: Age increases 
with proportion of black. 

QUANTITAVELY: Age increases 
10.647 years per one unit of 
proportion black, i.e., 
b = 10.647 years/proportion 
of black.
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H0: the statistical population slope 𝛽 = 0 (i.e., Y can’t be 
predicted by X).
HA: the population slope 𝛽 ≠ 0 (i.e., Y can be predicted by X).

Statistical hypothesis testing in regression

As for any other estimate 
(i.e., based on sample 
data), slopes can differ 
from 0 even if they came 
from a statistical 
population where the 
regression slope is zero.



As for any other estimate (i.e., 
based on sample data), slopes 
can differ from 0 even if they 
came from a statistical 
population where the 
regression slope is zero.



Testing whether the regression slope differs from zero:
[1] using a t-test

H0: the statistical population slope 𝛽 = 0 (i.e., Y can’t be 
predicted by X).
HA: the population slope 𝛽 ≠ 0 (i.e., Y can be predicted by X).

𝑡 =
𝑏 − 𝛽$!
𝑆𝐸%

=
𝑏 − 0
𝑆𝐸%

The regression slope b divided by its standard error can be 
used to test the null hypothesis that 𝛽 = 0. This is similar to 
the one-sample t-test:

𝐻$

𝑏



Testing whether the regression slope differs from zero:
[1] using a t-test (loss of two degrees of freedom by using variance 
of X and Y to estimate the regression coefficients; df = 32-2=30)

P < 0.05; reject the H0 and conclude that the regression model can 
predict age of lions.  

But can we trust its predictions? More on that later.  

𝑡 =
10.64
1.51

= 7.053395

The t-test for the intercept is 
not important for the 
purposes of BIOL322 and 
simple applications of linear 
regressions.



Testing whether the regression slope differs from zero:
[2] using ANOVA (same H0 and HA).

𝑡 =
10.64
1.51 = 7.053395

In simple regression, the t-
test for slopes and ANOVA
for the regression model are 
the same thing; in more 
complex models, ANOVA 
plays a different role (not 
covered in BIOL322).

𝐹 = 49.75 =
𝑡!= 7.053395! =

49.75

loss of two degrees of freedom by using variance of X and Y to estimate 
the regression coefficients; df = 32-2=30



𝑌 = 10.13 + 8.39𝑋

𝑡 =
𝑏
𝑆𝐸!

=
8.39
0.38

= 21.92

𝑌 = 11.05 + 8.76𝑋

𝑡 =
8.76
1.596 = 5.49

Residuals (not the slope) influence its error and statistical testing
(some simulated data)



We can measure the fraction of variation in Y (age) that is “explained” by X 
in the estimated linear regression model using a quantity called “coefficient 
of determination” or the “famous” R2:

The maximum amount of variation in age that could be explained by any
linear regression model is the total sum-of-squares of Y (age): 

𝑅! =
SS"#$"#%%&'(
SS)')*+

SS)')*+ = 1
,-.

/-0!

(𝑌, − 5𝑌 )!= 222.09



The amount of variation in age that the regression model with proportion of 
black spots as a predictor is the regression sum-of-squares: 

SS"#$"#%%&'( = 1
,-.

/-0!

( 7𝑌, − 5𝑌 )!= 138.54

We can measure the fraction of variation in Y (age) that is “explained” by X 
in the estimated linear regression model using a quantity called “coefficient 
of determination” or the “famous” R2:

𝑅! =
""1231244567

!!!.$%
= &'(.)*
!!!.$%

= 0.6238



We can measure the fraction of variation in Y (age) that is “explained” by X 
in the estimated linear regression model using a quantity called “coefficient 
of determination” or the “famous” R2:

We state then that the regression model explains 62.38% of the total 
variation in age.

𝑅! =
""1231244567

!!!.$%
= &'(.)*
!!!.$%

= 0.6238

𝑅! = 0.6238

The adjusted-R2 is a 
more complex
estimator and we leave
it for BIOL422.



𝑌 = 10.13 + 8.39𝑋

𝑡 =
𝑏
𝑆𝐸!

=
8.39
0.38 = 21.9

𝑹𝟐 = 𝟎. 𝟖𝟐𝟖𝟗 = 𝟖𝟑. 𝟖𝟗%

𝑌 = 11.05 + 8.76𝑋

𝑡 =
8.76
1.596 = 5.49

𝑹𝟐 = 𝟎. 𝟐𝟐𝟕𝟓 = 𝟐𝟐. 𝟕𝟓%

Residuals (not the slope) influence the ability of a regression model to 
explain variation in Y (some simulated data)



The last sum-of-squares involved in a regression:

SS"#%&9:*+% = 1
,-.

/-0!

𝑒,! = 83.54



All the sum-of-squares involved:

SS!"#!"$$%&' = '
()*

+),-

( !𝑌( − *𝑌 )-= 138.54 SS.&./0 = '
()*

+),-

(𝑌( − *𝑌 )-= 222.09

SS!"$%12/0$ = '
()*

+),-

𝑒(
- = 83.54

SS)')*+ = SS"#$"#%%&'( + SS"#%&9:*+%

222.09 = 138.544 + 83.544



All the sum-of-squares involved in a regression and its relation to F:

𝐹 =
&&"#$"#%%&'(/()"#$"#%%&'(
&&"#%&)*+,/()"#%&)*+,

=

&&"#$"#%%&'(/*
&&"#%&)*+,/(,-.)

= *01.34/*
10.34/05

= 49.75



wake up

@cjlortie

Let’s take a power break – 2 minutes



Using regressions to make predictions
(regression of Y on X does not always imply dependency)

SPURIOUS CORRELATION 

“Predictive capacity without explanatory capacity is worthless. Mere 
clairvoyance, irrespective of its sharpness, does not itself have scientific 
standing. Only predictive capacity that arises out of having coherent and 
communicable explanations has scientific standing. The power to predict 
is subsidiary to the power to explain. Explanation without prediction is 
sufficient, but prediction without explanation is of no consequence from a 
scientific standpoint.”

— Harvey Leibenstein (1966), in “Beyond Economic Man”.



Using regressions to make predictions
(regression of Y on X does not always imply dependency)

SPURIOUS CORRELATION 

“Predictive capacity without explanatory capacity is worthless. Mere 
clairvoyance, irrespective of its sharpness, does not itself have scientific 
standing. Only predictive capacity that arises out of having coherent and 
communicable explanations has scientific standing. The power to predict 
is subsidiary to the power to explain. Explanation without prediction is 
sufficient, but prediction without explanation is of no consequence from a 
scientific standpoint.”

— Harvey Leibenstein (1966), in “Beyond Economic Man”.

As George E. P. Box said: “All models are wrong but 
some are useful”



Regression of Y on X does not always imply dependency
SPURIOUS CORRELATION: correlation between two variables 

having no causal relation.

https://tylervigen.com/old-version.html

The Regression of Divorce rate in Main on per capita 
consumption of margarine (US) is R2 = 0.985



Regression of Y on X does not always imply dependency
SPURIOUS CORRELATION: correlation between two variables 

having no causal relation.

https://tylervigen.com/old-version.html

The Regression of Civil engineering doctorates (US) on per capita 
consumption of mozzarella cheese is R2 = 0.919



Confidence interval for regression lines: confidence bands
A regression model aims at predicting the average Y based on X, i.e., 

predict the average male lion based on their proportion of black spots

95% confidence bands for 
the predicted mean age of 
male lions at every value of 
proportion of black on their 
noses.

confidence bands



Confidence interval for predictions: prediction interval

95% prediction intervals 
for the predicted age of 
single lions.

Prediction interval



Confidence interval for predictions: prediction interval

Let’s say a lion with 50% of 
their noses covered by black
spots is being considered for
hunting? 

The prediction is 6.2 years of
Age! How much can we trust
this prediction?

Unfortunately, the confidence
is not very good! Under 
normality assumptions, we 
are 95% confident (a good 
chance) that an individual 
with 50% of black spots could 
be between 1.7 and 9.7 years.

1.7

9.7



Issues involving extrapolation: 
predicting Y for X-values beyond the range of the data

Ear length= 55.9+0.22(age)
Our ears grow longer about 
0.22mm per year.

The intercept predicts ear 
length at birth (X=0 years); a 
baby does not have ears of 
5.6cm!! 

So predictions hold well within 
the range of X values but not 
outside.

The relationship between year 
and age is not linear from birth; 
we wouldn’t know this based on 
these data.



Ensure that the distribution of predictor value is approximately uniform 
within the sampled range: 

the standard error cannot tell you that

Appropriate sampling design Biased sampling design, 
leading to a Type I error

𝑌 = 10.13 + 0.39𝑋

𝑡 =
0.39
0.3828

= 1.02 (𝑃 = 0.31)

𝑅- = 0.011 = 1.1%

𝑌 = 9.84 + 4.05𝑋

𝑡 =
4.05
0.3855

= 10.5 (𝑃 < 0.00001)

𝑅- = 0.86 = 86.0%



wake up

@cjlortie

Let’s take a break – 1 minute

[assumptions coming next]



Assumptions of regression models: [1] linearity

Appropriate data for a linear model Non-appropriate data for a linear model

It is critical to graph the data



Assumptions of regression models: [1] linearity
Appropriate data for a linear model Non-appropriate data for a linear model

Plotting the residuals against predictor values is critical in assessing whether a linear 
model is appropriate. The horizontal line is the average of residuals (which is always zero 
as a result of the fitting method).  If variance if greater in different parts of the line, this 

indicates lack of linearity or heteroscedasticity (more on that in a few slides).



Assumptions of regression models: [2] all observations have 
similar influences on the regression model

Francis Anscombe’s quartets: it comprises four data sets that have nearly identical simple 
descriptive statistics and regression models. Yet, they have very different distributions and appear 
very different when graphed. These data demonstrate both the importance of graphing data 
before analyzing it and the influence of influential observations (outliers).

All Quartets have the same 
regression model and R2:

Y = -1.0 + 1.33X
R2 = 0.63 = 63%
Quartet 1 is the only appropriate in the 
sense that all observations have the 
same influence on the model, i.e., 
removal of one observation won’t affect 
the model much.  There are different 
methods to estimate the influence of 
each observation on the model 
(advanced level).  
See also https://en.wikipedia.org/wiki/Anscombe%27s_quartet



Assumptions of regression models: [3] residual variation is 
normally distributed

Normality assumption: At each 
value of  X, there is a normally 
distributed population of 
Y-values with the mean on the 
true regression line. 

One can estimate the model even 
if residuals are not normally 
distributed, but one cannot 
generalize the model to predict 
other observations in the 
statistical population or make 
inferences (e.g., p-value, 
confidence intervals, t-tests, 
ANOVAs).

remember: A regression model aims at predicting the average Y based on X, i.e., predict 
the average Y based on X.



Assumptions of regression models: [4] residual variation is 
homoscedastic (constant across the range of X values)

Heteroscedasticity assumption: At 
each value of  X, there is a normally 
distributed population of 
Y-values with the mean on the true 
regression line. The variance of the Y-
values is assumed to be the same for 
every value of  X.

One can estimate the model even if 
residuals are not heteroscedastic, 
but one cannot generalize the model 
to predict other observations in the 
statistical population or make 
inferences (e.g., p-value, confidence 
intervals, t-tests, ANOVAs).



Another example of 
heteroscedasticity 
of residuals

Assumptions of regression models: [4] residual variation is 
homoscedastic (constant across the range of X values)



Assumptions of regression models: [4] residual variation is 
homoscedastic (constant across the range of X values)

Yet another 
example of 
heteroscedasticity 
of residuals



Corinaldesi et al. (2003); APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May: 2664–2673.

Bacterial abundance (log transformed)
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If we assume here that bacterial and viral abundance have the same measurement errors, 
then we can’t use the regular regression model (the authors used a type II regression 
that is appropriate for this issue).

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



But first we need to understand (revisit) that the regression model 
based on samples are an unbiased estimate of the true intercepts 
and slopes. Let’s assume the following population regression model:

𝑌 = 0.879 + 1.300𝑋

interceptslope

Sampling variation in estimates

0.879

1.300

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



Red dots are X values “measured” 
without error, whereas the smaller 
black does are X values “measured” 
with error.

In this case there is little 
consequence because the error is 
small (0.1).

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



Red dots are X values “measured” without 
error, whereas the smaller black does are X 
values “measured” with error.

The consequence here is much bigger for 
estimating the regression model because 
the error is large (1.0).

BLUE line = Regression model 
without error in X.

BLACK line = Regression model with 
error in X.

ERROR IN X REDUCES SLOPES. 

𝑌 = 0.977 + 0.498𝑋
𝑌 = 0.929 + 1.23𝑋 without error in X

with error in X

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



True population model𝑌 = 0.879 + 1.300𝑋

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



True population model𝑌 = 0.879 + 1.300𝑋

No measurement
error in X

Measurement
error in X

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



One approach to this problem is the so called Type II regression models 
(not covered in BIOL322 in details)

Residuals for Type I regression
Error in Y but not in X

Residuals for Type II regression
Error in both Y and X

vertical offsets perpendicular offsets

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



True population model𝑌 = 0.879 + 1.300𝑋

No measurement
error in X 

(Type I regression)

One approach to this problem is the so called Type II regression models 
(not covered in BIOL322)

Measurement
error in X 

(Type I regression)

Measurement
error in X 

(Type II regression)

Type II regression is not 
biased but greater standard
error (sampling variation): 
no “free lunch”.  This is 
obvious because both X and 
Y have errors. 

Assumptions of regression models: [5] values of X (predictor) 
is measured without error (hard to assess, often assumed)



Assumptions of regression models: [6] residuals are 
independent: this is the assumption in which data are sampled 

randomly
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When residuals are non independent, one should be careful 
about making inferences (e.g., p-value, confidence intervals, 
t-tests, ANOVAs); more of this issue in advanced BIOL422. 


