Classes of statistical designs

Dependent Variable Continuous Categorical	Independent Variale	
	Continuous	Categorical
	Logistic Fegeression	anova
		Tabule

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

The correlation coefficient measures the strength and direction of the association between two continuous variables (often referred as
\qquad to co-variables):

Does brain mass depend on body mass or vice-versa?
\qquad

2

The Pearson's correlation coefficient measures the strength and
direction of the association between two continuous variables - it
measures the tendency of two variables to co-vary.
Unlike linear regression - 1) correlation fits no line to the data; and 2) there are no expectation in terms of which variable is the response and which variable is the predictor

$$
r=\frac{\sum_{i=1}^{n}\left(X_{i}-X\right)\left(Y_{i}-Y\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-X\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-Y\right)^{2}}} \begin{aligned}
& \mathrm{Y}=\log (\text { brain mass }) \\
& \mathrm{X}=\log (\text { body mass })
\end{aligned}
$$

The numerator is called sum of products and it measures how the deviations in X and Y (from their means) vary together.

The denominator assures that r

The formula for the (Pearson's)

 correlation coefficient (r) has three parts, two of which should look familiar and one should be new (to you)\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
always varies between -1 and 1 \qquad

\qquad
4

5

\qquad
\qquad
\qquad
7

Testing the null hypothesis of zero correlation
H_{0} : There is no relationship between the inbreeding coefficient and the
\qquad number of pups in the population ($\rho=0$).
H_{A} : Inbreeding coefficient and the number of pups in the population are correlated ($\rho \neq 0$).

To test this hypothesis we use the t-test as follows: \qquad
\qquad

$$
\begin{gathered}
S E_{r}=\sqrt{\frac{1-(-0.608)}{24-2}}=0.169 \\
t=\frac{-0.608}{0.169}=-3.60 \\
\operatorname{Pr}[t<-3.60]+\operatorname{Pr}[t>3.60]= \\
2 \operatorname{Pr}[t>\operatorname{abs}(3.60)]=0.002
\end{gathered}
$$

8

Pearson correlation r
Assumptions:

- The relationship between X and Y is linear. \qquad
The distribution of X and Y (separately) are normal.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 10

Parametric tests and their assumptions - one sample \& two sample t-tests, ANOVA, regression and correlation
\qquad

General Assumptions of parametric tests (the way the assumption is tested may change between approaches): \qquad

1) Observations are random.
2) Data are homoscedastic ©
3) Samples are normally distributed

11

Test	Advantages	Disadvantages
Chi-Square test	- appropriate for any level of measurment - ties may be problematic	- grouping of observations required (frequencies per group must be >5) - unsuitable for small samples - statistic based on squares
KolmogorovSmirnov test	- suitable for small samples - ties are no problem - omnibus test	- no categorial data - low power if prerequisites are not met
Lilliefors test	- higher power than KS test	- no categorial data
Anderson-Darling test	- high power when testing for normal distribution - more precise than KS test (especially in the outer parts of the distribution)	- no categorial data - statistic based on squares
Shapiro-Wilik test	- highest power among all tests for normality	- test for normality only - computer required due to complicated procedure
Cramér-von-Mises test	- higher power than KS test	- statistic based on squares - no categorial data

[^0]\qquad

Assessing the normality assumption: The Quantile-Quantile normal plot (Q-Q normal plot)

13

Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

The $Q-Q$ plot is a graphical technique for determining if multiple samples come from populations with a common distribution (here, if they all come from normally distributed populations).

It plots the quantiles (also known as percentiles) of the data against the quantiles of a normally distributed population.

Percentiles are values in the data below which a certain proportion of your data fall. The median is the 50% quantile (or percentile) because 50% of the data follows below that value and 50% above that value.

Go back to our lecture on interquartile range: instead of thinking in terms of $25 \%, 50 \%$ and 75% quartiles (which divide the data into quarters), think of much smaller quantiles that divide the data into 20 pieces (every 5%) or even 100 pieces (every 1%).

14

Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)
Let's consider 100 values from a uniform distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

17

Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)
\qquad

Let's divide the data into every 5 percentile points: note how the difference in \qquad the middle points ($40 \%, 45 \%, 50 \%$) are more similar than points in the tails (5\% \& 10\%; 90% \& 95%).

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

20

Two sample t-test (quick overview) to put Q-Q normal plots in perspective \qquad

Do spikes help protect horned lizards from \qquad predation (being eaten)?

\qquad
\qquad
\qquad
\qquad

22

Assessing the normality assumption in linear models (one sample and two-sample t tests, ANOVA, regression and correlation):
The Quantile-Quantile normal (Q-Q normal plot)
In two sample t-tests and ANOVAs, it is not the response
(dependent) variable (e.g., horn length) as a whole that needs to be "normal", but rather the response within groups

Response variable not normal across groups, but normal within groups

```
n<< 100
Group1
hist(c(Group1,Group2), breaks=30)
```

Myth - "Data have to be normal"

23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

26

Assessing the normality assumption in linear models: The Quantile-Quantile normal plot of residuals (Q-Q normal residual plot)
t-tests and ANOVAs can be applied as a linear model where the response variable is continuous and predictors are categorical.

$$
Y=\operatorname{Factor}(G 1, G 2)+\text { residuals }
$$

So, instead of plotting all groups, we plot the residuals across all groups!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Relaxing the normality assumption: non-parametric hypotheses tests \qquad
\qquad
\qquad
\qquad
29

Parametric versus non-parametric \qquad hypotheses tests

A parametric statistical test is one that makes assumptions about the parameters (defining properties) of the population distribution(s) from which one's data are drawn, while a nonparametric test is one that makes no such \qquad assumptions

Source - htto://vassarstats.nettextbook/parametric.html
Tests we covered so far assumed normality and equality of variance (means and regression).
\qquad
\qquad
\qquad

\qquad

31

Dealing with non-normality in statistical

 statistical hypothesis testing $\qquad$$\qquad$

Non-normality has many shapes and would be very difficult to develop sampling distributions for these different shapes (though it can be done as part of more advanced and complex statistical analyses, particularly using computational statistics).
\qquad
\qquad
\qquad
\qquad
\qquad
32

Parametric tests assuming normality (e.g., t-test \& ANOVA) are affected by non-normality; depending on the type of non-normality (shape), parametric tests can have either inflated type I errors (i.e., type I error rates greater than alpha) or lower power (i.e., increased type II errors).

The impact of sample non-normality on ANOVA and alternative methods.
Lante ${ }^{\text {P }}$!
\oplus Author information
Abstract
In this journal, Zimmerman (2004, 2011) has discussed preliminary tests that researchers offen use to choose an appropriate method for comparing locations when the assumption of normality is doubfful. The conceptual problem with this approach is that such a two-stage
process makes boin the power and the significance of the enirire procedure uncertain, as type I and type il errors are possible at both stages. Schnicer et al (2010) which proposes that simulated sets of sample data be ranked with respect to their degree of normality this paper investigates the relationsio between population non-normally and sample non-normally with respect to the performance of the ANOVA, Brown-Forsythe test, Welch test, and Kuskal-Wallis test when used with different distributions, sample sizes, and effect sizes. The overall conclusion is that the Kruskal-Wallis test is considerably less sensitive to the degree of sample normality when populations are distinctly non-normal and should therefore be the primary tool used to compare locations when it is known that populations are not at least approximately normal.

Non-parametric tests are those that can handle non-normal data (but the assumption of homoscedasticity is also important though not usually verified)

These are the main non-parametric tests used in Biology for comparing samples:

1) For comparing two samples (analogue of the parametric two sample t-test) The Mann-Whitney U-test (also known as the Mann-Whitney-Wilcoxon test the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).
2) For comparing multiple samples (analogue of the parametric ANOVA) - The Kruskal-Wallis test.

The P-value for the The Mann-Whitney U-test and the The Kruskal-Wallis test is mathematically the same and we will cover only the latter.

Note: we covered t-tests separate from ANOVA for three reasons: one sample ttests, understand the nature of post-hoc testing (e.g., pairwise comparison of means after ANOVA) and because there is a t-test dealing with samples having different variances (though there is a very complex ANOVA version as well).

34

Non-parametric tests (including the Kruskal-Wallis test) are based on rank transformations

Example: Fst is a measure of the amount of
geographic variation in a genetic polymorph geographic variation in a genetic polymorphism. Here, McDonald et al. (1996) compared two

CVJ5	DNA	-0.006		
CVB1	DNA	-0.005		
6 Pgd	protein -0.005			
Pgi	protein -0.002			
CVL3	DNA	0.003	\quad	geographic variation in a gene
:---			based on six anonymous DNA polymorphisms	
:---	:---	:---		
CVL3	DNA	0.003		
Est-3	protein	0.004	(variation in random bits of DNA of no known	

function) and compared the FST values of the six DNA function) and compared the FST values of the six
polymorphisms to FsT values on 13 proteins.

cgm-1	protein	0.015
Aat-2	protein	0.016
Adk-1	protetin 0.016	

Adk-1 protein 0.016

| Sdh | protein 0.024 |
| :--- | :--- | :--- |
| Acp-3 | protein 0.041 |\quad Question: Do protein differ in FsT values in contrast

to anonymous DNA polymorphisms?
$\begin{array}{lll}\text { Lap-1 } & \text { protein } & 0.049 \\ \text { CVL1 } & \text { DNA } & 0.053 \\ \text { Zero } \mathrm{Fst} & =\text { no genetic variation (panmictic) }\end{array}$

| CVLL | DNA | 0.053 |
| :--- | :--- | :--- | :--- |
| Mpi-2 | protein | 0.058 |
| App-1 | protein | 0.066 |\quad negative Fst $=$ more genetic variation within

Ap-1	protein	0.066				
CVJ6	DNA	0.095	\quad populations than between the two populations being	CV16	DNA	0.095
:---	:---	:---				
CVB2m DNA	0.116		compared.			

Est-1 protein 0.163 positive Fst = more variation between populations than within the two populations being compared.

Data from McDonald et al. (1996)
35

Non-parametric tests are based on rank transformations \qquad

gene	class	$\mathrm{F}_{\text {ST }}$	Rank Rank	
CVJ5	DNA	-0.006	1	
CVB1	DNA	-0.005	2.5	$(2+3) / 2=2.5$
6 Pgd	protein	-0.005	2.5	
Pgi	protein	-0.002	4	
CVL3	DNA	0.003	5	
Est-3	protein	0.004	6	
Lap-2	protein	0.006	7	
Pgm-1	protein	0.015	8	
Aat-2	protein	0.016	9.5	$(9+10) / 2=9.5$
Adk-1	protein	0.016	9.5	$(9+10) / 2=9.5$
Sdh	protein	0.024	11	
Acp-3	protein	0.041	12	
Pgm-2	protein	0.044	13	
Lap-1	protein	0.049	14	
CVL1	DNA	0.053	15	
Mpi-2	protein	0.058	16	
Ap-1	protein	0.066	17	
CVJ6	DNA	0.095	18	
CVB2m	DNA	0.116	19	
Est-1	protein	0.163	20	
http://www.biostathandbook.com/kruskalwalis.html				Data from McDonald et al. (1996)

\qquad
\qquad
\qquad
\qquad

\qquad			
CVB2m DNA	0.116	19	

http://www.biostathandbook.com/kruskalwallis.html
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 4

We want to know whether samples come from populations that vary in their ranks
What is the probability that a randomly sampled observation from population \mathbf{P} is greater (or smaller) in rank than a randomly sampled observation from \mathbf{Q} ? If the probability is small, then the samples come from different populations! Varga and Delanay (1998)

37

Kruskal-Wallis test

What is the probability that a randomly sampled observation from population \mathbf{P} is greater (or smaller) in rank than a randomly sampled observation from \mathbf{Q} ?
If the probability is small, then the samples come from different populations; in other words, a sample dominates another sample.
H_{0} : no sample dominates another sample.
H_{A} : at least one sample dominates one other sample.

Varga and Delanay (1998)

38

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
40

41

gene	${ }^{\text {class }}$	${ }_{\text {F }} \mathrm{F}_{\text {ST }}$ Rank	$\mathrm{H}=[0.029 *(610.04+1596.45)]-63=$
${ }_{\text {CVI5 }}$	DNA	${ }^{-0.006}$	
	Protein	${ }^{-0.005}$	$\mathrm{H}=0.0425$
$\frac{\mathrm{Pbl}^{\text {cti }}}{}$	${ }^{\text {Protem }}$	0.003	Correction for ties
	protein	0.004	
${ }_{\text {Lep }}^{\text {Lap-2 }}$	${ }_{\text {protetin }}^{\text {protein }}$	${ }^{0.006}$	
$\frac{\text { Aat-2 }}{\text { Ack-1 }}$	${ }_{\text {proter }}^{\text {protein }}$	0.016 0.016 9.5 0.5	
Sah	protein	$0_{0}^{0.24}$	
$\frac{\mathrm{Acp}}{} \mathrm{P}_{\mathrm{gm} \text { - }}$	${ }_{\substack{\text { protein } \\ \text { protein }}}$	${ }^{0.041}{ }_{0}^{0.04}$ - ${ }^{12}$	
$\frac{\mathrm{c}}{\text { a }}$	protern	${ }_{0}^{0.049}$	
$\frac{\mathrm{CVLI}}{\text { Mpi2 }}$	protein	${ }_{0}^{0.058}$	
cl	${ }_{\substack{\text { Protein } \\ \text { DNA }}}^{\text {and }}$	${ }_{0}^{0.0066}{ }_{0}^{0.095}$	$\mathrm{C}_{\mathrm{H}}=1-\frac{\sum_{\mathrm{i}=1}^{2}\left(\mathrm{~T}_{i}^{3}-\mathrm{T}_{\mathrm{i}}\right)}{20^{3}-20}=1-\frac{\left(2^{3}+2\right)+\left(2^{3}+2\right)}{20^{3}-20}=0.998$
c	DNA	0.116 19 0.163 0.	
Est-1	proten	0.163	
		60.5	$\mathrm{H}_{\mathrm{c}}=\mathrm{H} / \mathrm{C}_{\mathrm{H}}=0.0425 / 0.998=0.04258517$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathrm{H}_{\mathrm{c}}=\mathrm{H} / \mathrm{C}_{\mathrm{H}}=0.0425 / 0.998=0.04258517$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
43

Kruskal-Wallis test - statistic H

Assumptions:

- Independent samples \qquad
- Homoscedasticity of ranks (not commonly tested and the Levene's test can be used to test for this assumption) test the distribution of ranks instead of original values.

[^0]: Source. ntp.Mww.staistics4u.inforiundstat_eng/cc_normality_test.hem

