
\qquad
\qquad
\qquad
\qquad
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

\qquad
\qquad
\qquad
\qquad
\qquad

4

5

6

7

8

9

10

Inferential (statistical hypothesis testing)
approaches for testing means and variances covered in BIOL322:

One sample t-test
Two sample t-test
Welch's t-test
Paired t-test
ANOVAs
Levene's test
F-ratio
They can be conducted by regression in which response and predictors are modified according to the test in question.

11

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
13

Which of the following best describes samples that exhibit high ACCURACY and low PRECISION when estimating the variance of a population?
\qquad
A) The values tend to be like one another and, in average, different from the true population value.
B) The values tend to be like one another and, in average, and to be similar to the true
C) The values tend to be quite different from one another and, in average, different from the true population value.
D) The values tend to be quite different from one another and, in average, they tend to be similar to the true population value.
E) None of the answers.

ANSWER: D

\qquad
\qquad
\qquad
\qquad

14

Which of the following DOES NOT describe a random sample? \qquad
A) Whether one individual is selected has no bearing on whether another individual is selected as well.
B) Each individual observation's chance of being selected is independent of the \qquad other individuals selected.
C) Each individual observation in the population is equally likely to be chosen.
D) Each numerical value for an observation in the population is equally likely to be \qquad
E) None of the answers.

ANSWER: D
\qquad
\qquad
\qquad
1,2,2,2,2,2,2,2,2,2,2,3,3,4 \qquad

Which of the following is the criterion for classifying a study as an experimental study? \qquad
A) Individuals are assigned to different treatments based on criteria out of the researcher's control.
B) Individuals are assigned to treatments based on a measurable trait (e.g., body size). \qquad C) Individuals are observed and measured in assigned laboratory settings.
D) Individuals are randomly assigned to different treatments.
E) All these are expected to happen under experimental studies

ANSWER: D
Experimental study - Researcher randomly assigns Experimental study - Researcher randomly assigns
observational units (birds) to different groups (often called treatments), i.e., they control the treatments.

\qquad
\qquad
\qquad
16

A good experiment is designed to do ALL the following except:

\qquad
A) minimize bias in estimating treatment effects.
B) minimize bias is testing treatment effects.
C) minimize P-values.
D) minimize sampling error.
E) All experiments should try their best to achieve all these goals. \qquad
ANSWER: C
\qquad
\qquad
\qquad
\qquad
17

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A P-value indicates:
A) A measure of how compatible the observed data is with the null hypothesis. B) The probability that the alternative hypothesis is true.
C) The probability of committing a false positive.
D) A statement about the truth about a hypothesis
E) None of these statements.

ANSWER: A
H_{0} : Right-handed and left-handed toads are equally frequent in the population
H_{A} : Right-handed and left-handed toads are NOT equally frequent in the population.

The test statistic that we will use here is the number of right-handed frogs.

Remember that the test statistic is a number calculated from the data that is sed to evaluate how compatible the observed (sample) data are with the esult expected under random samping from a statistical population in which the null hypothesis is true (i.e., the sampling distribution under H_{0}).

19

In a paired design study, if the variances of the two samples are heteroscedastic, what is the best course of analysis to compare their means?
\qquad
A) Conduct the Welch's t-test.
B) Conduct the standard t-test.
C) Conduct a paired t-test.
D) Conduct an F-ratio test.
E) Conduct a Levene's test.

20

Which of the following does NOT increase the power of a statistical test? \qquad
A) Larger sample size.
B) Larger discrepancies from null hypothesis expectations. \qquad
C) Lower significance level thresholds.
D) Lower variability in the population.
E) Impossible to tell as it will depend on the data. \qquad

ANSWER: C

\qquad
\qquad
\qquad

Which of the following IS NOT a method to generate data appropriate for a paired t-test?
A) Compare the left and right sides of individuals given different treatments to each arm.
B) Measure the same thing in twins divided so one is in each treatment.
C) Measure the same thing in individuals before and after an intervention.
\qquad
D) Place individuals randomly into the treatments.
E) All options are appropriate for a paired t-test

22

Which of the following IS NOT one of the main questions to consider when choosing which statistical test to use?
A) Are the variables categorical or numerical?
B) Are the data values paired in some way?
C) Does the sample size allow estimation of P -values?
D) Does our data meet the assumptions of the test we're considering?
E) All of them are important questions.

ANSWER: C

23

STATISTICAL LITERACY: THINKING CRITICALLY ABOUT STATISTICS Milo Schield, Augsburg College Department of Business \& MIS Minneapolis, MN

Statistical literacy is the ability to read and interpret data: the ability to use statistics as evidence in arguments.

Statistical literacy is a competency: the ability to think critically about statistics.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

Statistical literacy is a basic skill: the ability to think critically about arguments using statistics as evidence.

Consider the story of two photographers being chased by a bear. [Adapted from David Friedman, (1996)] The first says, "It's hopeless! This bear can run twice as fast as we can." \qquad The second, realizing the flaw in the argument says, "No, it's not hopeless! I don't have to outrun this bear. I just have \qquad to outrun you!" The truth of this statistic ("twice as fast") does not give strong support for this conclusion ("it's hopeless").

The second photographer was statistically literate; the first \qquad photographer wasn't.

