Graphs:

The art of designing information
"A picture tells a thousand words"

- Lake Blanche

1

Graphs are used to try to tell a story

...and to make a point
2

General definition of a graph

- Visual representation of a relationship between two or three variables (and more sometimes).
- Variables can be of any type (e.g., categorical or numerical).
- They commonly consist of two axes: x-axis (horizontal or abscissa) and y-axis (vertical \qquad or ordinate).

4

5

Why graphs?

- Powerful way of summarizing data that is \qquad easy to read (i.e., quick and direct).
- Highlight the most important information \qquad (i.e., facilitate communication).
- Facilitate (summarize) data understanding.
\qquad
- Help convince others.
- Easy to remember (general trends).
- Aid in detecting unusual features in data. \qquad
- Tell stories.

Types of graphs

There are lots of types of graphs! The most commons (and covered in BIOL322) are: \qquad
\qquad
[- Bar graph
\qquad
\qquad

- Scatter plot
\qquad
- Graphs of data distributions
\qquad
7

Types of graphs

There are a lots of types of graphs! \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

BAR GRAPH: Vertical or horizontal columns (bars) representing the distribution of a numerical variable against one or more categorical variable.
 Chitwan National Park (Nepal) between 1979-2006; $n=88$
\qquad
\qquad
\qquad

Activity - categorical
\qquad
Activity

\qquad
\qquad

10

11

BAR GRAPH: Two categorical variables (often from a

 contingency table)\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Treatment (egg removal/control) \& outcome (malaria - yes/no) - categorical requency - numerical (discrete) \qquad
13

Let's use this example to discuss the different types of studies \& how cause and effect are
\qquad established in biology.

\qquad
\qquad
\qquad
\qquad

Treatment (egg removal/control) \& outcome (malaria - yes/no) - categorical Frequency - numerical (discrete) \qquad
14

Explanatory versus Response variables

- One major use of BioStatistics is to relate one variable to another, by examining associations between variables or differences between groups. \qquad
- When association between two variables is investigated, a common goal is to assess how well one of the variables, deemed the explanatory variable, predicts or affects (explain) the other variable, called the response variable. \qquad
\qquad
\qquad
\qquad

Explanatory versus Response variables

- One major use of BioStatistics is to relate one variable to another, by examining associations between variables or differences between groups.
- When association between two variables is investigated, a common goal is to assess how well one of the variables, deemed the explanatory variable, predicts or affects (explain) the other variable, called the response variable.
"Assumed" explanatory power may depend on the type of study:
[1] experimental versus [2] observational studies

16

"Assumed" explanatory power may depend on the type of study

Experimental study - Researcher randomly assigns observational units (birds) to different groups (often called treatments), i.e., they control the treatments.

17

Explanatory and response variables (experiment)

When conducting an experiment (e.g., malaria study in the last slides), the treatment variable (the one manipulated by the researcher) is the explanatory variable, and the measured effect of the treatment is the response variable.

\qquad
\qquad
\qquad
\qquad

Explanatory and response variables (experiment)

Another example of experiment: the administered dose of a toxin in a toxicology experiment would be the explanatory variable, and organism mortality would be the response variable.

Response to different agents (each one represented by a different color) may vary with increasing dose
https://toxlearn.nlm.nih.gov/htmlversion/module1.html
19

"Assumed" explanatory power may depend on the type of study

Observational study - Researchers have no control over which observational units fall into which treatment or values of the explanatory variable. Examples:

- Studies on the health consequences of cigarette smoking in humans (unethical to assign smoking and no-smoking treatments to observational units, i.e., people).
- Growth of fish in warm versus cold lakes (observational units, i.e., fish are already in lakes; the research has no control on which fish goes in which lake).

20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Explanatory and response variables (observational study)

When neither variable is manipulated by the researcher (i.e., observational study; sample When neither variable is manipulated by the researcher (i.e., observational study; sample
of convenience), their association might nevertheless be described by the "effect" of one of the variables (the explanatory) on the other (the response), even though the association itself is not direct evidence for causation.

\qquad
\qquad
\qquad
\qquad
22

Explanatory and response variables (observational study)

When neither variable is manipulated by the researcher (i.e., observational study; sample of convenience), their association might nevertheless be described by the "effect" of one
\qquad the variables (the explanatory) on the other (the response), even though the
\qquad

"The magic hilling powers of TV"
in the US
Overall wealth of citizens
through time (and cheaper TVs)

[^0]23

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Independent versus dependent variables =
explanatory versus response variables, respectively

Strictly speaking, if one variable depends on the other, then neither is independent, so we rather say explanatory and response (e.g., in Whitlock and Schluter).

Sometimes you will hear variables referred to as "independent" and "dependent". These are the same as explanatory and response variables, respectively.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
25

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

26

Back to BAR GRAPHs: two categorical variables

Is reproduction risky to health?

Parus major
Treatment (egg removal/control) \& outcome (malaria - yes/no) - categorical
Frequency - numerical (discrete)

Back to BAR GRAPHs: two categorical variables
Is reproduction risky to health? Not so clear from this bar graph

\qquad
\qquad
\qquad
\qquad

Treatment (egg removal/control) \& outcome (malaria - yes/no) - categorical Frequency - numerical (discrete) \qquad
28

BAR GRAPHs (staked = mosaic graph): Two categorical variables

Is reproduction risky to health? Much clearer
\qquad now!

Treatment (egg removal/control) \& outcome (malaria - yes/no) - categorical

29
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BAR GRAPHS are not always the best way!
which variable goes where? What message do you want to "sell"?

31

32

34

SCATTER PLOT: multiple series - which species vary more from the others?

Sepal between petals

35

LINE GRAPH: uses dots connected by line segments to
display trends in a measurement over time or other ordered states (e.g., size, etc).

Whitlock \& Schluter, The Analysss of filologkal Dato, 3e 02020 w.H. Freeman and Company \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
37

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
38

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Graphs:

The art of designing information
"A picture tells a thousand words"

- Lake Blanche
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
40

Next lecture: How to build frequency distributions and introduction to descriptive (or summary) statistics

41

\qquad
\qquad

42

How to Make a Good Plot

1. Show the data.
2. Make patterns easy to see.
3. Display magnitudes honestly.
4. Draw graphics clearly.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
43

How to Make a Bad Plot

1. Hide the data.
2. Make patterns hard to see. \qquad
3. Display magnitudes dishonestly.
4. Draw graphics unclearly. \qquad
\qquad
\qquad
\qquad
44

Mistakes in displaying data
Mistake 1. Hide the data \qquad
\qquad
\qquad
\qquad

Mistake 1: Hide the data

How to hide data:

- Provide only statistical summaries.
- Over-plotting.
\qquad

How to reveal data:

- Present all data points, while allowing all to be seen.
\qquad
\qquad
\qquad
\qquad
46

Not Showing Data, Just Summaries

\qquad

This plot hides the variation within positions. \qquad
\qquad

© 2020 W.H. Freeman and Company
47

Not Showing Data, Over-Plotting

This plot hides the density of observations.

\qquad
Heights of NBA players by position

\qquad
\qquad
\qquad
\qquad
\qquad

Showing Data, Jittering

This plot shows all the observations. \qquad
Heights of NBA players by position
${ }_{90}$ -

${ }_{65}$.

© 2020 w.t. Freeman and Company
\qquad
\qquad
\qquad
\qquad
\qquad
49

Mistakes in displaying data
\qquad
\qquad
\qquad
\qquad
50

Mistake 2: Making Patterns Hard to See

How to hide patterns:

- Make one plot and call it good. \qquad
- Use unreasonable scales.
- Arrange factors nonsensically.

How to reveal patterns:
\qquad

- Explore multiple potential plots.
- Use appropriate scales.
\qquad
- Arrange factors meaningfully. Arrange in order for ordinal, by mean for nominal. \qquad

2020 W.H. Freeman and Company \qquad
51

Nonsensical Order Hides Patterns

Non-intuitive ordering of factors hides patterns. \qquad
Heights of NBA players by position
90 .

\qquad
\qquad
\qquad
\qquad
52

Nonsensical Order Hides Patterns

Intuitive ordering of factors hides patterns. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
53

Bad Axis-Limits Hide Patterns

In this plot, the large scale (limits of the Y-axis) hides the pattern. \qquad
Heights of NBA players by position
500 .

\qquad
\qquad
\qquad
\qquad

[^0]:

