Gaining further insights into data and biological problems (experimental or observational)

Displaying numerical data in the
form of frequency distributions:
table and histograms \& other visual aids to understand the characteristics of data.

\qquad
\qquad
\qquad
\qquad
1

Some raw data: Abundance of birds across species

2

Abundance of birds across species - plot of raw data

\qquad
\qquad
\qquad
\qquad
\qquad

Displaying numerical data in the form of frequency distributions - the tabular (table) form

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4

Displaying numerical data in the form of frequency distributions - from tabular to graphical form (histograms)

5

The formal definitions of frequency distributions

Frequency distribution is a representation, either in a \qquad graphical or tabular format, that displays the number
\qquad quantitative variable (continuous or discrete).
\qquad
The intervals must be mutually exclusive (each observation can only belong to one interval) and
\qquad
The interval size depends on the data being analyzed and the goals of the analyst. \qquad

Adapled from: htpp//www.investopedia.comhtermsultrequencydistribution.asp

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7

Why frequencies and not the raw data?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8

Why frequencies and not the raw data?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
10

From frequencies to probabilities

11

Variability in bar graphs (categorical) versus

 histograms (numerical)Where does rain vary the most?

\qquad

Source: Cooper \& Shore; Journal of Statistics Education (vol. 18, \#2)

Variability in bar graphs (categorical) versus

 histograms (numerical)In which class exam scores vary the most?

Note: scales (X and Y axis limits) are exactly the same
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Source: Cooper \& Shore; Journal of Statistics Education (vol. 18, \#12)

13

14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17

Let's take a small break - 2 minutes \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Building a frequency distribution

How many intervals (classes of abundance) should be used?
No strict rules need to be imposed, but rather a number that best show patterns and exceptions in data

Body mass of 228 female sockeye salmon sampled from Pick Creek in Alaska (Hendry . 2 . different : 0.1 kg (left), 0.3 kg (middle), and 0.5 kg (right)

Remember that histograms are graphical representations of frequency distributions

19

Building a frequency distribution - How many intervals?

"Flying" paradise tree snake (Chrysopelea paradisi). To better understand how lift is generated, Socha (2002) videotaped glides (from a $10-\mathrm{m}$ tower) of 8 snakes. Rate of side-to-side undulation was measured in hertz (number of cycles per second). The values recorded were:
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$

No strict rules should be used, but rather a number that best show patterns and exceptions in data. Rules exist, however, example:

The Sturges' rule: number of intervals $=1+\ln (n) / \ln (2)$,
For the snake data: $1+\ln (8) / \ln (2)=4$ classes.

NOTE: $1+\ln (\mathrm{n}) / \ln (2)=1+\log _{2}(\mathrm{n})$
(as often expressed in some sources).

20

Building a frequency distribution - The interval size

$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$
Snake data: $1+\ln (8) / \ln (2)=4$ classes

Let's establish the speed intervals (let's say we decide on 4 intervals):
(max(value) - min (value)) / number of classes: \qquad
(2.0-0.9) / $4=0.275$
\qquad
21

Remember

The intervals must be mutually exclusive (each \qquad observation can only belong to one interval) and exhaustive (all observations must be included), and \qquad the interval size depends on the data being analyzed and the goals of the analyst.

22

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
23

Building intervals

Let's establish the speed intervals: $0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$
(max(value) - min (value)) / number of classes:
$(2.0-0.9) / 4=\underline{0.275}$
$1^{\text {st }}$ class: individuals with speeds between 0.900 and $1.175(0.900+0.275)$
\qquad
$2^{\text {nd }}$ class: individuals with speeds between 1.175 and $1.450(1.175+0.275)$ \qquad
\qquad
\qquad

Building intervals

Let's establish the speed intervals: 0.9, 1.2, 1.2, 1.3, 1.4, 1.4, 1.6, 2.0
(max(value) - min (value)) / number of classes:
$(2.0-0.9) / 4=\underline{0.275}$
$1^{\text {st }}$ class: individuals with speeds between 0.900 and $1.175(0.900+0.275)$
\qquad
$2^{\text {nd }}$ class: individuals with speeds between 1.175 and $1.450(1.175+0,275)$ \qquad
$3^{\text {rd }}$ class: individuals with speeds between 1.450 and $1.725(1.450+0.275)$
\qquad
\qquad
\qquad
\qquad
\qquad
25

Building intervals

Let's establish the speed intervals: 0.9, 1.2, 1.2, 1.3, 1.4, 1.4, 1.6, 2.0 \qquad
(max(value) - min (value)) / number of classes:
$(2.0-0.9) / 4=\underline{0.275}$
$1^{\text {st }}$ class: individuals with speeds between 0.900 and $1.175(0.900+0.275)$
$2^{\text {nd }}$ class: individuals with speeds between 1.175 and $1.450(1.175+0.275)$ \qquad
$3^{\text {rd }}$ class: individuals with speeds between 1.450 and $1.725(1.450+0,275)$
$4^{\text {th }}$ class: individuals with speeds between 1.725 and $2.000(1.725+0.275)$

26

Counting number of observations (frequencies)
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$

Let's use: left-closed \& right-open [a,b)	
Classes	Frequency
$0.900-1.175$	
$1.175-1.450$	
$1.450-1.725$	
$1.725-2.000$	

\qquad
\qquad
\qquad
\qquad
intervals are either left-closed \& right-open, e.g., $0.900-1.175$ would contains snakes with rates between 0.9 Hz (included) and 1.175 Hz (not included) $=$ $[0.900,1.175)$.

OR left-open \& right-closed, e.g., $0.900-1.175$ would contains snakes with rates between 0.9 Hz (not included) and 1.175 Hz (included) $=(0.900,1.175]$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
28

Counting number of observations (frequencies)
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$

left-closed \& right-open [a,b)	
Classes	Frequency
$(.900-1.175)$	1
$1.175-1.450)$	5
$.450-1.725)$	
$.725-2.000)$	

29

Counting number of observations (frequencies)
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$ \qquad
left-closed \& right-open $[\mathrm{a}, \mathrm{b})$ \qquad
Classes Frequency
0.900-1.175

1
1.175-1.450

5
1.450-1.725

1
\qquad
1.725-2.000
\qquad
\qquad
\qquad
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$?

left-closed \& right-open $[\mathrm{a}, \mathrm{b})$	
Classes	Frequency
$0.900-1.175)$	1
$1.175-1.450)$	5
$1.450-1.725)$	1
$1.725-2.000)$	$? ? ?$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
31

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

32

Counting number of observations (frequencies)
Let's try a different number of classes (5) and interval size (0.275)
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$ \qquad

left-closed \& right-open [a,b)		left-open \& right-closed (a,b]	
Classes	Frequency	Classes	Frequency
$[0.900-1.175)$	1	$(0.625-0.900]$	1
$[1.175-1.450)$	5	$(0.900-1.175]$	0
$[1.450-1.725)$	1	$(1.175-1.450]$	5
$[1.725-2.000)$	0	$(1.450-1.725]$	1
$[2.000-2.275)$	1	$(1.725-2.000]$	1

\qquad
\qquad
\qquad

It works, but the classes may not print well. They have too many decimals. We can change the number 7 classes to tri). tix this issue (let's try 7 classes next)

Counting number of observations (frequencies)
Let's try a different number of classes (7) and interval size (0.2)
$0.9,1.2,1.2,1.3,1.4,1.4,1.6,2.0$
Let's use: left-closed \& right-open [a,b)

Classes	Frequency	
$[0.8-1.0)$	1	
$[1.0-1.2)$	0	
$[1.2-1.4)$	3	Note: some software may include 2.0 in this interval even though is pened.
$[1.4-1.6)$	2	This may happen when the last values in the data fall here. (R does that)
$[1.6-1.8)$	1	
$[1.8-2.0)$	0	
$[2.0-2.2)$	1	
Total	$=$	8

\qquad
\qquad
\qquad
\qquad
\qquad
34

From frequency distribution tables to histograms

35

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
37

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

