

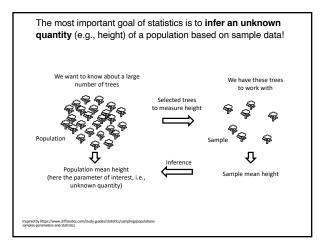
2

Describing data

Samples and populations are often made of lots of individual (observational) units and their associated information (observations, variables).

We need to be able to describe samples by summary statistics (mean, median, variance, etc) so that these summaries can serve as an estimate of the same summaries for their statistical populations.

Describing data

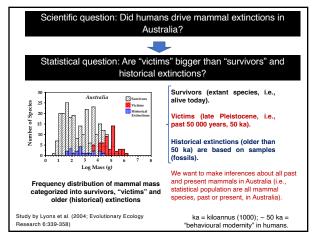

Samples and populations are often made of lots of individual (observational) units and their associated information (observations, variables)

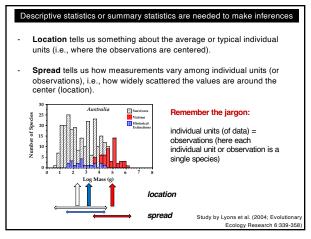
We need to be able to describe samples by summary statistics (mean, median, variance, etc) so that these summaries can serve as an estimate of the same summaries for their statistical populations.

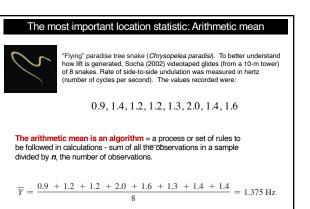
Today: data summaries for each variable (separately).

vidual	Weight (kg)	Height (cm)
1	75.5	172
2	55.3	152
3	61.2	164
4	50.3	148
5	99.4	192
6	66.2	171
7	75.3	169
8	74.6	182
9	60.5	162
10	93.5	184
11	73.6	169

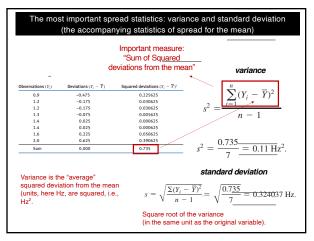
4

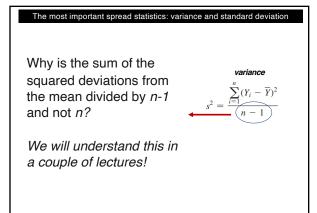


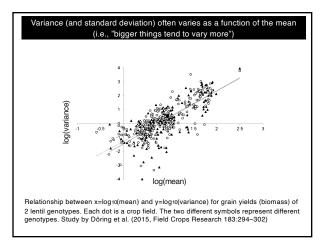

Key Learning Objectives today


- 1. Differentiate between estimates of location and estimates of spread (or width).
- 2. Recognize that variability is not simply noise but is a key parameter that can be estimated.
- 3. Become familiar with the most common descriptive statistics.
- 4. Know when the mean or median is a more appropriate summary of location.
- 5. Location and spread summaries of single variables (multiple variables later in the course).

Modified from: © 2020 W.H. Freeman and Company

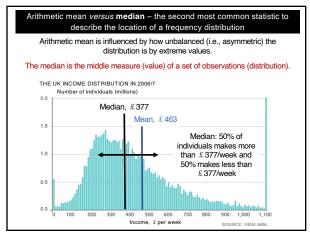


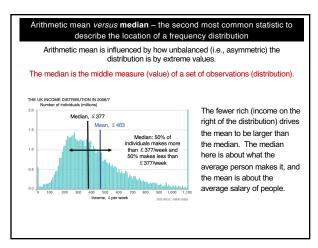

The sample mean is represented most often as Y or X said « Y bar » or « X bar »


<text><text><text>

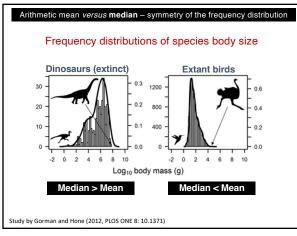

The			ariance and standard deviation spread for the mean)						
standa	rd deviation is larg		typically are from the mean. The are far from the mean, and it is an.						
	Quantities needed to calculate the standard deviation and variance of snake undulation rate ($Y = 1.375 \text{ Hz}$).								
	Observations (Y _i)	Deviations $(Y_i - \overline{Y})$	Squared deviations $(Y_i - \overline{Y})^2$						
	0.9	-0.475	0.225625						
	1.2	-0.175	0.030625						
	1.2	-0.175	0.030625						
	1.3	-0.075	0.005625						
	1.4	0.025	0.000625						
	1.4	0.025	0.000625						
	1.6 0.225 0.050625								
	2.0 0.625 0.390625								
	Sum 0.000 0.735								
Whitlock & Schlute	er, The Analysis of Biological Data, 3e 🛛	2020 W. H. Freeman and Company							

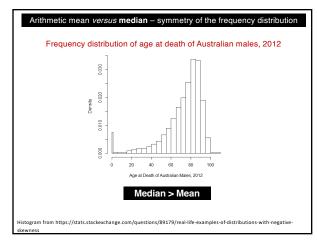


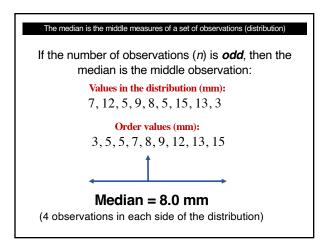


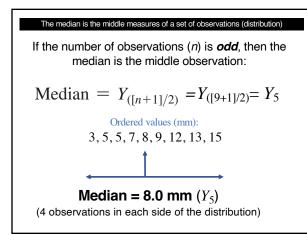

10	en-inipon				of individuals h different u		g to dillere
					Х	S	CV
	1	2	3	4	2.5	1.29	51.7%
	31	32	33	34	32.5	1.29	3.97
	204	205	206	207	205.5	1.29	0.63
	1300	1301	1302	1303	1301.5	1.29	0.10
	Mał	king the c	oefficient	of variat	ion (CV) m	ore obvio	ous!

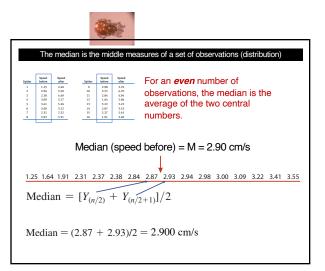
before we go too far: A word on rounding numerical values
 When recording data, always retain as many significant digits (often involving decimals places) as your calculator or computer can provide.
 When presenting results, however, numbers should be rounded before being presented.
- There are no strict rules on the number of significant digits that should be retained when rounding.
 A common strategy, is to round descriptive statistics (e.g., means, standard deviations, etc) to one decimal place more than the measurements themselves. Example: the mean rate of undulation for the eight snakes (measured with a single decimal place; e.g., 0.9), calculated as 1.375 Hz, would be communicated as:
0.9, 1.4, 1.2, 1.2, 1.3, 2.0, 1.4, 1.6 $\overline{Y} = 1.38 \text{ Hz}$

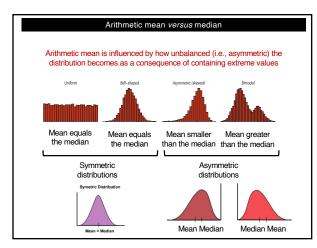


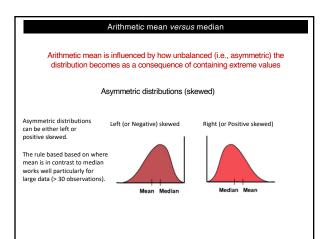

20


the distribution, however, the mean is too influenced by extreme values.






If the numb	er of o		ions (<i>n</i>) is lated diffe		Ŷ	S.
	for	a female	arm" (or a p spider. eed (cm/s) c	,	<i>urren</i> spid	ers before
<i>Tidarren</i> (spider)	Spider	d after vo Speed before	luntary amp Speed after	outation of o Spider	ne pedip Speed before	alp. Speed after
Tidarren (spider)		Speed	Speed		Speed	Speed
Tidarren (spider)	Spider	Speed before	Speed after	Spider	Speed before	Speed after
Tidarren (spider)	Spider	Speed before 1.25	Speed after 2.40	Spider 9	Speed before 2.98	Speed after 3.70
Tidarren (spider)	Spider	Speed before 1.25 2.94	Speed after 2.40 3.50	Spider 9 10	Speed before 2.98 3.55	Speed after 3.70 4.70
Tidarren (spider)	Spider 1 2 3	Speed before 1.25 2.94 2.38	Speed after 2.40 3.50 4.49	Spider 9 10 11	Speed before 2.98 3.55 2.84	Speed after 3.70 4.70 4.94
Tidarren (spider)	Spider 1 2 3 4	Speed before 1.25 2.94 2.38 3.09	Speed after 2.40 3.50 4.49 3.17	Spider 9 10 11 12	Speed before 2.98 3.55 2.84 1.64	Speed after 3.70 4.70 4.94 5.06
Tidarren (spider)	Spider 1 2 3 4 5	Speed before 1.25 2.94 2.38 3.09 3.41	Speed after 2.40 3.50 4.49 3.17 5.26	Spider 9 10 11 12 13	Speed before 2.98 3.55 2.84 1.64 3.22	Speed after 3.70 4.70 4.94 5.06 3.22



A	rithmetio		<i>rsus</i> media e the locati				on statistic to n	
						Х	Median	
	1	2	3	4	5	3	3	
	1	2	3	4	489	99.8	3	
	1	2	3	4	6	3.2	3	
	123463.23Making it obvious how extreme values influence more the mean than the median!							

