
A snap demonstration of why numeracy 
is key to society



Statistics is the science of assisting in 
decision making with incomplete knowledge

Lecture 8: estimating with uncertainty with 
certainty (i.e., with some confidence)

"While nothing is more uncertain than a single life, nothing is more 
certain than the average duration of a thousand lives." 

Elizur Wright (mathematician & “the father of life insurance”) 

Statistics is the 
study of 

uncertainty



Statistics and pretty much everything 
else is based on samples!

- The most important goal of statistics is to estimate (infer) an 
unknown quantity (parameter) of an entire population based on 
sample data (often one single sample from the population).

- Estimation is the process of inferring a population parameter 
(mean, standard deviation, median, etc) from sample data! 

We use estimates to make decisions - Statistics is the science of 
making decisions with incomplete knowledge (i.e., based on 
samples) based on populations that too often have unknown 
sizes.

But sample-based statistics (mean, median, standard deviation, 
etc) vary from sample to sample (i.e., they have some level of 
uncertainty) - we call this variation as “sampling variation”.



How to estimate under uncertainty 
(sample variation) with certainty 

(i.e., with some confidence)?



Sampling variation generates uncertainty
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𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 !𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎; 𝒔 = 𝟏𝟏𝟒. 𝟐 𝒄𝒎

!𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

!𝐗 = 𝟑𝟓𝟏. 𝟒 𝒄𝒎; 𝒔 = 𝟗𝟔. 𝟔 𝒄𝒎

𝜇 = 350 𝑐𝑚

Uncertainty (samples means varying around the true population mean)



sampling

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 !𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

The variation among observations within samples (standard deviation) can 
inform us about how far sample means in general might be from the true 

population mean (estimate how wrong one could be).

Variation within samples (among observations) can 
generate estimates of certainty (confidence) about 

uncertainty (variation among sample means)

Variation within samples 

Variation among samples 



A parameter is a quantity describing a statistical 
population, whereas an estimate or statistic is a related 
quantity from a sample.

The mean of of a statistical population is a parameter; 
and the mean of a sample is an estimate (or statistic) of 
the mean of the population.  

The standard deviation of a statistical population is a 
parameter; and the standard deviation of a sample is 
an estimate (or statistic) of the standard deviation of the 
population. 

Parameters (populations) versus Estimates (samples)



A value from an estimate (i.e., from a sample) is never (especially in
large populations) the same as the value of the population
parameter being estimated, because sampling is influenced by
chance.

Two people could sample 100 trees from the same forest and get
different mean values for the two samples; and the two samples
would almost definitely not be equal to the population mean.

The critical question is statistics is: In the face of uncertainty
(due to random chance), how much can we trust an estimate
and the decisions we make based on that estimate, i.e., what
is its accuracy? (i.e., how close the sample value is to the true
population value?).

Deal with uncertainty with some certainty!!!

Estimating with uncertainty 
(i.e., error around the true parameter)



We need to understand properties of estimators (mean, 
standard deviation, etc).

Properties of estimators are understood via the 
sampling distribution of the estimate or statistic of 
interest (e.g., sample mean, standard deviation, etc).  

Sampling distributions are the probability distributions of 
an estimate (i.e., sample-based) what we might have 
obtained when we sample the population (randomly). 
They look like frequency distributions but transformed 
into probabilities.  

How to estimate with uncertainty with certainty 
(with some confidence)?



Statistical symbols

µ = population mean ( we say “mu”, 
Greek alphabet). σ = population standard 
deviation (we say “sigma”).



#X = sample mean (mean of the sample) - we 
say “X bar”, Latin or Roman alphabet). 
s = sample standard deviation.

Note - Although 𝜇 is always the mean of the population for 
whatever variable you are measuring (e.g., X), symbols for the 
sample mean can take other values (e.g., "𝑋, "𝑌) depending how you 
call the variable of interest (X or Y or something else), but it always 
has the bar at the top. 

Important statistical symbols regarding inference

µ = population mean ( we say “mu”, 
Greek alphabet). σ = population standard 
deviation (we say “sigma”).



Estimating with uncertainty: the sampling distribution of an estimate
the case of a tiny statistical population of 5 numbers

1,2,3,4,5; population mean=3.0
All possible 15 samples (with replacement) and their means for n=2:

(1,1) = 1.0
(2,2) = 2.0
(3,3) = 3.0
(4,4) = 4.0
(5,5) = 5.0

(1,2) = 1.5
(1,3) = 2.0
(1,4) = 2.5
(1,5) = 3.0

(2,3) = 2.5
(2,4) = 3.0
(2,5) = 3.5

(3,4) = 3.5
(3,5) = 4.0

(4,5) = 4.5

Property 1: The mean of all sample means is always equal to the population mean:

(1.0 + 2.0 + 3.0 + 4.0 + 5.0 + 1.5 + 2.0 + 2.5 + 3.0 
+ 2.5 + 3.0 + 3.5 + 3.5 + 4.0 + 4.5) / 15 = 3.0

Notice that permutations, i.e., (1,2) = (2,1) are not shown but should be considered

Sample means of the sample population varied from 1.0 to 5.0
sample size (i.e., number of observational units) is represented by the letter 
“n”. Here, n = 2 observational units



Property 1: 

The mean of all sample means is always equal to the population mean

Properties of estimators are understood via the sampling distribution of the 
estimate (e.g., sample mean).  

If the mean of all possible sample means, i.e., the mean of the sampling 
distribution of the estimate (e.g., sample mean, standard deviation based on 
samples), the sample estimate is said to be unbiased when sampling is 
performed randomly (i.e., all observations in the population have equal 
chance to be sample).

In this case, the mean is unbiased because sample means (under random 
sampling) don’t have the tendency to be more often bigger or more often 
smaller than the true population mean.

(1.0 + 2.0 + 3.0 + 4.0 + 5.0 + 1.5 + 2.0 + 2.5 + 3.0 
+ 2.5 + 3.0 + 3.5 + 3.5 + 4.0 + 4.5) / 15 = 3.0

6 sample means smaller than the true population value [in red]

6 sample means greater than the true population value [in green]

3 sample means equal to the true population value [in black]



A random sample is one that fulfills two criteria:

1) Every observational unit in the population (e.g., individual 
tree) have an equal chance of being included in the sample.

2) The selection of observational units in the population (e.g., 
individual tree) must be independent, i.e., the selection of 
any unit (e.g., individual tree) of the population must not 
influence the selection of any other unit.  

Random sampling minimizes sampling error & inferential bias
(i.e., how close or far the sample values from the statistic of interest are from 

the true population value for that statistic) 

Samples are biased when some observational units of the intended 
population have lower or higher probabilities to be sampled. 



𝜇 (𝑠𝑦𝑚𝑏𝑜𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛)

Estimating with uncertainty: the sampling distribution of an estimate
the case of a tiny statistical population of 5 numbers

%𝑋

25 possible different combinations of 2 numbers (25 
samples; with repetition of samples, i.e., (1,2),(2,1), etc) 

from 1,2,3,4,5 (population)

𝜇 = 3
Mean of all samples 

means = 3.0

n = 2



125 possible different combinations of 3 numbers (125 samples; 
with repetition of samples, i.e., (1,2,1),(2,1,1), etc) 

from 1,2,3,4,5 (population)

𝜇 = 3
Mean of all samples 

means = 3.0

n = 3

Estimating with uncertainty: the sampling distribution of an estimate
the case of a tiny statistical population of 5 numbers

%𝑋



%𝑋

625 possible different combinations of 4 numbers (125 samples; 
with repetition of samples, i.e., (1,2,1),(2,1,1), etc) 

from 1,2,3,4,5 (population)

Estimating with uncertainty: the sampling distribution of an estimate
the case of a tiny statistical population of 5 numbers

𝜇 = 3
Mean of all samples 

means = 3.0

n = 4



- Source: Cooper & Shore; Journal of Statistics Education (vol. 18, #2)

Journal of Statistics Education, Volume 18, Number 2 (2010) 
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two other types of graphs discussed in this paper: value bar charts and distribution bar graphs. 
Secondly, for grouped histograms the raw data is no longer accessible, and therefore the reader is 
less likely to calculate a measure of variability; our interest is in perceiving variability from a 
graph and visually comparing magnitude of variability, rather than quantifying it.   
 
Like other distribution graphs, histograms are classified by shape, center, and spread. Classic 
shapes that are identified are bell-shaped, uniform, positively skewed, and negatively skewed. If 
the shape is approximately symmetric, the mean is the preferable measure of center, which can 
be visualized as the balance point along the horizontal axis of the histogram, taking into account 
the ―weight‖ and location of the bars above it. As in defining center, judging variability from a 
histogram depends to a degree on the shape. We focus our discussion of how variability is 
perceived within histograms through a comparison group of symmetric and approximately 
symmetric distributions, where variability in the data is commonly judged by how much the data 
is compressed about, or spread out from, the mean. The more compressed the data are to the 
mean, the less the variability; the more spread out, the greater the variability. This idea of 
magnitude of deviation of data values from the mean is analogous to the concept of variability in 
the case of the value bar chart, though the visual interpretation differs for the two.  
 
Consider the two bell-shaped histograms of data sets (exam scores) in Figure 3. The notable 
difference between the graphs is that one histogram has a pronounced peak with narrow tails, 
while the other has bars of more similar height. In bell-shaped histograms, thicker tails indicate 
greater variability, while clustering toward the middle indicates little variability. Though one 
could construct exceptional counter-examples due to the grouped nature of the data, it is fair to 
say that in general, the raw exam scores of Class 2 are likely to be more spread out than those of 
Class 1, and thus are likely to be more variable.   
 
 
 

  
exam scores

fr
eq

ue
nc

y

9585756555

50

40

30

20

10

0

Class 1

 
exam scores

fr
eq

ue
nc

y
9585756555

50

40

30

20

10

0

Class 2

 

Figure 3.  Histograms showing distribution of student exam scores for two classes, differing in 
their magnitude of variability.   

 
 
When Cooper and Shore (2008) presented these histograms to 186 undergraduates, 50% 
indicated that the histogram with the higher peak and narrower tails was more variable. 

Remember Variability in frequency distributions?!!

In which class exam scores vary the most?



Which sample size leads to more precise (less variation around the 
true population value) sample estimates based on random 

sampling?

n = 2

n = 3

n = 4



Which sample size leads to more precise (closer to the true 
population value) sample estimates based on random sampling?

As sample size increases, 
there is a greater probability 
(under random samples) that a 
given sample will be closer to 
the true population mean; i.e., 
they become more precise. 

Because sampling was random, then the sample mean is accurate 
(i.e., unbiased); the mean of all sample means equal the population 
mean (parameter)



Random sampling minimizes bias and makes it possible to measure the 
amount of sampling error (next lectures)

Imprecise

Inaccurate

Accurate

Precise

Low sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & high bias

Low sampling variation 
(sampling error) & high bias



Which sample size leads to greater accuracy and precision?

n = 2

n = 3

n = 4



Probability density is the relationship between observations (here sample means) and 
their probability.

Some outcomes (samples) of a random variable (sample means) will have low 
probability density and other outcomes will have a high probability density.

The overall shape of the probability density is referred to as a probability distribution, and 
the calculation of probabilities for specific outcomes of a random variable is performed by 
a probability density function, or PDF for short.

Test adapted from https://machinelearningmastery.com/probability-density-estimation/

Sampling distributions are best represented by probability distributions 

probability distribution of samplesfrequency distribution of samples



Critical: The shape of the frequency distribution of the population is not necessarily 
similar to the frequency distribution of the sample estimates (e.g., here the 

distribution of sample mean values) from the population
fre
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cy

n = 2 

n = 3 

Values

Population

population: 1,2,3,4,5; 
population mean=3.0

n = 4 



wake up

@cjlortie

Let’s take a break – 2 minutes



The length of protein-coding genes in humans: a rare example of 
almost a  complete statistical population in biology

The International Human Genome Project generated the 
DNA sequence of all 23 human chromosomes, each 
containing millions of nucleotides (more than 23,000 
protein-coding genes)! Started in 1990 and finished in 2006 
(sequence of the last chromosome). The available data that 
we have for BIOL 322 (tutorials) is 20,290 genes.



The length of 
human genes

Gene length 
(number of nucleotides)
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It involves the length of 
almost all human genes, i.e., 
the very close to the true 
population of genes!

Names Parameter Value 
(nucleotides)

Mean (mu) 𝜇 2622.0
Standard 
deviation 
(sigma)

𝜎 2036.9

Frequency distribution 
of gene lengths in the 

“known” human 
genome



In real life we would not usually know the parameter 
values of the study population, but in this case we 
(almost) do! 

So, we’ll take advantage of this gene population to 
illustrate the process of sampling, uncertainty, accuracy, 
precision and how estimate with uncertainty with 
certainty (with some confidence)?

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9
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Estimating mean gene length with a random sample of 100 
genes (random sampling out of 20,290 genes)

genesample100
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Frequency distribution of gene lengths in a 
unique random sample of n = 100 genes 

from the human genome.

Names Statistic Value 
(nucleotides)

Mean #𝑌 2544.8
Standard 
deviation 𝑠 2125.3
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Imagine a group in Canada and 

another in France in 1985 
working on the same problem, 

i.e., estimating the average gene 
length in the human genome.  



Sample mean length (nucleotides)
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Names Statistic Value 
(nucleotides)

Mean 9𝑌 2122.3

Standard 
deviation 𝑠 2423.12122.3

Mean and standard deviation of two 
possible samples from the same 
population (out of the 10,000 samples):

Names Statistic Value 
(nucleotides)

Mean 9𝑌 2544.8

Standard 
deviation 𝑠 2125.3

2544.8

Sampling distribution of means based on 
10 000 sample mean values.  Each sample mean is the 
calculated on the basis of the lengths of 100 genes 
randomly sampled from the population of 20,290 genes

The sampling distribution of sample means (#𝑌)



Estimating mean gene length with a random sample of 100 
genes (random sampling out of 20,290 genes)

Names Statistic Value 
(nucleotides)

Mean #𝑌 2544.8
Standard 
deviation 𝑠 2125.3

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9

Population Sample

The sample mean is about 77 nucleotides shorter than the 
true population value.  We shouldn’t be surprised that the 
sample estimates differ from the parameter (population) 
values. Such differences are virtually inevitable because of 
chance in the random sampling process (i.e., sampling 
variation).



Sample mean length (nucleotides)
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Sample mean length "𝑌 (nucleotides)

Here 10 000 sample means were 
drawn from the population using a 
computational approach.  

But we can use an analytical 
approach (calculus based) to 
estimate the sampling distribution 
(probability distribution) of all infinite 
sample means based on 100 genes 
or any other sample size).
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Sampling distribution of means based on 
10 000 sample mean values.  Each sample mean is 
calculated on the basis of the lengths of 100 genes 
randomly sampled from the population of 20,290 genes



Sample mean length (nucleotides)
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Sample mean length "𝑌 (nucleotides)
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 Sampling distribution of mean gene 
length, 9𝑌, n = 100.

Names Statistic Value 
(nucleotides)

Mean #𝑌 2544.8
Standard 
deviation 𝑠 2125.32544.8

Mean and standard deviation of one single 
sample of 100 genes out of 20,290
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Statistical Wow: We will learn that 
variation within a single sample can 
estimate uncertainty among all 
possible sample values from a 
population.
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Let’s take a break – 2 minutes



Sample mean length (nucleotides)
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Note 1: We usually work with one single 
sample, and therefore only one sample 
mean value !𝑌.  

But, understanding how sampling 
distributions are built is necessary to 
understand the process of estimating 
uncertainty (i.e., sample mean values vary 
from one sample to another) to determine 
confidence on inferences based on 
samples.

If samples vary too much among them, we 
would then have less confidence than if 
they vary little among them.

And variation within a single sample can 
tell use about variation among samples 
(we will see that in the next lectures).
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The sampling distribution (probability distribution) of 

sample means ( "𝑌)



Sample mean length (nucleotides)
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Note 2: The sampling distribution 
makes it obvious that although the 
population mean 𝜇 is assumed as a 
constant (2622.0), its estimate 1𝑌 is a 
variable (i.e., they vary among 
samples).
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The sampling distribution (probability distribution) of 

sample means ( "𝑌)



Sample mean length (nucleotides)
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Note 3 (again): The mean of all 
sample estimates of the mean equals 
the population mean. Even the mean 
of 10000 sample means is pretty 
close.

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9
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𝜇 = 2622.0

The sampling distribution (probability distribution) of 
sample means ( "𝑌)



Sample mean length (nucleotides)
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Note 4: The mean of all sample 
estimates of the mean equals the 
population mean 𝜇 and is centered 
exactly on the true (population) 
mean! 

This means that the sample statistic 
mean "𝑌 is an unbiased estimate of 𝜇
(assuming random sampling was 
performed). Because, in average, the 
sample mean equals the population 
mean.
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𝜇 = 2622.0

The sampling distribution (probability distribution) of 
sample means ( "𝑌)



Sample mean length (nucleotides)
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Note 5: Sample values for the standard deviation 
(and any other statistic) also vary among samples 
(this will be discussed in our next lecture).  Standard 
deviations of samples are key to estimate 
uncertainty of a sample mean.
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Names Statistic Value 
(nucleotides)

Mean 9𝑌 2122.3

Standard 
deviation 𝑠 2423.1

Names Statistic Value 
(nucleotides)

Mean 9𝑌 2544.8

Standard 
deviation 𝑠 2125.3

The sampling distribution (probability distribution) of 
sample means ( "𝑌)



The effects of sample size (n) on the sampling distribution of 
sample means ( "𝑌)

pr
ob

ab
ilit

y

Sample mean length +𝑌 (nucleotides) 

n=20

n=100

n=500

Gene length 
(number of nucleotides)

fre
qu

en
cy

geneLengthsUpTo15K

Fr
eq
ue
nc
y

0 2000 4000 6000 8000 10000 12000 14000

0
50
0

10
00

15
00

20
00

25
00

30
00

Frequency distribution of 
the gene Population

Sampling distributions for the sample
means of the gene population (varying n)

precision


