Statistical hypothesis testing involve:

How the research hypothesis should be transformed into a statistical question.

State the null (parameter for the theoretical population) and alternative
hypotheses.

Compute the observed value for a particular metric of interest (i.e., based on the
sample data, i.e., observed summary statistic). This is called test statistic. In our
toad example it was simply the number of right-handed individuals.

Computer the P-value by contrasting the sample (observed) value against a
sampling distribution that assumes the null hypothesis to be true (around the
parameter of interest for a theoretical population).

Draw a conclusion by contrasting the p-value against the significance level (a). If
the p-value is greater than «, then do not reject Hy; if P-value is smaller or equal
than «, then reject H,.



Normal human body temperature, as kids are taught in North
America, is 98.6°F. But how well is this supported by data?

Because we testing these hypotheses based on a single sample
of 25 individuals using the t-test, we refer to this as a
one-sample t test

H, (null hypothesis): the mean human body temperature is 98.6°F.

H, (alternative hypothesis): the true population is different from 98.6°F.

Y = 98.524
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We started with: Normal human body temperature, as kids are taught in North
America, is 98.6°F. But how well is this supported by data?

Then ”translated” the above question into: What is the probability of obtaining
a sample mean as extreme or more extreme (i.e., smaller) than 98.524°F given

that the true population mean is 98.6°F?
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Pr[t <-0.56] + Pr[t > 0.56] =
2 Pr[t > abs(0.56)] = 0.58
(tis symmetric around pu)

Failing to reject Hy does not confirm
that the true population mean is
98.6°F; it simply indicates that we
lack sufficient evidence to conclude
otherwise.

However, new evidence could
emerge in the future that challenges
and overturns the original
conclusion. How might this
happen?



The effects of increasing sample
size on hypothesis testing: body
temperature revisited




The effects of larger sample sizes on hypothesis testing:

body temperature revisited

Let’s say that we took a new sample of 130 individuals (instead
of 25 as in our previous sample). The values for the new
sample are:

= " 98.25 — 98.6 & 47
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The effects of larger sample size on hypothesis testing:
body temperature revisited

¥ = 98.5240F ¥ = 98.25°F

s=0.678°F s=0.733°F
0.678 0733 _
98524 -98.6 056 - 98.25—-98.6 47
‘T o136 ~ 0064 7
Pr[t <-0.56] + Pr[t > 0.56] = Pr[t <-5.47] + Pr[t > 5.47] =
2 Pr[t > abs(0.56)] = 2 Pr[t > abs(5.55)] =

0.58 0.000002



The impact of larger sample sizes on hypothesis testing:
Revisiting body temperature in light of new and stronger
evidence.

H, (null hypothesis): the mean human body temperature is 98.6°F.

Ha (alternative hypothesis): the true population is different from 98.6°F.

THE NEW SAMPLE LED TO A P-VALUE = 0.0000002 (P< a =0.05), SO WE
REJECT THE NULL HYPOTHESIS IN LINE OF THIS NEW EVIDENCE.

Therefore, with new and stronger evidence from a larger sample size, we can
confidently suggest that the true average human body temperature is likely
different from 98.6°F - though this does not conclusively rule out the possibility
that it could still be 98.6°F.



The impact of larger sample sizes on hypothesis testing:

Revisiting body temperature in light of new and stronger
evidence.

As we saw in previous lectures, sample size decreases the standard
error, which makes the t value (test statistic) increase, which in turn
leads to smaller p-values.

Smaller P values allows rejecting the null hypothesis. As such,

increased sample values (n) lead to greater statistical power (smaller
Type |l errors) to reject the null hypothesis when it is not true!

Remember: The power of a test (1-f3) is the probability of rejecting the
null hypothesis when is truly false; it is difficult to estimate (advanced
stats). This probability increases as sample size increases.




Again, because we only have one sample,

we call this a one-sample t test

H, (null hypothesis): the mean human body temperature is 98.6°F.

Hx (alternative hypothesis): the true population is different from 98.6°F.

Assumptions of the one-sample t test (very important):

1) The data represent a random sample from the population—whether from
a theoretical population or any other possible population from which the
sample might have been drawn. This assumption underpins all tests
covered in this course and forms the basis for biostatistical hypothesis
testing.

2) Additionally, it is assumed that the variable of interest (e.g., human body
temperature) follows a “normal” distribution within the population.



Statistical hypothesis testing
for comparing two samples
based on a quantitative
variable.



One- and two-sample hypothesis testing

One sample (frogs) according to a
One single categorical variable (Left/Right) =
sample Binomial test :
—

One sample (humans) according
to a single quantitative variable
(temperature)

One-sample t-test

—

gem—

T Paired-design
wo Paired t-test
samples
—<J Independent-design
Two-sample t-test (equal variance)
Independent-design
Two-sample t-test (unequal variance) [coming soon]
Multiple
samples Independent-design

Analysis of Variance (equal variance) [coming later]



Examples of statistical hypothesis testing for
comparing two sample means:

Do female hyenas differ from male hyenas in
body size?

Do patients treated with a new drug live
longer than those treated with an old drug?

Do students perform better on tests if they
stay up late studying or get a good night’s
rest?



Statistical hypothesis testing for comparing two
sample means:

Scientific question: Does clear-cutting a forest affect the
number of salamanders present?

- There are two treatments: clear cutting / no clear-
cutting (control).

- Statistical question: Does the mean number of
salamanders differ between the two treatments?

- Treatment is a categorical variable and number of
salamanders is a numerical variable.



Paired sample versus two independent samples

Scientific question: Does clear-cutting a forest affect the number of

salamanders present? There are two main alternative study designs that affect
the choice of statistical test:

In the two-sample design, each treatment group is composed of an independent,
random sample unit.

In the paired design, both treatments are applied to every sampled unit (here -
forest plots).

Two-sample design Paired design

Clear cutting [ W
m __H
B No clear cutting =
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Paired design for
comparing two sample
means



Paired comparison of two means

Scientific question: Does clear-cutting a forest affect the number of
salamanders present?

The advantage of a paired design is that it minimizes the impact of variability among
sampling units that is unrelated to the treatment, thereby increasing the precision of the
results (e.g., local environmental differences among observational units). It reduces

confounder variables.

Two-sample design Paired design
Clear cutting | B
- m
B No clear cutting
u (m B g
Dry soil
y H g u _H
wet soil u i _
" = =



Paired comparison of two means

Scientific question: Does clear-cutting a forest affect the number of
salamanders present?

The advantage of a paired design is that it minimizes the impact of variability among
sampling units that is unrelated to the treatment, thereby increasing the precision of the
results (e.g., local environmental differences among observational units).

Notice that clear-cutting occurred more frequently in wet soils, whereas areas
without clear-cutting were predominantly dry. If soil moisture plays a critical role
for salamanders, this non-random distribution of sampling units could bias the

results and affect the conclusions.

Two-sample design Paired design
Clear cutting | B
- m
B No clear cutting
u (m B g
Dry soil
y H g u _H
wet soil u i _
" = =



Paired comparison of two means

The advantage of a paired design is that it minimizes the impact of variability among
sampling units that is unrelated to the treatment, thereby increasing the precision of the
results (e.g., local environmental differences among observational units). It reduces
confounder variables.

Other examples of paired study designs:

- Comparing patient weight before and after hospitalization.

- Comparing fish species diversity in lakes before and after heavy metal
contamination.

- Testing effects of sunscreen applied to one arm of each subject compared with
a placebo applied to the other arm.

- Testing effects of smoking in a sample of smokers, each of which is compared
with a non-smoker closely matched by age, weight, and ethnic background.

- Testing effects of socioeconomic condition on dietary preferences by
comparing identical twins raised in separate adoptive families that differ in their
socioeconomic conditions.



A previously seen example of paired design:

It gives an “arm” (or a pedipalp)
for a female spider.

Running speed (cm/s) of male Tidarren spiders before
and after voluntary amputation of one pedipalp.

Speed Speed Speed Speed

Spider before after Spider before after

1 1.25 2.40 9 2.98 3.70

2 2.94 3.50 10 3.55 4.70

3 2.38 4.49 11 2.84 4.94

4 3.09 3.17 12 1.64 5.06

5 3.41 5.26 13 3.22 3.22

6 3.00 3.22 14 2.87 3.52

4 7/ 2.31 2.32 15 2.37 5.45

2 b il 8 2.93 3.31 16 1.91 3.40

S ;
Oxyopes salticus




Let’s take a break — 1 minute




Paired comparison of two means — an empirical example

- In many species, males are more likely to attract females if males have
high testosterone levels.

- Research question: Are males with high testosterone paying a cost
for this extra mating success in other ways (trade-offs)? OR

Is avian humoral immunocompetence (i.e., ability of the immune system to
produce antibodies to defend against pathogens) supressed by

testosterone?

Behav Ecol Sociobiol (1999) 45: 167-175 © Springer-Verlag 1999

ORIGINAL ARTICLE

Dennis Hasselquist - James A. Marsh
Paul W. Sherman - John C. Wingfield

Is avian humoral immunocompetence suppressed by testosterone?



Paired comparison of two means — an empirical example

- In many species, males are more likely to attract females if males have
high testosterone levels.

- Research question: Are males with high testosterone paying a cost
for this extra mating success in other ways (trade-offs)?

- Males with high testosterone might be less able to fight off disease
(levels of testosterone reduce their immunocompetence).

- Hasselquist et al. (1999) experimentally increased the testosterone
levels of 13 male red-winged blackbirds (implant of a small tube that
releases testosterone).

- Immunocompetence was measured (rate of antibody production in

response to a non-pathogenic antigen in each bird’s blood serum both
before and after the testosterone implant).

et al. = abbreviation of latin “et alia” = “and others”



Are males with high testosterone paying a cost for extra mating success in other
ways (trade-offs)?
Antibody production rates measure optically

In[mOD/min] = log optical density per minute After — Before
Male Before implant: After implant: d / dlfference between

identification  Antibody production  Antibody production

number (In[mOD/min]) (In[mOD/min)) treatmentS (pOSltlve

1 4.65 4.44 ~0.21 i

4 3.91 4.30 0.39 difference more

: Lol doe 007 antibody production
: - - 0o after testosterone

9 4.80 5.00 0.20 )

10 458 5.00 012 implant).

15 4.88 5.01 0.13

16 4.78 4.96 0.18

17 4.98 5.02 0.04

19 4.87 473 ~0.14
20 4.75 477 0.02
23 4.70 4.60 ~0.10
24 4.93 5.01 0.08

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company




Are males with high testosterone paying a cost for extra mating success in other
ways (trade-offs)?

Antibody production rates measure optically d is the difference between
In[mOD/min] = log optical density per minute treatments (positive
Male Before implant: After implant: / difference more pl‘OdUCtIOﬂ
identification  Antibody production  Antibody production
number (In[mOD/min]) (In[mOD/min]) afte r)
1 4.65 4.44 —0.21
4 3.91 4.30 0.39 - .
5 4.91 4.98 0.07 E
~
6 4.50 4.45 —0.05 ()
QO 4.8
9 4.80 5.00 0.20 £ —o
10 4.8 5.00 0.12 c ’\'\.
15 4.88 5.01 0.13 Y 46—
16 4.78 4.96 0.18 © -
17 4.98 5.02 0.04 g —
19 4.87 4.73 ~0.14 E+ 4.4
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=]
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Before After
Implant treatment

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company




Are males with high testosterone paying a cost for extra mating success in other
ways (trade-offs)?

Ho: The mean change in antibody production in the population after testosterone
implants is zero.

Ha: The mean change in antibody production in the population after testosterone
implants is different from zero.

Ho: Ug = 0 U ;4 is the population mean difference
between treatments

Ha: ,ud * O




Are males with high testosterone paying a cost for extra mating success in other

ways (trade-offs)?

q.

™

Frequency
2

13 male birds

[ I [ I I I [ I

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Difference (after - before)
In[mMOD/min]

d = mean difference
sq = standard deviation

SE& = . — 0044 of the difference

SE; = standard error of
the mean difference



One important thing to note:

Differences between paired observations between two samples is equal to the
differences between means (this is a property of means):




observed data

(T[] —

4 \—»|||||||||Y1
model assuming —>|||||||||Y
Hoastrue | — [TTTTTTT] -
(g = 0) Y3
N /—>|||||||||Y

test statistic of interest
(here t statistic)

=

Infinite or very large ’
number of simulated data
(i.e., number of samples
from the population)

simulated data assuming a normally
distributed population (¢ and o are not
important; any combination leads to the
same t distribution); samples taken
respecting sample size of the observed
data (n=13). Let’s assume here u =10
and o = 14.

figure adapted from: https://moderndive.com/10-hypothesis-testing.html

—, = observed t-value

N

AN — Uy(= 0)

>d;
Vn

\

Every single pair of sample means
are subtracted from one another
to create infinite or very large
numbers of differences di(e.g.,
YZI dZ — Yl YB;

Ao = Yoo Yoot



observed data
[TT 1T T1T1T 1] — test statistic of interest

(here t statistic)

//'//' _ \§ tl_:di—ﬂd.(=0)

—, T observed t-value

4 N\ — I 2d;
\/_
model assuming |—— [T [ [ [ [] lY l n
Hoastrue | — [TTTTTTT] > F
(g = 0) Y3 sampling distribution of t
\ ) g IIIIIIIIIY values under H,
(0 0]

Infinite or very large ’ - l

number of simulated data
(i.e., number of samples
from the population)

02 03 04

simulated data assuming a normally
distributed population (¢ and o are not
important; any combination leads to the
same t distribution); samples taken
respecting sample size of the observed
data (n=13). Let’s assume here u =10 4 2 0 2 4
and o = 14. -
Number of standard deviations away from the
figure adapted from: https://moderndive.com/10-hypothesis-testing.htm| theoretical parameter assumed under H,

probability

0.0 0.1




Paired comparison of two means (paired t-test) —

an empirical example

d = 0.056 Degrees of

Ho: Ug = s, = 0.159 freedom = 13-1=12

=13

e g # 0 " T 0159

SEg = 713 = 0.044
d— 0 (Hy: 0.056 — 0
p = SO0 = 1.27
SEg 0.044

P — O 2 3 Decision based on alpha = 0.05;
' do not reject H,



Paired comparison of two means (paired t-test) —

an empirical example

Ho: ,ud — O The standardization process in relation to
the parameter assumed under H,. The value
Ha: ‘ud ;t O for the mean of the population is 0 in this case.

For the standardized t-distribution, the
parameter value under the H, is zero.

~ -
d— 0 (Hj: 0.056 — 0
= (Ho: ng) _ — 127
SE; 0.044

To make our sample compatible with
the standardized t-distribution, we
subtract our value under the H, which
here is the 98.6°C.

.
= —0.56

Contrast with th 98.524 — 98.6(Hj:
ontrast with the »tz (Ho:png)

one sample test
for human body
temperature

0.136



Paired comparison of two means (paired t-test) —

an empirical example

Decision based on alpha = 0.05:
P = 02 3 do not reject H,

Hy: The mean change in antibody production in the
population after testosterone implants is zero.

SCIENTIFIC CONCLUSION: We lack evidence that
testosterone affects immunocompetence in red-

winged blackbirds.



Paired comparison of two means (paired t-test)

Assumptions:

- The observational units are randomly sampled from the
population.

- The paired differences have a normal distribution in the
population.

q-_
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|
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Difference (after - before)
In[mMOD/min]



Let’s take a break — 1 minute




Paired comparison of two means

EIGIE
Two-sample design

Two-sample design Paired design
Clear cutting [ W
__H
B No clear cutting
(m W g
Dry soill .:|
wet soll i Il




Two-sample comparison of means
(independent sampling)




Comparison of two independent sample means

Do the spikes of horned lizards provide
protection against predation from loggerhead
shrikes?

Horhed lizard Loggerhead shrike



Two-sample comparison of means
an empirical example

Lizard group  Sample mean Sample standard Sample
(mm) deviation (mm) size n
Living 24.28 2.63 154
Killed 21.99 2.71 30
living killed
50 — 10
S 40 g 8
g 30 g 6
S 20 - g 4
10 - L 2 -
0 - | | | | 0~ | | ! !
15 20 25 30 15 20 25 30

Horn length (mm) Horn length (mm)

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company



Two-sample (means) t-test

Lizard group Sample mean Sample standard Sample
(mm) deviation (mm) size n

Living 24.28 2.63 154

Killed 21.99 2.71 30

Hy: Lizards killed by shrikes and living lizard do not differ in

mean horn length (i.e., U1 = Uo).

H,: Lizards killed by shrikes and living lizard differ in mean
horn length (i.e., L1 F U2).



Two sample (means) t-test

Lizard group Sample mean Sample standard
(mm) deviation (mm)
Living 24.28 2.63
Killed 21.99 2.71
;= (Y1 = Y2) — (11 — u2)
>Ey, -7,

Sample
size n

154
30

The sampling distribution of the difference between two
sample means is also t distributed! “Aren’t we lucky?!!”



Two sample (means) t-test

Lizard group Sample mean (mm) Sample standard deviation Sample size n
(mm)
Living 24.28 2.63 154
Killed 21.99 2.71 30
(24.28-21.99)-0  2.29
t = = = 4.35
0.527 0.527
1 1 dfis? + df,s3
\ ny Nz dfy +df,

dfl =N, — 1 = 153 The quantity s; is called the pooled

sample variance and is the average

af,

sample sizes).

_ — of the sample variances weighted by
n 1 29 their degrees of freedom (related to



Two sample (means) t-test

Lizard group Sample mean (mm) Sample standard deviation Sample size n
(mm)
Living 24.28 2.63 154
Killed 21.99 2.71 30

(24.28-21.99)-0  2.29

t = = 4.35
0.527 0527
SEy _7 = |[s2 LA 698(1 1)—0527
Yl‘YZ_VSP 1'nz)_V 154 30/

2 df,s? + df,s3 _ 153(2.63%) + 29(2.71%) .
P df; + df, 153 + 29 ’




Two sample (means) t-test

Lizard group Sample mean (mm) Sample standard deviation Sample size n
(mm)
Living 24.28 2.63 154
Killed 21.99 2.71 30

_ (24.28-21.99)-0  2.29
o 0.527 ©0.527

P = 0.000023

t = 4.35

Decision based on alpha = 0.05:
reject H,



Two sample (means) t-test

P = 0.000023

Decision based on alpha = 0.05: reject H,

Ha: Lizards killed by shrikes and living lizard differ in
mean horn length (i.e., U1 F Uo).

STASTISTICAL CONCLUSION: Evidence shows
that the mean horn length differs between lizards
kKilled by shrikes and those that survive. l

SCIENTIFIC CONCLUSION: we have evidence that
horn size is a protection against predation.



observed data
[TT 1T T1T1T 1] — test statistic of interest

(here t statistic)

% N 7, -7
4 \_.||||||||/|'Y1 \}‘ Yl YZ
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Ho as true — [T IT]
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Infinite or very large ’
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—, = observed t-value

B SEY1—172

from the population)

simulated data assuming a normally Every 5|ng|e pa|r of sample means

distributed population (¢ and o are not
important; any combination leads to the are subtracted from one another

same t distribution); samples taken to create infinite or very large
respecting sample size of the observed numbers of mean differences
data.

Yl Yz, Yl Y3, d == YOO_ YOO—]_

figure adapted from: https://moderndive.com/10-hypothesis-testing.html



observed data
[TT 1T T1T1T 1] — test statistic of interest

(here t statistic)

2N I

—, = observed t-value

_ t =
4 N\— OOI111mY SEv _v
model assuming |— [T [ 111111 Vv 1 72
Y,
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[T 1
(M1 = 1) Y3 v
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Infinite or very large ’ - ‘

number of simulated data
(i.e., number of samples
from the population)

02 03 04

simulated data assuming a normally
distributed population (¢ and o are not
important; any combination leads to the
same t distribution); samples taken
respecting sample size of the observed

data. 4 3 0 2 4

probability

0.0 0.1

Number of standard deviations away from the
figure adapted from: https://moderndive.com/10-hypothesis-testing.html theoretlcal parameter assumEd under HO



Two sample (means) t-test

Assumptions (very important):

- Both samples are independent random samples drawn from
their respective statistical populations (i.e., living versus killed).

- The variable (e.g., horn length) is “normally” distributed in each
population.

- The standard deviation (and variance) of the variable is identical
across both populations. For now, we assume this to be true, but
we will later explore methods to test this assumption.

living killed

Frequency
Frequency




