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A snap demonstration of why numeracy 
is key to society

1

Statistics is the science of aiding decision-
making with incomplete information

Lecture 8: Estimating with uncertainty, but with a degree 
of certainty (i.e., with some confidence).

"While nothing is more uncertain than a single life, 
nothing is more certain than the average duration of 

a thousand lives" 

Elizur Wright (mathematician & “the father of life insurance”) 

Statistics is the 
study of 

uncertainty
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Statistics - like life itself - is all about making big 
conclusions from (small) samples.

One primary goal of statistics is to estimate (infer) an unknown 
quantity (parameter) of a population based on sample data.

Estimation involves inferring a population parameter (e.g., mean, 
standard deviation, median) from a sample.

We use estimates to make decisions. Statistics is fundamentally 
the science of making decisions with incomplete knowledge, 
often using samples from populations of unknown sizes.

However, sample-based statistics (e.g., mean, median, standard 
deviation) vary from one sample to another. This variation 
introduces uncertainty, known as sampling variation.
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How to estimate with uncertainty, but with 
some degree of certainty 

(i.e., with some confidence)?

4

Sampling variation generates uncertainty

sampling

sampling

sampling

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 𝐗 = 𝟑𝟓𝟏. 𝟓 𝒄𝒎; 𝒔 = 𝟏𝟏𝟒. 𝟐 𝒄𝒎

𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

𝐗 = 𝟑𝟓𝟏. 𝟒 𝒄𝒎; 𝒔 = 𝟗𝟔. 𝟔 𝒄𝒎

𝜇 = 350 𝑐𝑚

Uncertainty (samples means vary around the true population mean)
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sampling

𝜇 = 350 𝑐𝑚; 𝜎 = 100 𝑐𝑚 𝐗 = 𝟑𝟓𝟐. 𝟑 𝒄𝒎; 𝒔 = 𝟗𝟒. 𝟎 𝒄𝒎

The variation within a sample (measured by the standard deviation) gives us 
insight into how much sample means (averages) might differ from the true 
population mean (average)—essentially estimating how far off we might be

Statistical 'superpower': Variation within samples (among 
observations) allows us to estimate just how confident we are 

in our uncertainty (the variation among sample means).

Varia%on within samples 

Variation among samples 
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A parameter describes a quantity in a statistical 
population, while an estimate (or statistic) is a similar 
quantity derived from a sample.

For example, the mean of a population is a parameter, 
whereas the mean of a sample is an estimate (or 
statistic) of the population mean.

Similarly, the standard deviation of a population is a 
parameter, and the standard deviation of a sample is 
an estimate (or statistic) of the population’s standard 
deviation.

Population parameters versus sample estimates

7

An estimate (derived from a sample) is rarely, if ever, exactly the 
same as the population parameter being estimated—especially in 
large populations—because sampling is influenced by chance.

For example, two people could sample 100 trees from the same 
forest and get different mean values. Neither of these sample 
means will be exactly equal to the population mean.

The critical question in statistics is: In the face of uncertainty (due 
to random chance), how much can we trust an estimate and the 
decisions based on it? In other words, how accurate is the 
estimate (i.e., how close is the sample value to the true population 
value)?

The goal is to deal with uncertainty with a degree of certainty!

Estimating with uncertainty 
(i.e., error around the true parameter)
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We need to understand the properties of estimators (such as 
the mean, variance, and standard deviation).

These properties are examined through the sampling 
distribution of the statistic or estimate of interest (e.g., sample 
mean, standard deviation).

A sampling distribution represents the probability distribution of 
an estimate based on random sampling from the population. It 
shows what we might observe if we were to repeatedly sample 
from the population. 

While sampling distributions resemble frequency distributions, 
sampling distributions are made of probabilities instead of 
frequencies.

How to estimate with uncertainty, but with some degree of 
certainty (i.e., with some confidence)?
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Statistical symbols

µ = population mean (we say “mu”, Greek alphabet). 
σ = population standard deviation (we say “sigma”). 
σ2 = population variance (we say “sigma squared”).

10

X = sample mean (we say “X bar”, Latin or Roman 
alphabet). 
s = sample standard deviation.
s2 = sample variance. 

While 𝜇 always represent the mean of the population for any variable you’re 
measuring (e.g., X), the symbol for the sample mean (as discussed before) can 
vary depending on the variable. For example, it might be written as 𝑋 for the mean 
of X, or 𝑌 for the sample mean of Y. However, the key is that it always includes a bar on 
top of the variable, regardless of which variable you're referring to.

Important statistical symbols regarding inference

µ = population mean (we say “mu”, Greek alphabet). 
σ = population standard deviation (we say “sigma”). 
σ2 = population variance (we say “sigma squared”).
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Properties of sampling distributions -
the case of a tiny statistical population of 5 numbers

1,2,3,4,5; population mean (parameter) = 3.0
All possible 15 samples (with replacement) and their means for n = 2:

(1,1) = 1.0
(2,2) = 2.0
(3,3) = 3.0
(4,4) = 4.0
(5,5) = 5.0

(1,2) = 1.5
(1,3) = 2.0
(1,4) = 2.5
(1,5) = 3.0

(2,3) = 2.5
(2,4) = 3.0
(2,5) = 3.5

(3,4) = 3.5
(3,5) = 4.0

(4,5) = 4.5

Property 1: The mean of all sample means is always equal to the population mean:

(1.0 + 2.0 + 3.0 + 4.0 + 5.0 + 1.5 + 2.0 + 2.5 + 3.0 
+ 2.5 + 3.0 + 3.5 + 3.5 + 4.0 + 4.5) / 15 = 3.0

Notice that permutations, i.e., (1,2) = (2,1) are not shown but should be considered

Sample means of the sample population varied from 1.0 to 5.0
sample size (i.e., number of observational units) is represented by the letter 
“n”. Here, n = 2 observational units.

12
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Property 1: The average of the sample means will always be equal 
to the true population mean; as such, the 

Properties of estimators are based on the sampling distribution under random 
sampling of the estimate of interest (here, sample mean).  

When the mean of all possible sample means—i.e., the mean of the sampling 
distribution of an estimate (such as the sample mean or standard deviation)—equals 
the population parameter, the estimate is said to be unbiased. This holds true when 
sampling is done randomly, meaning that each observation in the population has an 
equal chance of being selected.

In this case, the sample mean is unbiased because, under random sampling, the 
sample means do not systematically tend to be either larger or smaller than the true 
population mean

(1.0 + 2.0 + 3.0 + 4.0 + 5.0 + 1.5 + 2.0 + 2.5 + 3.0 
+ 2.5 + 3.0 + 3.5 + 3.5 + 4.0 + 4.5) / 15 = 3.0

6 sample means smaller than the true population value [in red]

6 sample means greater than the true population value [in green]

3 sample means equal to the true population value [in black]
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Remember: a random sample is one that fulfills two criteria:
1) Every observational unit in the population (e.g., individual tree) have an 
equal chance of being included in the sample.

2) The selection of observational units in the population (e.g., individual 
tree) must be independent, i.e., the selection of any unit (e.g., individual 
tree) of the population must not influence the selection of any other unit.  

Random sampling reduces both sampling error and inferential bias, which 
refers to how close or far the sample values are from the true population value 

for the statistic of interest.

Sampling bias occurs when some observational units are more or less 
likely to be selected, leading to an unrepresentative sample.

As a result, not all possible combinations of observational units are 
equally likely to be sampled, which can indeed lead to a sampling 
distribution that has a different mean from the true population mean. 
This difference is a form of bias and can skew statistical estimates, 
making them less reliable.

14

𝜇 (𝑠𝑦𝑚𝑏𝑜𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑚𝑒𝑎𝑛)

Estimating with uncertainty: the sampling distribution of the mean
based a tiny statistical population of 5 numbers

!𝑋

25 possible different combinations of 2 numbers (i.e.,25 different potential 
samples; with repetition of observational units, i.e., (1,2),(2,1), etc) 

from 1,2,3,4,5 (population)

𝜇 = 3
Mean of all samples 

means = 3.0

n = 2

15
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125 possible different combinations of 3 numbers (i.e.,125 different potential 
samples; with repetition of observational units, i.e., (1,2,1),(2,1,1), etc) 

from 1,2,3,4,5 (population)

𝜇 = 3
Mean of all samples 

means = 3.0

n = 3

!𝑋

Estimating with uncertainty: the sampling distribution of the mean
based a tiny statistical population of 5 numbers
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!𝑋

625 possible different combinations of 4 numbers (i.e.,625 different potential 
samples; with repetition of observational units, i.e., (1,2,1,3),(2,1,1,4), etc) 

from 1,2,3,4,5 (population)

𝜇 = 3
Mean of all samples 

means = 3.0

n = 4

Estimating with uncertainty: the sampling distribution of the mean
based a tiny statistical population of 5 numbers
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- Source: Cooper & Shore; Journal of Statistics Education (vol. 18, #2)

Journal of Statistics Education, Volume 18, Number 2 (2010) 
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two other types of graphs discussed in this paper: value bar charts and distribution bar graphs. 
Secondly, for grouped histograms the raw data is no longer accessible, and therefore the reader is 
less likely to calculate a measure of variability; our interest is in perceiving variability from a 
graph and visually comparing magnitude of variability, rather than quantifying it.   
 
Like other distribution graphs, histograms are classified by shape, center, and spread. Classic 
shapes that are identified are bell-shaped, uniform, positively skewed, and negatively skewed. If 
the shape is approximately symmetric, the mean is the preferable measure of center, which can 
be visualized as the balance point along the horizontal axis of the histogram, taking into account 
the ―weight‖ and location of the bars above it. As in defining center, judging variability from a 
histogram depends to a degree on the shape. We focus our discussion of how variability is 
perceived within histograms through a comparison group of symmetric and approximately 
symmetric distributions, where variability in the data is commonly judged by how much the data 
is compressed about, or spread out from, the mean. The more compressed the data are to the 
mean, the less the variability; the more spread out, the greater the variability. This idea of 
magnitude of deviation of data values from the mean is analogous to the concept of variability in 
the case of the value bar chart, though the visual interpretation differs for the two.  
 
Consider the two bell-shaped histograms of data sets (exam scores) in Figure 3. The notable 
difference between the graphs is that one histogram has a pronounced peak with narrow tails, 
while the other has bars of more similar height. In bell-shaped histograms, thicker tails indicate 
greater variability, while clustering toward the middle indicates little variability. Though one 
could construct exceptional counter-examples due to the grouped nature of the data, it is fair to 
say that in general, the raw exam scores of Class 2 are likely to be more spread out than those of 
Class 1, and thus are likely to be more variable.   
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Figure 3.  Histograms showing distribution of student exam scores for two classes, differing in 
their magnitude of variability.   

 
 
When Cooper and Shore (2008) presented these histograms to 186 undergraduates, 50% 
indicated that the histogram with the higher peak and narrower tails was more variable. 

Remember Variability in frequency distributions?!!

In which class exam scores vary the most?

18



9/27/24

7

What sample size leads to more precise sample estimates (i.e., less 
variation around the true population value) when using random sampling?

n = 2

n = 3

n = 4

19

As the sample size increases, 
the likelihood that a random 
sample will be closer to the 
true population mean also 
increases, leading to more 
precise estimates.

Since the sampling was random, the sample mean is accurate, 
meaning it is unbiased. The mean of all sample means equals the 
population mean (the true parameter).

What sample size leads to more precise sample estimates (i.e., less 
variation around the true population value) when using random sampling?

20

Random sampling minimizes sampling error and allows for the measurement of 
sampling error (next lectures)

Imprecise

Inaccurate

Accurate

Precise

Low sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & low bias

High sampling variation 
(sampling error) & high bias

Low sampling variation 
(sampling error) & high bias

21
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All sample sizes here lead to accurate 
estimates, but which one results in greater 
precision?n = 2

n = 3

n = 4

22

All sample sizes here lead to accurate 
estimates, but which one results in greater 
precision?

n = 2

n = 3

n = 4

Property 2: With random sampling, larger 
sample sizes increase the likelihood that 
the sample mean will be closer to the true 
population mean; this increasing estimator 
precision

Properties of sampling distributions 

23

Probability density describes the relationship between observations (in this case, sample 
means) and their likelihood of occurring.

Some outcomes (sample means) will have a low probability density, while others will 
have a high probability density.

The overall shape formed by these densities is called the probability distribution, and 
specific probabilities for outcomes of a random variable are calculated using a probability 
density function (PDF).

Text adapted from h.ps://machinelearningmastery.com/probability-density-es;ma;on/

Sampling distributions are best represented by probability distributions 

probability distribution of samplesfrequency distribution of samples
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Critical: The shape of the population's frequency distribution (called “marginal 
distribution”) is not necessarily the same as the frequency distribution of sample 
estimates (e.g., The sampling distribution of mean values) drawn from that population.

fre
qu

en
cy

n = 2 

n = 3 

Values

Population

population: 1,2,3,4,5; 
population mean=3.0

n = 4 

25

wake up

@cjlortie

Let’s take a break – 1 minute

26

The length of protein-coding genes in humans is a rare example of an 
almost complete statistical population in biology

The International Human Genome Project produced the 
complete DNA sequence for all 23 human chromosomes, 
each containing millions of nucleotides and more than 
23,000 protein-coding genes. The project began in 1990 
and was completed in 2006 with the sequencing of the last 
chromosome. For BIOL 322 tutorials, the available data 
includes 20,290 genes.
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The length of 
human genes

Gene length 
(number of nucleotides)
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It involves the length of 
almost all human genes, i.e., 
these is very close to the true 
population of genes!

Names Parameter Value 
(nucleotides)

Mean (mu) 𝜇 2622.0
Standard 
deviation 
(sigma)

𝜎 2036.9

Frequency distribution 
of gene lengths in the 

“known” human 
genome

28

In real situations, we typically don't know the parameter 
values of the study population, but in this case, we (almost) 
do!

So, we’ll take advantage of this gene population to illustrate 
the processes of sampling, uncertainty, accuracy, precision, 
and how to estimate with uncertainty—yet with some level of 
confidence!

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9
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Estimating mean gene length with a random sample of 100 
genes (random sampling out of 20,290 genes)

genesample100
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Gene length 
(number of nucleotides)
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Frequency distribution of gene lengths in a 
unique random sample of n = 100 genes 
from the human genome.

Names Statistic Value 
(nucleotides)

Mean 𝑌 2544.8
Standard 
deviation 𝑠 2125.3
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sample Imagine a group in Canada and 
another in France in 1985 working 
on the same problem, i.e., 
estimating the average gene length 
in the human genome; they would 
have different sample means  

30
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Sample mean length (nucleotides)
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Sample mean length 𝑌 (nucleotides)

Names Statistic Value 
(nucleotides)

Mean 𝑌 2122.3
Standard 
deviation 𝑠 2423.12122.3

Mean and standard deviation of two 
possible samples from the same 
population (out of the 10,000 samples):

Names Statistic Value 
(nucleotides)

Mean 𝑌 2544.8
Standard 
deviation 𝑠 2125.3

2544.8

Sampling distribution of means based on 
10 000 sample mean values.  Each sample mean is 
calculated based on the lengths of 100 genes randomly 
sampled from the population of 20,290 genes.

The sampling distribution of sample means (𝑌)
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Estimating mean gene length with a random sample of 100 
genes (random sampling out of 20,290 genes) – variation due to 

pure chance (i.e., random sampling)

Names Statistic Value 
(nucleotides)

Mean 𝑌 2544.8
Standard 
deviation 𝑠 2125.3

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9

Population Sample

The sample mean is approximately 77 nucleotides shorter 
than the true population value. We shouldn't be surprised 
that the sample estimates differ from the population 
parameter; such differences are virtually inevitable due to 
random sampling variation.
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Sample mean length (nucleotides)
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The sampling distribution of sample means (𝑌)

Sample mean length 𝑌 (nucleotides)

Here, 10,000 sample means were drawn 
from the population using a 
computational approach.

However, in statistics, we use an 
analytical, calculus-based approach to 
estimate the sampling distribution (or 
probability distribution) of all possible 
sample means, whether based on 100 
genes or any other sample size. This was 
critical as most important probability 
distributions were developed without 
computers and many more than 100 
years ago. 
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Sampling distribution of means based on 
10 000 sample mean values.  Each sample mean is 
calculated based on the lengths of 100 genes randomly 
sampled from the population of 20,290 genes.
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Sample mean length (nucleotides)
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Critical: The shape of the population's frequency distribution (called “marginal 
distribution”) is not necessarily the same as the frequency distribution of sample 
estimates (e.g., The sampling distribution of mean values) drawn from that population.
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Sample mean length (nucleotides)
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The sampling distribution (probability distribution) of 
sample means (𝑌)

Sample mean length 𝑌 (nucleotides)
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) Sampling distribution of mean gene 

length, 𝑌, n = 100.

Names Statistic Value 
(nucleotides)

Mean 𝑌 2544.8
Standard 
deviation 𝑠 2125.3

2544.8

Mean and standard deviation of one single 
sample of 100 genes out of 20,290
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Statistical Insight: We will learn that 
the variation within a single sample 
can be used to estimate the 
uncertainty across all possible 
sample values from a population.
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wake up

@cjlortie

Let’s take a break – 1 minute
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Sample mean length (nucleotides)
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Note 1: We typically work with a single 
sample, which gives us just one sample 
mean value (�̅�).

However, understanding how sampling 
distributions are constructed is essential 
for estimating uncertainty (i.e., how 
sample mean values vary from one 
sample to another) and determining the 
confidence in inferences based on those 
samples.

If samples show high variability, we will 
have less confidence in our estimates, 
whereas lower variability among samples 
leads to greater confidence.

Interestingly, variation within a single 
sample can provide insights into variation 
among samples (we will explore this in 
upcoming lectures).

The sampling distribution (probability distribution) of 
sample means (𝑌)

Pr
ob

ab
ilit

y 
de

ns
ity

37

Sample mean length (nucleotides)
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Note 2: The sampling distribution 
clearly shows that while the 
population mean (𝜇 = 2622.0) is 
considered a constant, the sample 
mean (𝑌 ̅) is a variable that fluctuates 
across different samples.

The sampling distribution (probability distribution) of 
sample means (𝑌)
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Sample mean length (nucleotides)
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Note 3 (again): The mean of all 
sample estimates of the mean is 
equal to the population mean. Even 
the mean of 10,000 sample means is 
very close to it.

Names Parameter Value 
(nucleotides)

Mean 𝜇 2622.0
Standard 
deviation 𝜎 2036.9

𝜇 = 2622.0

The sampling distribution (probability distribution) of 
sample means (𝑌)
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Sample mean length (nucleotides)
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Note 4: The mean of all sample 
estimates equals the population 
mean (𝜇) and is perfectly centered on 
the true population mean.

This demonstrates that the sample 
mean (𝑌 ̅) is an unbiased estimate of 
𝜇, assuming random sampling was 
performed, because on average, the 
sample mean equals the population 
mean.

𝜇 = 2622.0

The sampling distribution (probability distribution) of 
sample means (𝑌)
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Sample mean length (nucleotides)

R
el

at
ive

 fr
eq

ue
nc

y

1500 2000 2500 3000 3500 4000
0.00

0.01

0.02

0.03

0.04

0.05

Sample mean length 𝑌 (nucleotides)

Note 5: Sample values for the standard deviation 
(and other statistics) also vary among samples, 
which we will discuss in our next lecture. The 
standard deviation of samples is crucial for 
estimating the uncertainty of a sample mean.

Names Statistic Value 
(nucleotides)

Mean 𝑌 2122.3
Standard 
deviation

𝑠 2423.1

Names Statistic Value 
(nucleotides)

Mean 𝑌 2544.8
Standard 
deviation

𝑠 2125.3

The sampling distribution (probability distribution) of 
sample means (𝑌)
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The effects of sample size (n) on the sampling distribution of 
sample means (𝑌)

Sample mean length 𝑌 (nucleotides) 

n=20

n=100

n=500

Gene length 
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means of the gene population (varying n)
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