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Blocking, Analysis of Covariance 
(ANCOVA), & Mixed Models 

“99 percent of all statistics only tell 49 percent of the story” 
 Ron DeLegge II (Economist) 
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Critical statistical issues underlying 
General Linear Models
(including ANCOVAs)

Now we can test for differences in 
adjusted means; but before that:

Lecture 10
(Type I and III sum-of-square)
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What’s the conclusion?

root size (cm) 
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non-grazed
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Initial conclusion: greater fruit production under 
grazing!
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6.05cm 8.31cm

root size (cm) 
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grazed
non-grazed

7.18cm

initial conclusion
grazed > 
non-grazed

Adjusted (final) conclusion:
grazed < 

non-grazed

36.10𝑚𝑔

Grazing is significant - but in what direction? 
Does grazing increase or reduce fruit production?

4

Analysis of covariance (ANCOVA) evaluates whether the means of a dependent 
variable are equal across levels of a categorical independent variable (treatment), 
while statistically controlling for the effects of other continuous variables that are not 
of primary interest, known as covariates or nuisance variables.

Adapted from https://en.wikipedia.org/wiki/Analysis_of_covariance

Grazing
Variation around the 
group means 

Covariation between
discrete (grazing) and continuous (initial plant
size) predictors 

Between group variance
(variation among group means)
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1) Since the two main conditions hold (1) Covariate can predict the
response; and 2) Groups share a common slope, i.e., interaction is not
significant), we can proceed to test the effect of grazing (categorical
predictor) while controlling for initial plant size (root size). Also, given
that the slopes are similar, we can drop the interaction in the final analysis
(thought there are discussions about whether this is cautious or not).

Before we proceed in testing for differences in adjusted means -
a few really important issues

Y = µ + A! + X!(+A!× X!)

Fruit production = µ + 𝐺𝑟𝑎zing + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

+ 𝐺𝑟𝑎zing × 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒
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Y = µ + A! + X!(+A!× X!)

Fruit production = µ + 𝐺𝑟𝑎zing + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒
+ 𝐺𝑟𝑎zing × 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

Before we proceed in testing for differences in adjusted means -
a few really important issues

7

8

1) Since the two main conditions hold (1) Covariate can predict the 
response; and 2) Groups share a common slope), we can proceed to test 
the effect of grazing (categorical predictor) while controlling for initial 
plant size (root size).  Also, given that the slopes are similar, we can drop 
the interaction in the final analysis.  

2) When multiple predictors are used, we estimate partial effects i.e., the 
total amount of variation explained by grazing once initial size (covariate) 
is controlled for (removed).  

Before we proceed in testing for differences in adjusted means -
a few really important issues
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2) When multiple predictors are used, we estimate partial effects i.e., the 
total amount of variation explained by grazing once initial size (covariate) 
is controlled for (removed).  

Fruit production = µ + 𝐺𝑟𝑎zing + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

Fruit production = A residualB

𝑢𝑛𝑖𝑞𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐺𝑟𝑎zing independent of root size (partial effect)

𝑢𝑛𝑖𝑞𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑜𝑓 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡)

𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒔𝒉𝒂𝒓𝒆𝒅𝒃𝒆𝒕𝒘𝒆𝒆𝒏𝑮𝒓𝒂𝒛𝒊𝒏𝒈𝒂𝒏𝒅𝑹𝒐𝒐𝒕 𝒔𝒊𝒛𝒆 (𝒏𝒐𝒏−𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍)

𝐍𝐨𝐭𝐞 𝐭𝐡𝐚𝐭 𝐢𝐧𝐭𝐞𝐫𝐚𝐜𝐭𝐢𝐨𝐧 𝐜𝐚𝐧!𝐭 𝐛𝐞 𝐬𝐢𝐠𝐧𝐢𝐟𝐢𝐜𝐚𝐧𝐭 𝐟𝐨𝐫 𝐚𝐝𝐣𝐮𝐬𝐭𝐞𝐦𝐞𝐧𝐭; 𝐬𝐨 assumed zero here

Before we proceed in testing for differences in adjusted means -
a few really important issues

10

2) Remember that as in a regression model, partial effects are used, i.e., 
the total amount of variation explained by grazing once initial size 
(covariate) is controlled for (removed).  

3) However, standard ANOVA assumes that categorical factors are 
orthogonal, and this is not possible when a categorical and a continuous 
variable are tested in the same model.  After all, if grazing and Root 
would be orthogonal, there would be no correlation between them! 

Fruit production = A residualB

𝑢𝑛𝑖𝑞𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝐺𝑟𝑎zing independent of root size (partial effect)

𝑢𝑛𝑖𝑞𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
𝑜𝑓 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑒𝑓𝑓𝑒𝑐𝑡)

𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒔𝒉𝒂𝒓𝒆𝒅𝒃𝒆𝒕𝒘𝒆𝒆𝒏𝑮𝒓𝒂𝒛𝒊𝒏𝒈𝒂𝒏𝒅𝑹𝒐𝒐𝒕 𝒔𝒊𝒛𝒆 𝒏𝒐𝒏−𝒐𝒓𝒕𝒉𝒐𝒈𝒐𝒏𝒂𝒍> 0

Before we proceed in testing for differences in adjusted means -
a few really important issues
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2) Remember that as in a regression model, partial effects are used, i.e., 
the total amount of variation explained by grazing once initial size 
(covariate) is controlled for (removed).  

3) However, standard ANOVA assumes that categorical factors are 
orthogonal, and this is not possible when a categorical and a continuous 
variable are tested in the same model.  After all, if grazing and Root 
would be orthogonal, there would be no correlation between them! 

grazing is a contrast (as seen in our last lecture)

Before we proceed in testing for differences in adjusted means -
a few really important issues

12
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Because of lack of orthogonality between categorical (grazed/non-grazed) and 
covariate (initial root size), the order of the categorical and covariate change the 
results when using a common ANOVA (which is based on type I Sum of squares).

13

Understanding the 
Type I sum-of-squares (sequential)

wake up

@cjlortie

14

Total variation in 
response variable (Y) = A residual

The Grazing treatment (A) is entered 1st into the model

15% 85%

Type I sum-of-squares
(sequential)

Fruit production = µ + 𝐺𝑟𝑎zing

15
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Total variation in 
response variable (Y) = A residual

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

15% 85%
Total variation in 
response variable (Y) = A residual

15% 71%

B

14%

3%

Type I sum-of-squares
(sequential)

Fruit production = µ + 𝐺𝑟𝑎zing + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

16

Total variation in 
response variable (Y) = A residual

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

15% 85%
Total variation in 
response variable (Y) = A residual

15% 71%

B

14%

Total variation in 
response variable (Y) = B residual

17% 83%

3%

Initial root size (B) is entered 1st into the model and then the grazing treatment (A) 

Type I sum-of-squares
(sequential)

Fruit production = µ + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

17

Total variation in 
response variable (Y) = A residual

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

15% 85%
Total variation in 
response variable (Y) = A residual

15% 71%

B

14%

Total variation in 
response variable (Y) = B residual

17% 83%

3%

Total variation in 
response variable (Y) = B residual

17% 71%12%

A

3%

Initial root size (B) is entered 1st into the model and then the grazing treatment (A) 

Type I sum-of-squares
(sequential)

Fruit production
= µ + 𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒 + 𝐺𝑟𝑎zing

Fruit production =
µ + 𝐺𝑟𝑎zing +
𝑅𝑜𝑜𝑡 𝑠𝑖𝑧𝑒

18
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Understanding the 
Type III sum-of-squares
(marginal or orthogonal)

19

Total variation in 
response variable (Y) = A residual

15% 85%

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

Type III sum-of-squares
(orthogonal)

20

Total variation in 
response variable (Y) = A residual

15% 85%
Total variation in 
response variable (Y) = A residual

12% 71%

B

14%

3%

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

Type III sum-of-squares
(orthogonal)

21
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Total variation in 
response variable (Y) = A residual

15% 85%
Total variation in 
response variable (Y) = A residual

12% 71%

B

14%

Total variation in 
response variable (Y) = B residual

17% 83%

3%

Type III sum-of-squares
(orthogonal)

Initial root size (B) is entered 1st into the model and then the grazing treatment (A) 

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

22

Total variation in 
response variable (Y) = A residual

15% 85%
Total variation in 
response variable (Y) = A residual

12% 71%

B

14%

Total variation in 
response variable (Y) = B residual

17% 83%

3%

Total variation in 
response variable (Y) = B residual

14% 71%12%

A

3%

Initial root size (B) is entered 1st into the model and then the grazing treatment (A) 

Type III sum-of-squares
(orthogonal)

The Grazing treatment (A) is entered 1st into the model and then initial root size (B) 

23

Analysis of covariance (ANCOVA) evaluates whether the means of a dependent 
variable are equal across levels of a categorical independent variable (treatment), 
while statistically controlling for the effects of other continuous variables that are not 
of primary interest, known as covariates or nuisance variables.

Adapted from https://en.wikipedia.org/wiki/Analysis_of_covariance

Grazing
Variation around the 
group means 

Covariation between
discrete (grazing) and continuous (initial plant
size) predictors 

Between group variance
(variation among group means)

24
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Ecology, 87(10), 2006, pp. 2614–2625
! 2006 by the Ecological Society of America

VARIATION PARTITIONING OF SPECIES DATA MATRICES:
ESTIMATION AND COMPARISON OF FRACTIONS

PEDRO R. PERES-NETO,1 PIERRE LEGENDRE, STÉPHANE DRAY, AND DANIEL BORCARD

Département des sciences biologiques, Université de Montréal, C.P. 6128, succursale Centreville, Montréal, Québec H3C3J7 Canada

Abstract. Establishing relationships between species distributions and environmental
characteristics is a major goal in the search for forces driving species distributions. Canonical
ordinations such as redundancy analysis and canonical correspondence analysis are invaluable
tools for modeling communities through environmental predictors. They provide the means
for conducting direct explanatory analysis in which the association among species can be
studied according to their common and unique relationships with the environmental variables
and other sets of predictors of interest, such as spatial variables. Variation partitioning can
then be used to test and determine the likelihood of these sets of predictors in explaining
patterns in community structure. Although variation partitioning in canonical analysis is
routinely used in ecological analysis, no effort has been reported in the literature to consider
appropriate estimators so that comparisons between fractions or, eventually, between different
canonical models are meaningful. In this paper, we show that variation partitioning as
currently applied in canonical analysis is biased. We present appropriate unbiased estimators.
In addition, we outline a statistical test to compare fractions in canonical analysis. The
question addressed by the test is whether two fractions of variation are significantly different
from each other. Such assessment provides an important step toward attaining an
understanding of the factors patterning community structure. The test is shown to have
correct Type I error rates and good power for both redundancy analysis and canonical
correspondence analysis.

Key words: adjusted coefficient of determination; bootstrap; canonical analysis; canonical correspond-
ence analysis (CCA); ecological community; redundancy analysis (RDA); variation partitioning.

INTRODUCTION

The search for causes dictating patterns in species
distributions in natural and disturbed landscapes is of
primary importance in ecological science, and establish-
ing relationships between species distributions and
environmental characteristics is a widely used approach
(e.g., Legendre and Fortin 1989, Jackson and Harvey
1993, Diniz-Filho and Bini 1996, Rodrı ´ guez and Lewis
1997, Jenkins and Buikema 1998, Boyce and McDonald
1999, Peres-Neto and Jackson 2001). Habitat models
relating habitat characteristics and community structure
(species occurrence or abundance) are expected to
answer at least two questions. (1) How well is the
distribution of a set of species explained by the given set
of predictive variables? (2) Which variables are irrele-
vant or redundant in the sense of failing to strengthen
the explanation of patterns after certain other variables
have been taken into account? The first question relates
to the predictive power of the model that can be used in
conservation management, for questions such as esti-

mating habitat suitability, forecasting the effects of
habitat change due to human interference, establishing
potential locations for species reintroduction, or pre-
dicting how community structure may be affected by the
invasion of exotic species. The second question is
important for heuristic issues such as determining the
likelihood of competing hypotheses to explain particular
patterns in community structure (Peres-Neto et al.
2001).
Canonical analyses such as redundancy analysis

(RDA; Rao 1964), canonical correspondence analysis
(CCA; ter Braak 1986), and distance-based redundancy
analysis (db-RDA; Legendre and Anderson 1999) are
invaluable tools for modeling communities through
environmental predictors. They provide the means for
conducting direct explanatory analyses in which the
association among species can be studied with respect to
their common and unique relationships with environ-
mental variables or any other set of predictors of
interest. As a demonstration of its success, well over
1500 studies applying CCA or RDA in modeling
species–environment relationships have been published
(see also Birks et al. [1996] for reviews on ecological
studies using these methods). RDA and CCA can be
best understood as methods for extending multiple
regression that has a single response y and multiple
predictors X (e.g., several environmental predictors), to

Manuscript received 26 August 2005; revised 9 February
2006; accepted 16 February 2006; final version received 21
March 2006. Corresponding Editor: N. G. Yoccoz.

1 Present address: Department of Biology, University of
Regina, Saskatchewan S4S 0A2 Canada.
E-mail: pedro.peres-neto@uregina.ca
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Understanding semi-partial contributions via variation partitioning

25

Final test: Does grazing affect fruit 
production once controlled for initial 

root size?
wake up

@cjlortie

26

Type II and III Sum of squares so that order of entrance of 
categorical (grazing treatment) and continuous (covariate = 
initial root size).

H0: Grazing treatments do not differ in fruit production.

HA: Grazing treatments differ in fruit production.

Final test: Does grazing affect fruit production once 
controlled for initial root size?

27
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6.05cm 8.31cm

root size (cm) 
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g)

grazed
non-grazed

7.18cm

initial conclusion
grazed > 
non-grazed

Adjusted (final) conclusion:
grazed < 

non-grazed

36.10𝑚𝑔

Grazing is significant - but in which direction? 
Does grazing increase or reduce fruit production?

28

@𝑌-.-/012345(25789:45 ;42-)
= −125.17𝑚𝑔 + 36.1𝑚𝑔 +

23.56𝑚𝑔/𝑐𝑚 × 7.18𝑐𝑚 =	
77.46212

@𝑌012345 (25789:45 ;42-)
= −125.17𝑚𝑔 + 0.00𝑚𝑔 +

23.56𝑚𝑔/𝑐𝑚 × 7.18𝑐𝑚 =
41.35888	

Adjusted (final) inference:
grazed fruit production < 

non-grazed fruit production

Grazing is significant - but in which direction? 
Does grazing increase or reduce fruit production?

29

6.05cm 8.31cm

root size (cm) 

fru
it 

pr
od

uc
tio

n 
(m

g)

grazed
non-grazed

7.18cm

initial conclusion
grazed > 
non-grazed

Adjusted (final) conclusion:
grazed < 

non-grazed

36.10𝑚𝑔

77.46212-41.35888

Grazing is significant - but in which direction? 
Does grazing increase or reduce fruit production?

30
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31

Assessing if assumptions hold!

32

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)

Testing for assumptions should be performed 
before reporting results – we did not do it 
here so that we paid attention to the problem 
first!

33
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Assumption 1: linearity (more in the regression module)
The regression relationship between the dependent variable and 
concomitant variables must be linear.

Assumption 2: homogeneity of error variances (residual plot or the 
Breusch-Pagan test)

Equal variances for different treatment classes and observations.

Assumption 3: independence of error terms (more in mixed models)
The errors are uncorrelated. That is, the error covariance matrix is 
diagonal.

Assumption 4: normality of error terms (Q-Q plot)
The residuals (errors) should be normally distributed.

Assumption 5: homogeneity of regression slopes (tested already).

Assumptions

34

Testing for normality assumptions (Q-Q normal residual plot)

Theoretical quantiles 
(normally distributed)

St
an

da
rd

ize
d 

re
sid

ua
ls

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)

35

Testing for normality assumptions (Q-Q normal residual plot)

In doubt, resort to a formal test, though General Linear 
models (ANOVAs and regressions) are quite robust against 

non-normality.

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)

36
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Testing for homoscedasticity

Predicted values
(fruit production mg)

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)

37

Testing for homoscedasticity

In doubt, resort to a formal test, General Linear models are 
sensitive to heteroscedasticity.

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)

38

What to do in more 
complex cases?

wake up

@cjlortie

39



2/9/22

14

initial root size

fru
it 

pr
od
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n

initial root size

fru
it 

pr
od

uc
tio

n

grazed
non-grazed

There are approaches for the more complex cases when slopes differ 
between groups or when the response (Y) does not depend on the 

covariate (initial root size)

initial root size

fru
it 

pr
od

uc
tio

n

40

initial root size (factor)

fru
it 

pr
od

uc
tio

n

grazed
non-grazed

When there is an interaction, then the differences in mean values between treatments 
vary as a function of the covariate, so we can’t generalize to all initial root sizes. 

There are approaches for the more complex cases when slopes differ 
between groups or when the response (Y) does not depend on the 

covariate (initial root size) – later in the class.

Solution: categorize the 
covariate (divide into few 
classes of initial root size) and 
use a two-factorial design:

1) the interpretation is more 
complex (i.e., there will be an 
interaction);

Small BigInt.

41

initial root size (factor)

fru
it 

pr
od

uc
tio

n

grazed
non-grazed

Solution: categorize the 
covariate (divide into few 
classes of initial root size) and 
use a two-factorial design:

1) the interpretation is more 
complex (i.e., there will be an 
interaction);

2) Loss of statistical power by 
decreasing the degrees of 
freedom via creating categories.

Small BigInt.

When there is an interaction, then the differences in mean values between treatments 
vary as a function of the covariate, so we can’t generalize to all initial root sizes. 

There are approaches for the more complex cases when slopes differ between groups or when the 
response (Y) does not depend on the covariate (initial root size) – later in the class.

42
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initial root size (factor)

fru
it 

pr
od

uc
tio

n

grazed
non-grazed

Solution: categorize the 
covariate (divide into few 
classes of initial root size) and 
use a two-factorial design:

1) the interpretation is more 
complex (i.e., there will be an 
interaction);

2) Loss of statistical power by 
decreasing the degrees of 
freedom via creating categories.

3) The two series need to 
overlap substantially in  their 
covariate values.

Small BigInt.

When there is an interaction, then the differences in mean values between treatments 
vary as a function of the covariate, so we can’t generalize to all initial root sizes. 

There are approaches for the more complex cases when slopes differ between groups or when the 
response (Y) does not depend on the covariate (initial root size) – later in the class.

43

initial root size

fru
it 

pr
od

uc
tio

n

grazed
non-grazed

When response variable (fruit production) is independent of continuous predictor 
(initial root size), but continuous differ in average between treatments.

Solution: categorize the 
covariate (divide into few 
classes of initial root size) and 
use a two-factorial design:

1) the interpretation is more 
complex (i.e., there will be an 
interaction);

2) Loss of statistical power by 
decreasing the degrees of 
freedom via creating categories.

3) The two series need to 
overlap substantially in  their 
covariate values.

Small Big

There are approaches for the more complex cases when slopes differ between groups or when the 
response (Y) does not depend on the covariate (initial root size) – later in the class.

44

- It is not always possible to randomize factors
completely independent of each other. In the case of the
fruit productivity, ideally the researchers should have
made sure that the plants in grazing and no grazing
plots should have had the same size.

- Confounding or nuisance (non-random) factors can
often be the case, particularly in non-experimental
studies.

- The terminology and some of the theory underlying
“Type I, II & III” sum of squares seems to have been
generated by SAS (Statistical Analysis System).

Y = µ + Ak + Xk + (Ak×Xk) Analysis of Covariance (ANCOVA)
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Doctor Tyrano, look for a covariate 

Doctor Tyrano, stewed in the realization that he would win 
no accolades for finding the world’s most medium-sized 
dinosaur!

46

General linear models (not Generalized linear model)

Y (response) is a continuous variable
X (predictor) is a continuous variable
A represents categorical predictors (factors)
g represents groups of data (more on this later)
(+A!× X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A! +A" + etc (and their interactions)

Linear Model Common name
Y = µ + X Simple linear regression
Y = µ + A! One-factorial (one-way) ANOVA

Y = µ + A! + A" + A!×A" Two-factorial (two-way) ANOVA
Y = µ + A! + X (+A!× X) Analysis of Covariance 

(ANCOVA)
Y = µ + X! + X" + X# Multiple regression
Y = µ + A! + g + A!× g Mixed model ANOVA
Y! + Y"
= µ + A! + A" + A!×A"

Multivariate ANOVA (MANOVA)

47


