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“This is statistics”

by Dr. Genevera Allen

Associate Professor at Rice University  

https://www.youtube.com/watch?v=xURkTKtDq_M
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General linear models (not Generalized linear model)

Y (response) is a continuous variable
X (predictor) is a continuous variable
A represents categorical predictors (factors)
g represents groups of data (more on this later)
(+A!× X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A! +A" + etc (and their interactions)

Linear Model Common name
Y = µ + X Simple linear regression
Y = µ + A! One-factorial (one-way) ANOVA

Y = µ + A! +A" +A!×A" Two-factorial (two-way) ANOVA
Y = µ + A! + X (+A!× X) Analysis of Covariance (ANCOVA)
Y = µ + X! + X" + X# Multiple regression
Y = µ + A! + g + A!× g Mixed model ANOVA

Y! + Y" = µ+ A! +A" +A!×A" Multivariate ANOVA (MANOVA)
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Multiple regression – the “model of all models”!

Part I: 

Causation, regression model, properties of 
estimators and sensibility to assumptions 

Part II: 

Goodness of fit and model simplicity metrics, 
hypotheses testing, standardized slopes, model 

selection, examples and diagnostics
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The essential idea with regression models is to find driving 
forces like the train engine and determine the path of the 
railway track. 

The “driving force” in statistics is 
often called ”generating 
process”

Multiple regression – the “model of all models”!

5

Correlation, Causation, & Coincidence

One of the key concepts in regression models, or science 
in general, is to distinguish between correlation and 
causation.  

source - http://ucanalytics.com/

Unless in experimental settings and in some time series 
(and even then), regression models cannot necessarily 
distinguish between causation and correlation.  

The role of researchers when using regression is to provide 
strong evidence and a narrative of causation (even though 
it can’t always be confirmed). 
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Likely a coincidence

Source: Bloomberg
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Likely a coincidence

Source: http://tylervigen.com
Correlation: 0.666004
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Likely a coincidence

Source: http://tylervigen.com
Correlation: -0.933389
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http://tylervigen.com/discover?type_select=fun

Coincidence = 
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Likely a correlation

Source: Bloomberg
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Correlation

Source: Nature
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CO2 concentration versus temperature 

Source - www.e-education.psu.edu

Causation
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Discussion: Causation & Correlation versus Prediction
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In 1964, during a lecture at Cornell University, the physicist Richard Feynman articulated 
a profound mystery about the physical world. He told his listeners to imagine two 
objects, each gravitationally attracted to the other. How, he asked, should we predict 
their movements? Feynman identified three approaches, each invoking a different belief 
about the world. 

source – The New Yorker

Some thoughts on « explanation »
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In 1964, during a lecture at Cornell University, the physicist Richard Feynman articulated 
a profound mystery about the physical world. He told his listeners to imagine two 
objects, each gravitationally attracted to the other. How, he asked, should we predict 
their movements? Feynman identified three approaches, each invoking a different belief 
about the world. 

1) The first approach used Newton’s law of gravity, according to which the objects exert a 
pull on each other. 

2) The second imagined a gravitational field extending through space, which the objects 
distort. 

3) The third applied the principle of least action, which holds that each object moves by 
following the path that takes the least energy in the least time. 

source – The New Yorker

Some thoughts on « explanation »
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In 1964, during a lecture at Cornell University, the physicist Richard Feynman articulated 
a profound mystery about the physical world. He told his listeners to imagine two 
objects, each gravitationally attracted to the other. How, he asked, should we predict 
their movements? Feynman identified three approaches, each invoking a different belief 
about the world. 

1) The first approach used Newton’s law of gravity, according to which the objects exert a 
pull on each other. 

2) The second imagined a gravitational field extending through space, which the objects 
distort. 

3) The third applied the principle of least action, which holds that each object moves by 
following the path that takes the least energy in the least time. 

All three approaches produced the same, correct prediction. They were three equally 
useful descriptions of how gravity works.  “One of the amazing characteristics of nature 
is this variety of interpretational schemes,” Feynman said. 

Some thoughts on « explanation »

source – The New Yorker

18



2023-02-23

7

wake up

@cjlortie
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The general purpose of multiple regression are:

1) Describe, investigate and learn about the relationship between several 
independent or predictor variables and a dependent variable.

2) Make predictions.

3) Plan experiments to test causality (in regression, causality is often implied). 

Y = 𝛽! +𝛽"X" +𝛽#X# + … +𝛽$X$ + e
𝛽!
𝛽", 𝛽#, … , 𝛽$ Partial regression coefficients (or partial slopes)

model intercept (or constant)

e model residuals or error

Multiple regression – the “models of all models”!
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Fitting method = Ordinary least square (OLS)

Y = 𝛽! +𝛽"X" +𝛽#X# + … +𝛽$X$ + e
𝛽!
𝛽", 𝛽#, … , 𝛽$ Partial regression coefficients (or partial slopes)

model intercept (or constant)

e model residuals or error

The OLS method minimizes the sum of square 
differences between the observed and predicted 
values.

Multiple regression – the “models of all models”!
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𝑌 = 𝟒𝟐𝒄𝒎+ 𝛽6X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽!
• Model intercept (or constant) is the value that is predicted for Y if

predictors X1 and X2 are zero, i.e., the expected plant height if there is
no bacteria in the soil and no sun light.

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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𝑌 = 𝟒𝟐𝒄𝒎+ 𝛽6X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽! • Model intercept (or constant) is the value that is predicted for Y
if predictors X1 and X2 are zero, i.e., the expected plant height
if there is no bacteria in the soil and no sun light.

• This is only a reasonable interpretation if either X1 and X2 can
be zero and if the data include values for X1 and X2 that are
closer to zero). For instance, the intercept could be negative for
this model even though a plant can’t have negative height.

• The unit of the intercept is the same as the response variable
(i.e., cm).

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽" • It represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if sun exposure is
kept constant (i.e., as if plants were exposed to the same amount
of mean sun light) – called partial effects/slopes

• Plants with 5000/ml bacteria counts would, on average, be 2.3 cm
taller (in average) than plants in soils with 4000/ml (which would
be 2.3 cm taller in average than plants with 3000/ml).

The slope of any single partial regression line (partial regression slope) represents the 
rate of change or effect of that specific predictor variable (holding all the other 
predictor variables constant to their respective mean values) on the response variable.

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽"
Represents the difference in predicted value of Y (plant
height) for each one unit difference in bacteria amount if sun
exposure is kept constant (i.e., as if plants were exposed to
the same mean amount of sun light).

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽" • It represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if sun exposure is
kept constant (i.e., as if plants were exposed to the same
amount of sun light).

• Plants with 5000/ml bacteria counts would, on average, be 2.3 cm
taller (in average) than plants in soils with 4000/ml (which would
be 2.3 cm taller in average than plants with 3000/ml).

• “Kept constant” means that that the association between
bacterial amount and plant height is independent (controlled for)
of amount of sun.

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽" • It represents the difference in predicted value of Y (plant height) for each one unit
difference in bacteria amount if sun exposure is kept constant (i.e., as if plants were
exposed to the same amount of sun light).

• Plants with 5000/ml bacteria counts would, on average, be 2.3 cm taller (in average)
than plants in soils with 4000/ml (which would be 2.3 cm taller in average than plants
with 3000/ml).

• “Kept constant” means that that the association between bacterial amount and
plant height is independent (controlled for) of amount of sun.

• The unit attached to the slope is the unit of the response
divided by the unit of the predictor (i.e., cm/ 1000 bacteria
per ml)

Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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A small fictional example to facilitate understanding 
of what regression coefficients mean!

𝛽" • It represents the difference in predicted value of Y (plant height) for each one unit difference in 
bacteria amount if amount of sun is kept constant (i.e., as if plants were exposed to the same 
amount of sun light).

• Plants with 5000/ml bacteria counts would, on average, be 2.3 cm taller (in average) than plants in 
soils with 4000/ml (which would be 2.3 cm taller in average than plants with 3000/ml).

• “Kept constant” means that that the association between bacterial amount and plant height is 
independent (controlled for) of amount of sun. 

𝛽# Reverse interpretation in relation to

Units attached  - cm / % exposure 

𝛽"

𝑌 = 42cm + 𝟐. 𝟑X6 + 𝟏𝟏X7 + e
Y is plant height (cm)
X1 is amount of bacteria in the soil (1000 bacteria per ml of soil)
X2 is amount of plant exposure to sun light (% exposure)
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What do model slopes 
represent?wake up

@cjlortie
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Model slopes - represents the difference in predicted value of Y (plant height)
for each one unit difference in bacteria amount if amount of sun is kept constant
(i.e., as if plants were exposed to the same amount of sun light).

To do that, we use partial slopes – this is important because continuous
predictors will rarely be orthogonal and as such we can’t assign its effects to
one or the other predictor.

Total variation in 
plant height =

sun light
exposure 

bacteria
amount

residual variation
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Experimental (likely close to orthogonal) versus observational 
(likely non-orthogonal) approaches.

Environmental	variable	1En
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optimal	combination

Manipulative	experiment

Environmental	variable	1

Observational	study

Optimal combination of the two variables 
for fish growth.

Resources (g/m3) Resources (g/m3)

Te
m
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tu
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 (o
C)

Manipulative Experiment
(balanced = orthogonal)

Observational study
(non-balanced)
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Experimental (likely close to orthogonal) versus observational 
(likely non-orthogonal) approaches.

Environmental	variable	1En
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optimal	combination

Manipulative	experiment

Environmental	variable	1

Observational	study

Optimal combination of the two variables 
for fish growth.

Resources (g/m3) Resources (g/m3)
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 (o
C)

Observational study
(non-balanced)

Manipulative Experiment
(non-balanced = quasi-orthogonal)
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The properties of a regression model
(let’s use a small simulation)

Regression estimation (based on a sample) of the
true population regression involves assumptions.

These assumptions are necessary so that the
sample model is an unbiased estimate of the true
population model; and that the tests involved have
correct behaviour (e.g., Type I error rates = selected
alpha).

A word on simulations versus math!

33



2023-02-23

12

𝑌 = 42cm + 𝟐. 𝟑X6 + 𝟏𝟏X7 + e

The properties of a regression model
(let’s use a small simulation)

e residual error assumed to be 𝑁(0,𝜎!)

Let’s start with a really large sample size
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝟏𝟏X7 + e

The properties of a regression model
(let’s use a small simulation)

Model results from simulated data
(large sample size, more accuracy)

e residual error assumed to be 𝑁(0,𝜎!)
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The properties of a regression model
(let’s use a small simulation)

Let’s reduce sample size
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𝑌 = 42cm + 𝟐. 𝟑X6 + 𝟏𝟏X7 + e

The properties of a regression model
(let’s use a small simulation)

e residual error are assumed to be 𝑁(0,𝜎!)

Model results from simulated data
(smaller sample size, less accuracy; 

compare with previous example)
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The properties of a regression model -

Predicted and residual variation
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Understanding predicted values and residuals

predicted
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𝑌 = 247.12 + 2.08X6 + 11.32X7 + e
6𝑌 = 247.12 + 2.08X6 + 11.32X7
e = Y - 6𝑌

e = Y - 8𝑌
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predicted
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e = Y - 8𝑌

etc (n = 30)

𝑌 #𝑌 e

𝑌 = 247.12 + 2.08X6 + 11.32X7 + e
6𝑌 = 247.12 + 2.08X6 + 11.32X7

Understanding predicted values and residuals

e = Y - 6𝑌
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Understanding predicted residuals

multiple regression assumes vertical offsets (residuals)

Type I and III sum-of-squares Type II sum-of-squares

Residuals for Type I regression
Error in Y but not in X

Residuals for Type II regression
Error in both Y and X

vertical offsets perpendicular offsets
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Y is plant height (cm)
X1 is amount of bacteria in the soil (count per ml)
X2 is amount of plant exposure to sun light (% exposure)

𝑌 = 𝟒𝟐𝒄𝒎+ 𝛽6X6 + 𝛽7X7 + e

A small fictional example to facilitate understanding 
of what regression coefficients mean!

meaningful predictors reduce variance of residuals

42
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meaningful predictors reduce variance of residuals

re
sid

ua
ls

e = Y - 6𝑌

1 6𝑌 = 7𝑌
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meaningful predictors reduce variance of residuals

re
sid

ua
ls

2 6𝑌 = 247.12 + 2.65X6

1 6𝑌 = 7𝑌

e = Y - 6𝑌
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meaningful predictors reduce variance of residuals 
(i.e., uncertainty)

re
sid

ua
ls

2 6𝑌 = 247.12 + 2.65X6

e = Y - 6𝑌

3 :𝑌 = 247.12 + 2.08X6 + 11.32X7

1 6𝑌 = 7𝑌
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wake up

@cjlortie
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The properties/assumptions of a regression 
model

Linearity assumption
(big one)
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𝑌 = 42+ 2.3X" +11𝑋##+e
population regression

48



2023-02-23

17

sample regression - linear relationship 
assumed

predicted
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𝑌 = 42+ 2.3X" +11𝑋##+e
population regression

sample regression

𝑌 = 42−0.76X" +25.62𝑋#

treated as linear
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𝑌 = 42+ 2.3X" +11𝑋## +e
population regression

sample regression (non-linear regression)

𝑌 = 42+ 2.2X" +11𝑋##

treated as non-linear
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𝑌 = 42+ 2.2X" +11𝑋## +e

predicted

O
bs

er
ve

d

non-linear regressionlinear regression

predicted

Effects of non-linear data on regression
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More on multiple regressions and 
assumptions - Lecture 12
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