Job trends in statistics and data analysis

With so much hinging on statistics - national and international
policy, funding, corporate decision making, government

commitment and research - demand for statis

ians and data

analysts is expected to grow around 34% between 2014 and
2024. This vastly outstrips the average across all jobs.

source - https://www.environmentalscience.org/career/environmental-data-analyst
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One common feature here is that species may differ in the way they are structured by environmental and/or trait

variation. This can be well described by the Simpson’s paradox (Simpson 1951), which is defined “as a phenomenon
in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the

groups are combined.”
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Important enough to have its own Wikipedia page:
https://en wikipedia.org/wiki/Simpson%27s_paradox
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## MODEL INFO:
## Observations: 100

## Dependent Variable: abundance
## Type: OLS linear regression

##t MODEL FIT:
## F(1,98) = 15.13, p = 0.00
## RZ = 0.13

o Adj. R* = 0.12

o

## Standard errors: OLS

## (Intercept) -0.08 0.18 .48 0.63
## scale(tenperature) m=) 0.69 0.18  3.89 0.00
o
o

## Continuous predictors are mean-centered and scaled by 1 s.d.

Fixed effect model
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Mixed effect model

n.mod. intercept <- lmer(abundance ~ temperature + (1|species),data=data.Sinpson)
)

sumn(1n.mod. intercept, scale = TRUE

44 MODEL INFO:
## Observations: 100

## Dependent Variable: abundance

4 Type: Mixed effects linear regression

a
## MODEL FIT:

% ATC = 343.74, BIC = 354.16

## Pseudo-R? (fixed effects) = 0.30
## Pseudo-R? (total) = 0.95

## FIXED EFFECTS:
w

a Est. S.E. tval

Les  -0.04
0.3 -8.22

## (Intercept)
#u temperature  mmmp
s

s
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General linear models (not Generalized linear model)

Linear Model
Y=p+X
Y=pu+A;

Y= p+A; +A; +AXA,
Y=p+A; +X(HA1xX)
Y=p+X; +X; +X;3
Y=p+A +g+A;xg
Yi+ Yo =p+A; +A; + A1 XA,

{00000

Common name

Simple linear regression
One-factorial (one-way) ANOVA
Two-factorial (two-way) ANOVA
Analysis of Covariance (ANCOVA)
Multiple regression

Mixed model ANOVA
Multivariate ANOVA (MANOVA)

Y (response) is a continuous variable

X (predictor) is a continuous variable

A represents categorical predictors (factors)

g represents groups of data (more on this later)

(+A;x X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)

T
Multivariate Generalized z
Linear Mixed Models Gener. d Linear
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Fixed effects are often crossed in relation to other fixed effects
(e.g., typical two-way ANOVA)

Fixed effect factor: Data have been gathered from all the levels of the factor that are
of interest.

Example: Contrasting the effects of three specific dosages of a drug on the response.
"Dosage" is the factor; the three specific dosages in the experiment are the levels;
there is no intent to say anything about other dosages.

(source: https ute ’ .
Drug Drug A
(fixed factor) ug Drug B

Dose

(fixed factor)

each different dose is tested for (across) each
drug (i.e., factors are crossed)
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Random versus fixed effects — a hierarchical view

Random effect factor (sometime referred as a variance component model): The factor has
many possible levels. Although there is interest in all possible levels, only a random sample of
levels can be included in the data (either due to lack of knowledge all all possible levels, or costs,
or both, or other issues).

Example: In an animal breeding experiment conducted to estimate the breeding value of sires
(father) from a certain breed, several sires were y froma ion and
each sire was mated with several dams (mother). The weights of all the newborn animals were
recorded.

Breed
(fixed factor) Breed A Breed B
Sire
(random factor)
A

different sires are used across different breeds

Newborns (offsprings)

Random versus fixed effects — a hierarchical view

The factor is “sire” (male gamete). The analysis will not estimate the effect of each of
the sires in the sample; instead, it will estimate the variability attributable to the
factor “sire”.

It is a type of hierarchical linear model, which assumes that the data being analysed

are drawn from a hierarchy of different populations whose differences relate to that
hierarchy.

Breed
Breed A
(fixed factor) reed Breed B

S I I B A N A
EIEE 5 5EE E

(random factor)

5

different sires are used across different breeds
and sires are more related within than between
breeds (pedigree is a hierarchical structure)
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Random effects are often hierarchical in relation to fixed effects

Here, sires are a random variable (factor) that will change
from study to study. In contrast (based on another
example), drug levels are of true interest that won'’t
change from study to study.

Breed
(fixed factor) Breed A Breed B

Si
(rando;epactor)

different sires are used across different breeds

2023-03-16

11

Random effects - let’s focus on a single breed

In a one-way (factor) random effect ANOVA, the goal is to estimate the
variance of a breed (variation among sires). The sires are merely a
sample from which inferences are to be made concerning the single
population (here Breed A).

S, S S; S,

weights 6f all the‘newborn animals (1 per dam) were recorded for each siren

Do sirens vary in their newborn weights? This can be answered by assessing
whether there is more variation between sirens than within sirens.

12
B{eed‘
A variance within groups and
- # ‘ -~ variance within level
I (LOW VARIATION)
S, S, Ss S, S5
g ] = e 0]
8 I or
H . .
e IR I
%’ oy Lt
; 18 b4 . .
T T T T T 1 *r
1 2 3 4 5 1 2 3 B 5
sires sires
13



Weight (newborns)

T T

p )

S, S, S; S, S
_
L__ I

variance within groups and

variance within level
(HIGH VARIATION)

sires
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Fixed versus random effects may depend on the question

and not always the data

STUDY: Suppose five cuts of meat are taken from each of three
pigs, all from the same breed, and the fat content is measured in
each cut.

FIXED EFFECT QUESTION — Do the different cuts differ in their fat
content? One-way (fixed) ANOVA with five treatment levels (cuts)
and three replicates per cut (pigs).

15

cutweights * cutfactor * pig

11 1
2.1
3.1
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cutweights  * cutfactor * pi

11 1

2.1

Fixed versus random effects may depend on the question
and not always the data

STUDY: Suppose five cuts of meat are taken from each of three
pigs, all from the same breed, and the fat content is measured in
each cut.

FIXED EFFECT QUESTION — Do the different cuts differ in their fat
content? One-way (fixed) ANOVA with five treatment levels (cuts)
and three replicates per cut (pigs).

RANDOM EFFECT QUESTION - Is there more variation in fat
content among or within pigs (i.e., animal-to-animal and within-
animal variation)? A fat pig could have their cuts fatter (i.e.,
hierarchical variation).

In this case, the three pigs selected are not of interest. This would be
a one-way random effects ANOVA.

18

Note that there is more variation within pigs
(i.e., among cuts within pigs) than between pigs

Correlation Structure: Compound symmetry
Formula: ~1 | pig
Parameter es

-0 02
Degrees of freedom: otal; residual
Residual standard

19
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Now, these data have more variation between pigs
(i.e., among cuts within pigs) than within pigs

cutweights = cutfactor * pig
11 1 1
2.1

1
3.1 3 1
1
1
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More on the hierarchical nature of data

The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?

Effects of temperature on fish growth
(difference in growth begin/end of study)

Low temperature @ @ @

Intermediate
temperature

High temperature

g
Q

>3




The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?

Effects of temperature on fish growth
(difference in growth begin/end of study)

) O o

Low temperature Tipe e Do
o o] %]

Intermediate a”ﬁ‘@ gg@\ T,
temperature T T ol
! o® 0
High temperature | &'z o S
o o e
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The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?

Effects of temperature on fish growth
(difference in growth begin/end of study)

Q8
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Low temperature B

Growth
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The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?

Effects of temperature on fish growth
(difference in growth begin/end of study)

s o o
Low temperature DD B Tod
] (32 02
. —
- : Note that treatment
: = (low temp.) means
e £ L
g - s considering all
I3 versus - 5 - individuals
5 = — [0}
© » are the same in both
» . situation
— )
Tank Tank
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Do we need a random effect here? Which experimental results should we trust the most?
(note that scales of the response are about the same)

- Average
Low temperature & within )
g -— treatment = ;T:d factor =
20g perature
Random factor =
= aquarium
= ’ Average
Intermediate £ within Compare the two
temperature 5 . “I treatment = “experiments”.
o ; 30g Which one has the
—_ . strongest main
. versus random
effect?
Average
High temperature § within
< ‘l‘l’l treatment =
© - 40g

Tank Tank
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Hierarchical (clustered) sampling

Hierarchical (clustered) sampling is extremely common, rather than simple
random sampling, mainly as a means of saving resources when, for example,
the population is spread out, and the researcher cannot sample from
everywhere. However, observations in the same cluster are likely to be
somewhat more similar to one another.

/LOW‘
temp
Non-hierarchical random ~ EE) W

sample (fixed) h b

Low
temp
_ H

Hierarchical (random) )

adapted from Gene Shackman
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Hierarchical (clustered) sampling

As aresult, in a clustered sample selecting, an additional observation from the
same cluster adds less new information than would a completely independent
selection. As such, the sample is not as variable a random sample would be, so
that the effective sample size is reduced. The loss of effective sample size by
using clustered sampling, instead of simple random sampling, is called design
effect.

28



Design effect under the lenses of a common
ecological problem — phylogenetic variation
How many independent data points do we have?

range size

©000000000000000000000

|

body size

The loss of effective sample size by using clustered sampling, instead of
simple random sampling, is called design effect. Perhaps of 23 species we
may have only “3 independent observations”.

2023-03-16

A e JOURNAL ARTICLE
AMErican 3 i
NeTE e Phylogenies and the Comparative Method
Joseph Felsenstein
The American Naturalist
Vol. 125, No. 1 (Jan., 1985), pp. 1-15
Published by: The University of Chicago Press for The American Society of Naturalists
https://www.jstor.org/stable/2461605
Page Count: 15
The loss of effective sample size by using clustered sampling, instead of
simple random sampling, is called design effect. Perhaps of 23 species we
may have only “3 independent observations”.
INCREASED TYPE | ERROR IF KEPT AT 23 species (i.e., wrongly
considering too many independent observations) AND LOSS OF POWER
if only “3 species” is used.

In which case is the design effect larger? Left or right column?

Average

er:
- R -

20g

Low temperature

Growth

= ) Average
. . l l within
treatment =

30g

Intermediate
temperature

Growth

Average

within
l—l-l treatment =

40g

High temperature

Growth

Tank Tank
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Hierarchical (clustered) sampling

The design effect is a correction factor that is
used to adjust the sample size based on clustered
sampling. This accounts for the loss of information
inherent in the clustered design and is used when
estimating random effects.

Once the design effect is calculated, the sample
size calculated for a standard design can be
adjusted accordingly (i.e., degrees of freedom are
corrected). As such, the statistical power may
change according to the design effect.

2023-03-16
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Low temperature

Intermediate
temperature

High temperature

In which case is the statistical power greater? Left or right column?

Average

er:
- R e

20g

Growth

= ) Average
. . l l within
treatment =

30g

Growth

Average
within
treatment =
40g

Growth

Tank Tank
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Hierarchical (clustered) sampling

Hierarchical (clustered) sampling is extremely common, rather than simple
random sampling, mainly as a means of saving resources when, for example,
the population is spread out, and the researcher cannot sample from
everywhere. However, observations in the same cluster are likely to be
somewhat more similar to one another.

Low
temp
— H ~
Non-hierarchical random ~ EE)

sample (fixed)

L
Which design is statistically more e?nv:u
powerful? It depends on the design B .
effect of the data. -

Hierarchical (random) )

adapted from Gene Shackman
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Intraclass correlation as a way to understand why
to use a random effect and how much “random”

has an “effect”

2023-03-16
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Hierarchical (clustered) sampling — intraclass correlation
& design effect (one extreme example)

 Consider a study that wants to estimate fish size between two
regions in Quebec (Laurentians and Eastern Townships).

 Draw a random sample of 50 lakes in each region.
» Randomly sample 10 individuals in each lake (n = 10).

One fixed factor = region (these two regions cannot change).

One random factor = lakes (because they are more likely to be

similar within regions and they are not crossed between
regions, i.e., lakes differ).

36

« Consider a study that wants to estimate fish size between two regions in
Quebec (Laurentians and Eastern Townships).

 Draw a random sample of 50 lakes in each region.

« Randomly sample 10 individuals in each lake (n = 10).
Each boxplot represents
variation is size of 10 fish
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1.6 11 17 23 29 35 41 47 1 6 11 17 23 29 35 41 47‘”
Lakes (Laurentians) Lakes (Eastern Townships)

Very high (~1) intraclass correlation here because individuals are very similar
within lakes than among lakes; so, a random effect would be important.
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Consider a study that wishes to estimate fish size between two regions in
Quebec (Laurentians and Eastern Townships).

Draw a random sample of 50 lakes in each region.

Randomly sample 10 individuals in each lake (n = 10).

Assume for the sake of discussion that all individuals within each lake had the
exact same size but size differed between each of the lakes, then

intraclass correlation = 1 and a design effect=1 + 1(50 -1) = 50.

In this case, we have started our sample with 500 individuals across lakes,
but the “design” can only “use” 50 values (“observations”) in the analysis
because all individuals were too similar within lakes! So, to increase the
degrees of freedom, we would need to sample now 500 lakes per region
instead! So, this design effect reduced the statistical power of the ANOVA.

2023-03-16
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« Consider now these data (two other regions): If variation in size within each
lake is the same for all lakes, then

intraclass correlation=0 and what we call design effect=1+0(50 -1) = 1.

In this extreme case, each additional lake adds no new information about the
fish size in each region.

Only surveying one lake would give us the same information (with the same
standard error) about fish size as we get from surveying 50 lakes. So, to get

the same degrees of freedom we only need to sample now 500 fish in a
single lake per region instead of 10 individuals across 50 lakes!
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1 6 11 17 23 29 35 41 47 1 6 11 17 23 29 35 41 47
Lakes (Outaouais) Lakes (Abitibi)
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Scatter of

individual S 1C-095

measurements

Scatter of Scatter 1CC-0.40

individual of means . .

measurements intraclass correlation
coefficient (ICC)

Scatter of - Scatter

individual } ofmeans '6C-010

measurements

4 patients

Schematic demonstrating intraclass correlation coefficient (ICC) as a measure of reproducibility. 4 patients each
have measurements made 4 times (small dots) with each patient also summarised by an individual average (large
dot). In the top panel, there is little within-patient scatter, and therefore the ratio of variance of mean (large dots)
to the variance of the raw data (small dots) is almost 1, so ICC=1. In the middle panel, the ICC is lower. In the
bottom panel, within-patient scatter is large, and the means much less varied than the raw data, so ICC is low.

Extracted from Moraldo et al. (2013); Journal of Cardiology, 166: 95.
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Mixed models mix random and
fixed effects and allows estimating
conducting statistical testing
(inference) via proper estimation of
design effects for hierarchical
(clustered) sampling! It also affects
parameter estimation (e.g.,
Simpson’s paradox)

2023-03-16
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Why consider a mixed-model?
Some factors you may be able to control (fixed) and
others you won'’t (random)

(i) Models using random effects are important for inference when
analyzing data that exhibit non-independence (hierarchical
structure).

(ii) Random effects provide a unifying statistical framework for
models that might otherwise seem unrelated, for example,
time-series models for populations, spatial models, genetics
models, and models for variation among individuals;

(iii) Models that include random effects are increasingly easy to
build and customize for specific problems using publicly
available modelling tools and software.

adapted from Thorson and Minto
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Time for reading

A brief introduction to mixed effects
modelling and multi-model inference

Peer in ecology

Xavier A. Harrison', Lynda Donaldson®, Maria Eugenia Correa-Cano?,
Julian Evans*?, David N. Fisher**, Cecily E.D. Goodwin?,
Beth S. Robinson”, David J. Hodgson® and Richard Inger>*
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Mixed models mixes random and
fixed effects!

(next lecture)
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