Understanding mixed models for
ANOVAs (mixed model ANOVA or
Linear Mixed Effects ANOVA)
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The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly

in observational studies).

Do we need a random effect here?

Effects of temperature on fish growth
(difference in growth begin/end of study)
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The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?
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The advantages of mixed models - increase statistical power and estimation
accuracy through dependent replication and design convenience (particularly
in observational studies).

Do we need a random effect here?
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Do we need a random effect here? Which experimental results you should trust the most?
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Data structure (fixed effect) - in a regular fixed factor ANOVA individual fish would be treated as
an individual replicate regardless of tank, i.e., 21 individual fish per temperature treatment
(potential reason: put fish in tanks just to reduce logistics). Tank variation is NOT considered.

anova(lm(fish ~ treatments))

* teatments * tanks ¢ * veamenss * tnks ¢
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Data structure (mixed effect) — here individual fish are treated as replicates within tanks and tank
variation within treatments is also considered; hence we need to use a one-factorial mixed-
effects ANOVA:

Ime(fish ~ treatments, random=~1]|tanks)

* weatments ¥ [tanks s ¢ ueatments ¢ nks © * veamenis  unks ¢

The plural of anecdote is not data (Roger Brinner)

Case 1l Case 2
(random effect very strong, i.e., more (random effect weak, i.e., small
uncertainty/variation among replicates (tanks)) uncertainty/variation among replicates (tanks))
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Mixed models for ANOVAs (tutorial 9)
Sources of variation:

Fixed effect model -
Effects of treatments (e.g., temperature)
Residuals

Mixed effect model (fixed + random effect) -
Effects of treatments (e.g., temperature)
Residuals

Variation among replicates within fixed effect

(e.g., tank)
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Understanding mixed models for
regressions via a two-stage
method!
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Dependent Variable y

Random Intercepts Random Intercepts and Slopes oo, "'Y
Vi=05+Px

Dependent Variable y

Predictor Variable x Predictor Variable x

From Harrison et al. (2018) Peer) 6:4794
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Zuur et al. (2007) used marine benthic data from nine inter-tidal areas along the Dutch coast
collected by the RIKZ institute (summer of 2002).

In each intertidal zone (zone where ocean meets land; denoted by ‘beach’), five samples
were taken, and the macro-fauna and abiotic variables were measured.

The goal is to model how species richness change as a function of NAP (Normal Amsterdam
Level: the height of a sampling station compared to mean tidal level) and Exposure - a
nominal index for the entire beach (high/low) composed of the following elements: wave
action, length of the surf zone, slope, grain size, and the depth of the anaerobic layer.

Rij = bo + blxNAPl] + bszxposuTe]' + eij

v v

Each site for each beach One value per beach
has a NAP value

e ~ N0, 0?)

RIKZ data

i = sites;
j = beach

Zuur AF, leno EN, Smith GM (2007)
Analysing Ecological Data. Springer.
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RIKZ data

A 8 c ) E

ample  Richness  Exposure  NAP Beach
1 0.045
1036
1336
05616
-0.684
119
082
0635
0.061
1334
0976
1494
0201
0482
0.167
1768
003
046
1367
0811
1117
0503
0729

RIKZ duta

PO AR AR AL LWL WSS NN RS R

45
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Rij = bo + blxNAPij + eij

Urchins, Holothurians, Worms, Whelks, Tritons & Turbans
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Understanding mixed models for regressions via a
two-stage method!
Mixed effects models for regression are often introduced
first by using an easy-to-understand framework called two-
stage analysis.
We then understand better how a mixed model for
regression works BUT also understand that the two-stage
analysis is not optimal for the analysis.
Then the two-stages (or multiple stages) of the model are
combined into a single mixed effect model.
17

Understanding mixed models via a two-stage method!

The first stage is to fit a linear regression model to each category of the random
factor (here beach). Separate intercepts and slopes are calculated for each
beach.

Ri1=b0+b1XNAPi1+ei ]=1
Ri2=b0+b1XNAPi2+ei ]=2

Ri9 b0+b1XNAPi9+ei ]:9

Each beach would have a different slope and intercept
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Understanding mixed models via a two-stage method!
The first stage is to fit a linear regression model to each category of the random

factor (here beach). Separate intercepts and slopes are calculated for each
beach. HERE BEACH 1 WAS MODELLED

Ril = bO + blxNAPi]_ + e;

2023-03-21

R1y 1 NAPyy e
Ry 1 NAPy; bo €2
R31 = 1NAP31 X(b 1)+ e3
R4,1 1 NAP41 11 €4
R51 1 NAP51 €s
= SitES; Ri is a vector of length 5 containing
_ the species richness values of the 5
J beach sites on beach 1
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Understanding mixed models via a two-stage method!

The first stage is to fit a linear regression model to each category of the random
factor (here beach). Separate intercepts and slopes are calculated for each
beach.

Ril = b(] + blxNAPil + e;

Let’'s say beach 1 had 4 observations instead of 5, then:

Rll 1 NAP11 el
Ry1 1 NAPy | bo, e
Ry 1 NAP3; | "\ by, )"\ €3
R4_1 1 NAP, 41 €4
RIKZ data
A B C D E
ample Richness  Exposure  NAP Beach

1 11 1 0.045 1

2 10 1 a0 1

3 13 1 -1.336 1

4 n 1 ol 1

5 10 1 -0.684 1

5 8 1 119 2

7 9 1 0.82 2

8 8 1 0.635 2

9 19 1 0.061 2

10 17 1 -1334 2

11 6 2 -0.976 3

12 1 2 1494 3

13 4 2 -0.201 3

14 3 2 -0.482 3

15 3 2 0.167 3

16 1 2 1.768 4

1% 3 2> om 4

18 3 2 0.46 4

19 1 2 137 4

20 4 2 -0.811 4

2 3 11 s

22 22 1 -0.503 5

23 6 1 0.729 5
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Understanding mixed models via a two-stage method!

The first stage is to fit a linear regression model to each category of the random
factor (here beach). Separate intercepts and slopes are calculated for each
beach.

Rij=b0+b1XNAPij+ei]’ j= 1,...,4

2

3 RIKZ <- read.table("RIKZ.txt",header= )
4 Beta <- vector()

5-for (i in 1:9){

6 result <- summary(lm(Richness ~ NAP,subset = (Beach==i), data=RIKZ))
7 Beta[i] <- result$coefficients[2, 1]

8 1
9
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Understanding mixed models via a two-stage method!

The first stage is to fit a linear regression model to each category of the random
factor (here beach). Separate intercepts and slopes are calculated for each
beach.

Rij=b0+b1XNAPij+€ij j= 1,..,4

2

3 RIKZ <- read.table("RIKZ.txt",header= D
4 Beta <- vector()

5-for (i in 1:9){

6

7 Beta[i] <- result$coefficients[2, 1]
8 1
9

result <- summary(lm(Richness ~ NAP,subset = (Beach==i), data=RIKZ))

> Beta

[1] -0.3718279 -4.1752712 -1.7553529 -1.2485766 -8.9001779 -1.3885120 -1.5176126 -1.8930665 -2.9675304

Lots of differences in slopes among beaches!
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RIKZ data

RIKZ data

Beach 2 Beach 9

Beta

[1] -0.3718279 -4.1752712 -1.7553529 -1.2485766 -8.9001779 -1.3885120 -1.5176126 -1.8930665 -2.9675304

24



Understanding mixed models via a two-stage method!

The first stage is to fit a linear regression model to each category of the random
factor (here beach). Separate intercepts and slopes are calculated for each
beach.

Ri1=b0+b1><NAPi1+ei ]:1
Ri2=b0+b1><NAPi2+ei ]:2

=
o)
[

_b0+b1XNAPi9+ei ]:9

Each beach would have a different slope and intercept

Remember that i represents the sites within each beach
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The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:

slope of Exposure

for the s| ‘R Residuals

for the slopes of Ron _ ¢ the sl

. ) NAP o7 for the slopes

'ﬂj=n‘+erxp0surej—|—ebj j=1,...,9
Intercept

> Beta
[1] -0.3718279 -4.1752712 -1.7553529 -1.2485766 -8.9001779 -1.3885120 -1.5176126 -1.8930665 -2.9675304

Jj = beach

How does the influence of NAP on richness (slopes of R on NAP)
change as a function of exposure?
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The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:

slope of Exposure

for the slopes of R ol E?ﬂ?; zllzpes
. N NAP .
Be=n+ 7 X Exposure, +ey, %=1,...,9
’ Intercept

> Expose <- factor(c(Q, 0, 1, 1, 0, 1, 1, 0, @))
> anova(lm(Beta ~ Expose))
Analysis of Variance Table

Response: Beta

Df Sum Sq Mean Sq F value Pr(>F)
Expose 1 10.600 10.6003 1.7551 0.2268
Residuals 7 42.278 6.0397

No significant effect of exposure
on the individual beach slopes
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The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:

—

Bi =K; Xy +ey, e,~N(OD)

< ey

~0.37 10 1
—4.17 10 €b,
—175 11 . €by
—1.24 11 ep,
890 |=|1 0 x(”)+ en,
T

—1.38 11 ehe
—1.51 11 ey,
~1.89 10 e

b
~2.96 10 ol

bo
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Understanding mixed models via a two-stage method!

The two formulae of the two-stage approach (more predictors, more stages) and

some issues: )
R, =Z;Xb;+¢; e~ N(O, 0'2) hyperparameter
_ (assumed

Bi=K;xy+ €, ep;~ N(0,D) independent)

1) all the data from a beach is summarized by one parameter (intercept and slope per
beach).

2) We analyzed regression parameters, not the observed data; i.e., the variable of
interest is not modelled directly but rather the slopes or intercepts or both.

3) The number of observations used to calculate the summary statistic (slopes) is not
used in the second step. In this case, we had five observations for each beach. But if
you have 5, 50, or 50,000 observations, you still end up with only one summary
statistic.

Zuur AF, leno EN, Smith GM (2007) Analysing Ecological Data. Springer.
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The more appropriate procedure:
Mixed models in one-single step

(next lecture)
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