
Understanding mixed models for 
ANOVAs (mixed model ANOVA or
Linear Mixed Effects ANOVA)



The advantages of mixed models - increase statistical power and estimation 
accuracy through dependent replication and design convenience (particularly 
in observational studies).
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Fixed factor = 
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Do we need a random effect here? Which experimental results you should trust the most?

YES NO



Data structure (fixed effect) - in a regular fixed factor ANOVA individual fish would be treated as 
an individual replicate regardless of tank, i.e., 21 individual fish per temperature treatment 
(potential reason: put fish in tanks just to reduce logistics).  Tank variation is NOT considered.

anova(lm(fish ~ treatments))



Data structure (mixed effect) – here individual fish are treated as replicates within tanks and tank 
variation within treatments is also considered; hence we need to use a one-factorial mixed-
effects ANOVA:

lme(fish ~ treatments, random=~1|tanks)



The plural of anecdote is not data (Roger Brinner) 

Case 1 
(random effect very strong, i.e., more

uncertainty/variation among replicates (tanks))

High temperature - Tanks

G
ro

w
th

High temperature - Tanks

Case 2
(random effect weak, i.e., small

uncertainty/variation among replicates (tanks))



Mixed models for ANOVAs (tutorial 9)

Sources of variation:

Fixed effect model -
Effects of treatments (e.g., temperature)
Residuals 

Mixed effect model (fixed + random effect) -
Effects of treatments (e.g., temperature)
Residuals 
Variation among replicates within fixed effect 
(e.g., tank) 



Understanding mixed models for 
regressions via a two-stage 
method!



From Harrison et al. (2018) PeerJ 6:e4794





Zuur et al. (2007) used marine benthic data from nine inter-tidal areas along the Dutch coast 
collected by the RIKZ institute (summer of 2002).  

In each intertidal zone (zone where ocean meets land; denoted by ‘beach’), five samples 
were taken, and the macro-fauna and abiotic variables were measured. 

The goal is to model how species richness change as a function of NAP (Normal Amsterdam 
Level: the height of a sampling station compared to mean tidal level) and Exposure - a 
nominal index for the entire beach (high/low) composed of the following elements: wave 
action, length of the surf zone, slope, grain size, and the depth of the anaerobic layer.

Zuur AF, Ieno EN, Smith GM (2007) 
Analysing Ecological Data. Springer.

102 5 Mixed Effects Modelling for Nested Data

As species richness is a count (number of different species), a generalised linear
model (GLM) with a Poisson distribution may be appropriate. However, we want
to keep things simple for now; so we begin with a linear regression model with the
Gaussian distribution and leave using Poisson GLMs until later. A first candidate
model for the data is

Rij = α + β1 × NAPij + β2 × Exposurei + εij εij ∼ N (0, σ 2) (5.1)

Rij is the species richness at site j on beach i, NAPij the corresponding NAP value,
Exposurei the exposure on beach i, and εij the unexplained information. Indeed,
this is the familiar linear regression model. The explanatory variable Exposure is
nominal and has two1 classes. However, as we have five sites per beach, the richness
values at these five sites are likely to be more related to each other than to the
richness values from sites on different beaches. The linear regression model does
not take this relatedness into account. The nested structure of the data is visualised
in Fig. 5.1.

Many books introduce mixed effects modelling by first presenting an easy to
understand technique called 2-stage analysis, conclude that it is not optimal, and
then present the underlying model for mixed effects modelling by combining the
2 stages into a single model (e.g. Fitzmaurice et al., 2004). This is a useful way
to introduce mixed effects modelling, and we also start with the 2-stage analysis
method before moving onto mixed effects modelling.
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Fig. 5.1 Set up of the RIKZ data. Measurements were taken on 9 beaches, and on each beach 5
sites were sampled. Richness values at sites on the same beach are likely to be more similar to each
other than to values from different beaches

1Originally, this variable had three classes, but because the lowest level was only observed on one
beach, we relabeled, and grouped the two lowest levels into one level called ‘a’. The highest level
is labeled ‘b’.
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Each site for each beach 
has a NAP value

One value per beach



102 5 Mixed Effects Modelling for Nested Data

As species richness is a count (number of different species), a generalised linear
model (GLM) with a Poisson distribution may be appropriate. However, we want
to keep things simple for now; so we begin with a linear regression model with the
Gaussian distribution and leave using Poisson GLMs until later. A first candidate
model for the data is

Rij = α + β1 × NAPij + β2 × Exposurei + εij εij ∼ N (0, σ 2) (5.1)

Rij is the species richness at site j on beach i, NAPij the corresponding NAP value,
Exposurei the exposure on beach i, and εij the unexplained information. Indeed,
this is the familiar linear regression model. The explanatory variable Exposure is
nominal and has two1 classes. However, as we have five sites per beach, the richness
values at these five sites are likely to be more related to each other than to the
richness values from sites on different beaches. The linear regression model does
not take this relatedness into account. The nested structure of the data is visualised
in Fig. 5.1.

Many books introduce mixed effects modelling by first presenting an easy to
understand technique called 2-stage analysis, conclude that it is not optimal, and
then present the underlying model for mixed effects modelling by combining the
2 stages into a single model (e.g. Fitzmaurice et al., 2004). This is a useful way
to introduce mixed effects modelling, and we also start with the 2-stage analysis
method before moving onto mixed effects modelling.

Beach 1 Beach 2 Beach 9

RIKZ data

Site 1
Site 2

Site 5

Site 4
Site 3

Site 1
Site 2

Site 5

Site 4
Site 3

Site 1
Site 2

Site 5

Site 4
Site 3

....................

Fig. 5.1 Set up of the RIKZ data. Measurements were taken on 9 beaches, and on each beach 5
sites were sampled. Richness values at sites on the same beach are likely to be more similar to each
other than to values from different beaches

1Originally, this variable had three classes, but because the lowest level was only observed on one
beach, we relabeled, and grouped the two lowest levels into one level called ‘a’. The highest level
is labeled ‘b’.

.

.

.
45

RIKZ data



𝑅!" = 𝑏# + 𝑏$×𝑁𝐴𝑃!" + 𝑒!"



Understanding mixed models for regressions via a 
two-stage method!

Mixed effects models for regression are often introduced 
first by using an easy-to-understand framework called two-
stage analysis.

We then understand better how a mixed model for 
regression works BUT also understand that the two-stage 
analysis is not optimal for the analysis.  

Then the two-stages (or multiple stages) of the model are 
combined into a single mixed effect model.



Understanding mixed models via a two-stage method!

𝑅!$ = 𝑏# + 𝑏$×𝑁𝐴𝑃!$ + 𝑒! 𝑗 = 1

The first stage is to fit a linear regression model to each category of the random 
factor (here beach).  Separate intercepts and slopes are calculated for each 
beach.

𝑅!% = 𝑏# + 𝑏$×𝑁𝐴𝑃!% + 𝑒! 𝑗 = 2

𝑅!& = 𝑏# + 𝑏$×𝑁𝐴𝑃!& + 𝑒! 𝑗 = 9

…… .

Each beach would have a different slope and intercept 



Understanding mixed models via a two-stage method!
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𝑖 = sites; 
𝑗 = beach

Ri is a vector of length 5 containing 
the species richness values of the 5 

sites on beach 1

The first stage is to fit a linear regression model to each category of the random 
factor (here beach).  Separate intercepts and slopes are calculated for each 
beach. HERE BEACH 1 WAS MODELLED



Understanding mixed models via a two-stage method!

Let’s say beach 1 had 4 observations instead of 5, then:

𝑅!!
𝑅"!
𝑅#!
𝑅$!

=

1 𝑁𝐴𝑃!!
1 𝑁𝐴𝑃"!
1 𝑁𝐴𝑃#!
1 𝑁𝐴𝑃$!

×
𝑏&!
𝑏!!

+ 

𝑒!
𝑒"
𝑒#
𝑒$

The first stage is to fit a linear regression model to each category of the random 
factor (here beach).  Separate intercepts and slopes are calculated for each 
beach.

𝑅!$ = 𝑏# + 𝑏$×𝑁𝐴𝑃!$ + 𝑒!
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Understanding mixed models via a two-stage method!

𝑅'( = 𝑏& + 𝑏!×𝑁𝐴𝑃'( + 𝑒'( 𝑗 = 1,… , 4

The first stage is to fit a linear regression model to each category of the random 
factor (here beach).  Separate intercepts and slopes are calculated for each 
beach.

Lots of differences in slopes among beaches!
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Understanding mixed models via a two-stage method!

𝑅!$ = 𝑏# + 𝑏$×𝑁𝐴𝑃!$ + 𝑒! 𝑗 = 1

The first stage is to fit a linear regression model to each category of the random 
factor (here beach).  Separate intercepts and slopes are calculated for each 
beach.

𝑅!% = 𝑏# + 𝑏$×𝑁𝐴𝑃!% + 𝑒! 𝑗 = 2

𝑅!& = 𝑏# + 𝑏$×𝑁𝐴𝑃!& + 𝑒! 𝑗 = 9

…… .

Each beach would have a different slope and intercept

Remember that i represents the sites within each beach 



The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:

104 5 Mixed Effects Modelling for Nested Data

extracts and stores the slope for NAP for each regression analysis. The estimated
betas can be obtained by typing Beta in R:

-0.37 -4.17 -1.75 -1.24 -8.90 -1.38 -1.51 -1.89 -2.96

Note that there are considerably differences in the nine estimated slopes for NAP.
Instead of the loop in the code above, you can also use the lmList command
from the nlme package to produce the same results. This option also gives a nice
graphical presentation of estimated intercepts and slopes (Pinheiro and Bates, 2000).

In the second step, the estimated regression coefficients are modelled as a func-
tion of exposure.

β̂i = η + τ × Exposurei + bi i = 1, . . . , 9 (5.4)

This is ‘just’ a one-way ANOVA. The response variable is the estimated slopes
from step 1, Exposure is the (nominal) explanatory variable, τ is the corresponding
regression parameter, η is the intercept, and bi is random noise. The matrix notation
for this is below. It looks intimidating, but this is only because exposure is a factor
with levels 0 and 1. Level 0 is used as the baseline. The model in Equation (5.4) is
written in matrix notation as




−0.37
−4.17
−1.75
−1.24
−8.90
−1.38
−1.51
−1.89
−2.96





=





1 0
1 0
1 1
1 1
1 0
1 1
1 1
1 0
1 0





×
(

η

τ

)
+





b1

b2

b3

b4

b5

b6

b7

b8

b9





⇔ β̂i = Ki × γ + bi i = 1, . . . , 9

(5.5)

The vector γ contains the intercept η and slope τ and is not the same thing as βi.
The following R code was used to apply this model.

> fExposure9 <- factor(c(0, 0, 1, 1, 0, 1, 1, 0, 0))
> tmp2 <- lm(Beta ∼ fExposure9))

As we already mentioned, this linear regression model is also called a one-way
analysis of variance (ANOVA). The results of the anova command are not pre-
sented here, but it shows that the p-value for exposure is 0.22, indicating that there
is no significant exposure effect on the nine slopes.

The two formulae of the 2-stage approach are repeated in Equation (5.6).

Ri = Zi × βi + εi

β̂i = Ki × γ + bi
(5.6)

Residuals 
for the slopes

slope of Exposure
for the slopes of R on
NAP

Intercept

𝑒'!

𝑗 = beach

How does the influence of NAP on richness (slopes of R on NAP) 
change as a function of exposure?



No significant effect of exposure
on the individual beach slopes

The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:
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𝑒!!
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𝑒!'
𝑒!(
𝑒!)

!𝛃@ = 𝐊A × 𝛾 + 𝑒!" 𝑒!!~ 𝑁(0, 𝐷)

The second step fits the estimated regression slopes as a function of exposure.
Given that expose is a nominal variable, this would just a simple one-way ANOVA:



Understanding mixed models via a two-stage method!

The two formulae of the two-stage approach (more predictors, more stages) and 
some issues:

hyperparameter
(assumed

independent) 

𝐑" = 𝐙" × 𝑏" + 𝑒" 𝑒"~ 𝑁(0, 𝜎#)
/𝛃$ = 𝐊$ × 𝛾 + 𝑒!! 𝑒!!~ 𝑁(0, 𝐷)

1) all the data from a beach is summarized by one parameter (intercept and slope per 
beach).

2) We analyzed regression parameters, not the observed data; i.e., the variable of 
interest is not modelled directly but rather the slopes or intercepts or both. 

3) The number of observations used to calculate the summary statistic (slopes) is not 
used in the second step. In this case, we had five observations for each beach. But if 
you have 5, 50, or 50,000 observations, you still end up with only one summary 
statistic.

Zuur AF, Ieno EN, Smith GM (2007) Analysing Ecological Data. Springer.



The more appropriate procedure:
Mixed models in one-single step

(next lecture)


