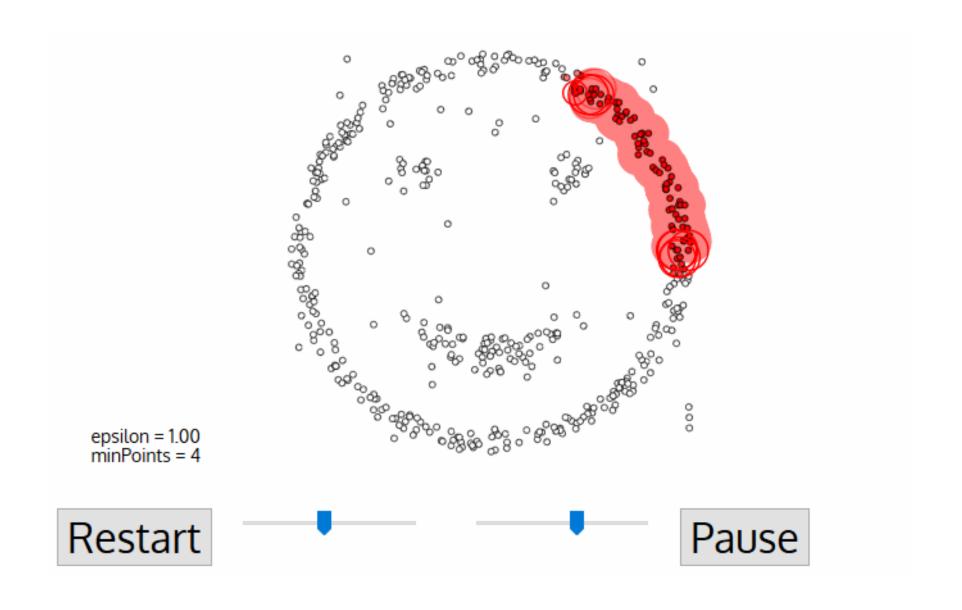
Learning from the data

Pattern recognition & data mining

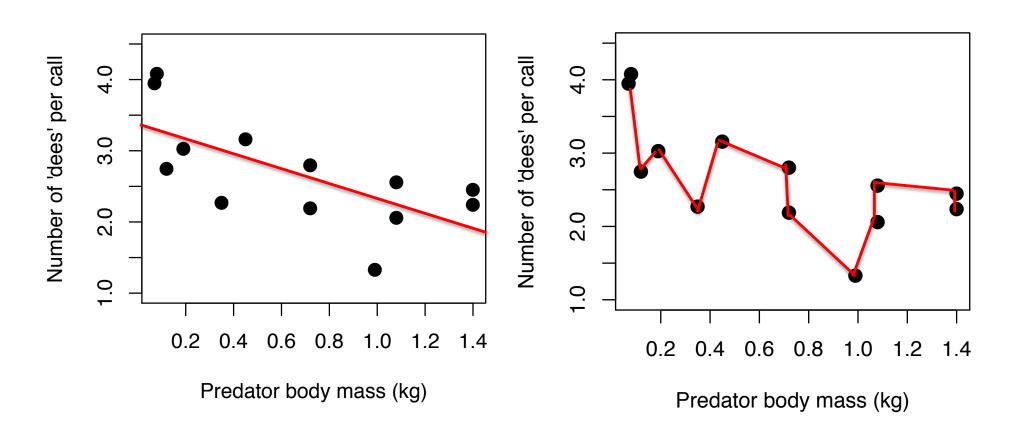
What is machine learning? by Sabine Hauert, University of Bristol (for the Royal Society)

https://www.youtube.com/embed/F1wlCerC40E



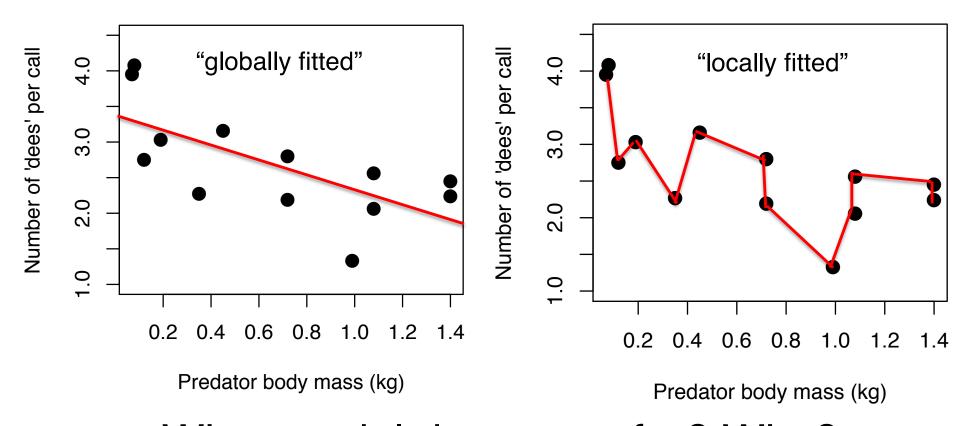
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

Learning from the data



What model do you prefer? Why? Which model does better?

Learning from the data



What model do you prefer? Why?

"Intelligence is 10 million rules" (Doug Lenat)....but Rules are meant to be generalizable

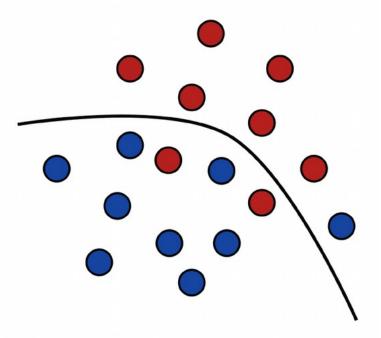
- **Machine learning** is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed (Wikipedia).

- **Machine learning** is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed (Wikipedia).
- **Machine learning** focuses on the development of computer algorithms that can change when exposed to new data. The process of **machine learning** is similar to that of data mining. The process is not strictly static following programming instructions; instead, they make data driven decisions (adapted from Wikipedia).

- **Machine learning** is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed (Wikipedia).
- **Machine learning** focuses on the development of computer algorithms that can change when exposed to new data. The process of **machine learning** is similar to that of data mining. The process is not strictly static following programming instructions; instead, they make data driven decisions (adapted from Wikipedia).
- Analysis based on **machine learning** may change when the learning process algorithm is run on the same data multiple times.

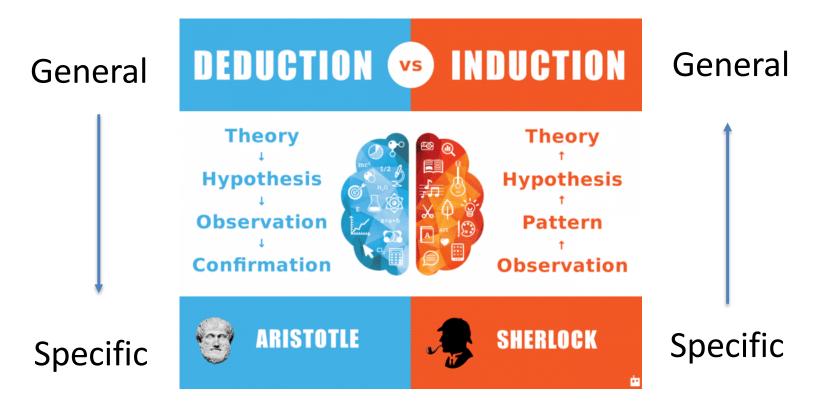
Machine learning mixes computer sciences and statistics and relaxes assumptions ("sometimes").

Foundations of Machine Learning



Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar

Machine learning as an inductive process



Model level

Induction phase (specific to general; i.e., looking for a pattern in data and then generalize it) -----

model

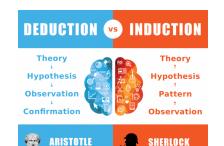
deduction phase (general to specific)

Data level

training data

prediction & validation

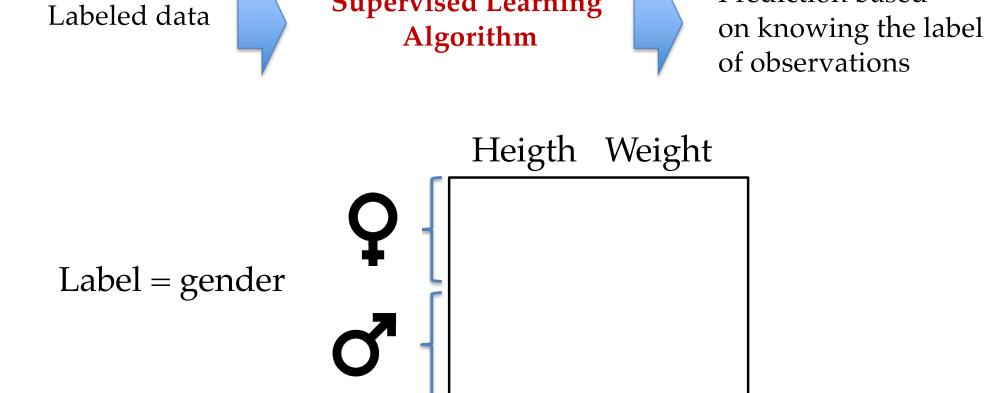
Modified from http://www.cs.joensuu.fi/~whamalai/skc/ml.html



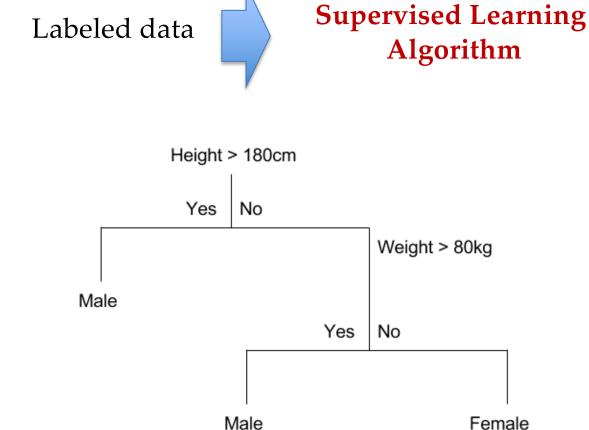
Learning from the data Machine learning algorithms - Two main types

Supervised Learning

Prediction based



Learning from the data Machine learning algorithms - Two main types

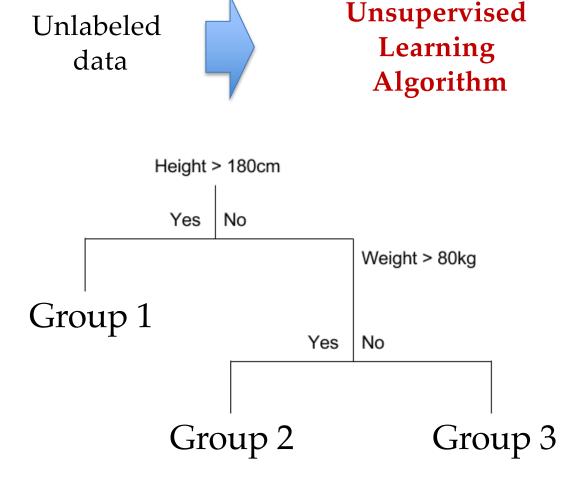


Prediction based on knowing the label

Predicting gender on the basis of Height and Weight

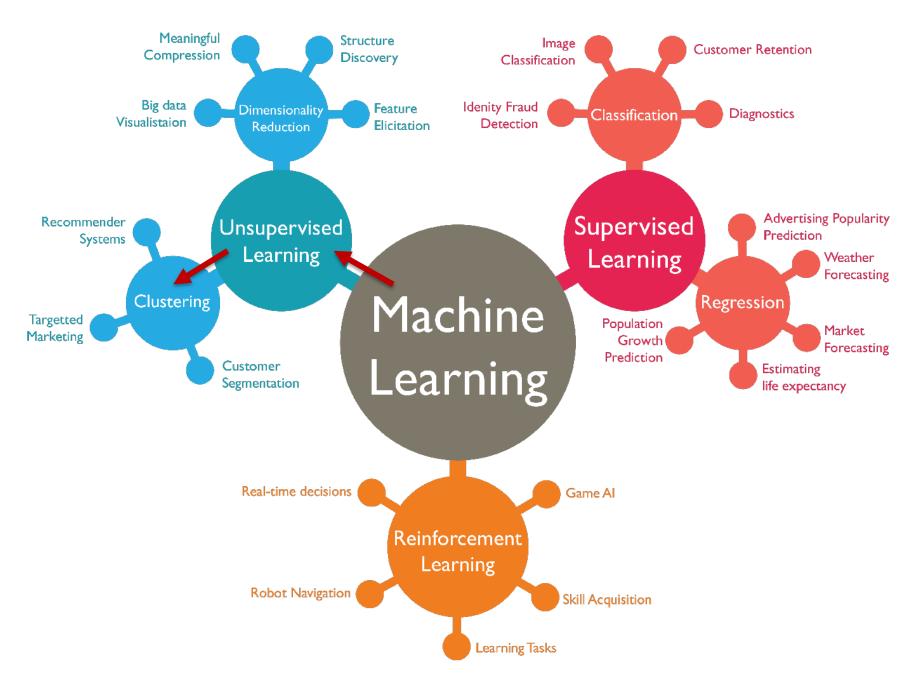
Label = gender

Learning from the data [TODAY] Machine learning algorithms - Two main types



Prediction based on finding patterns in the data

e.g., Finding number of groups in data and ways to classify (predict) observations based on their characteristics (height/weight)



https://medium.com/marketing-and-entrepreneurship/10-companies-using-machine-learning-in-cool-ways-887c25f913c3

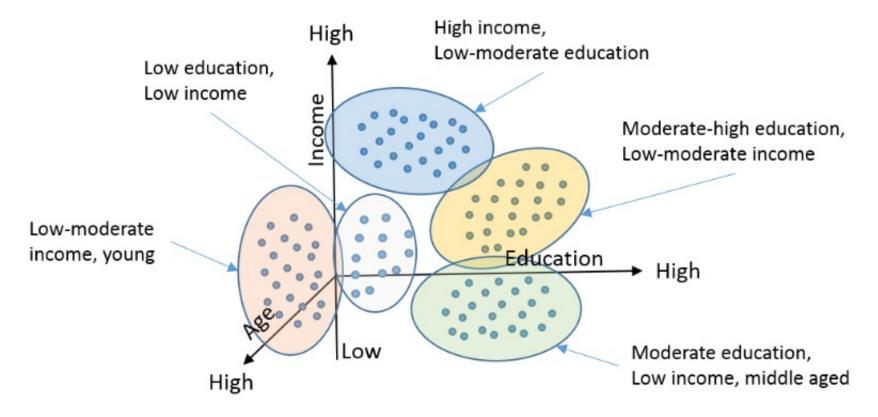
The k-means clustering algorithm

Easy to see what it does (video)

https://www.youtube.com/watch?v=4b5d3muPQmA

K – means clustering method (unsupervised algorithm)

(an example outside of biology)



6 groups seem to describe the data quite well

Parallel *k*-Means Clustering for Quantitative Ecoregion Delineation Using Large Data Sets

Jitendra Kumar^{a,1}, Richard T. Mills^a, Forrest M. Hoffman^a, William W. Hargrove^b

^aComputer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA ^bSouthern Research Station, USDA Forest Service, Asheville, NC, USA

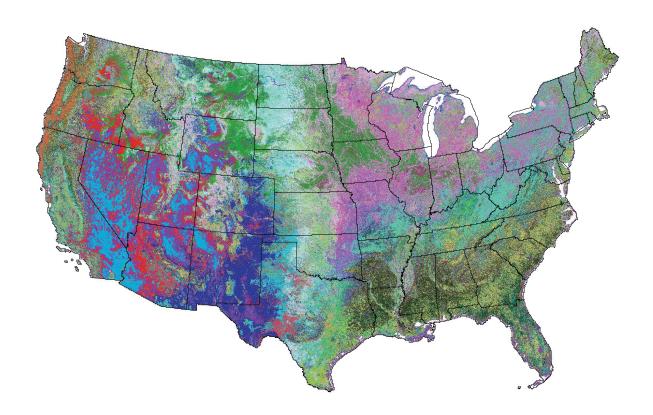


Figure 6: The 2008 map of 50 phenoregions defined for the CONUS derived from cluster analysis of Phenology data

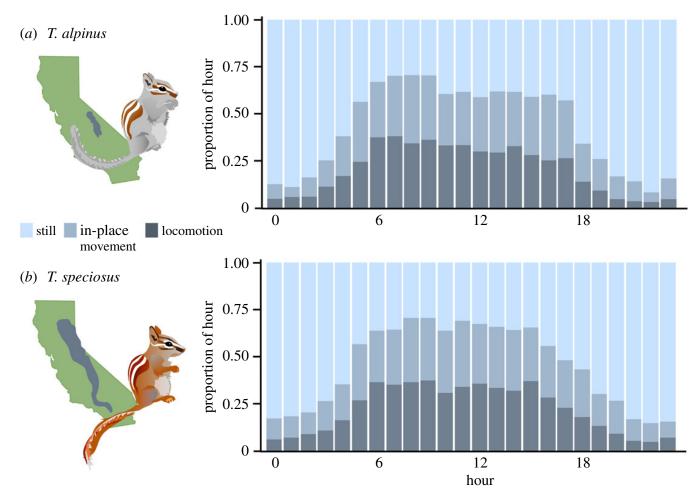


Figure 1. Daily activity budgets for *T. alpinus* (*a*) and *T. speciosus* (*b*). Mean proportion of each hour spent still (light shading), moving in place (medium shading) or in locomotion (dark shading) is shown; no significant differences in activity were found between species. Species distributions are shown on the left. (Online version in colour.)

Animal behaviour Ecological specialization, variability in activity patterns and response to environmental change Research Talisin T. Hammond^{1,2}, Rupert Palme³ and Eileen A. Lacey¹

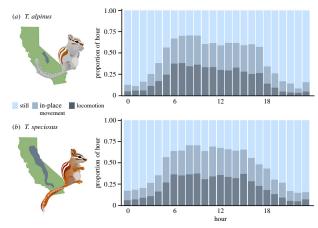
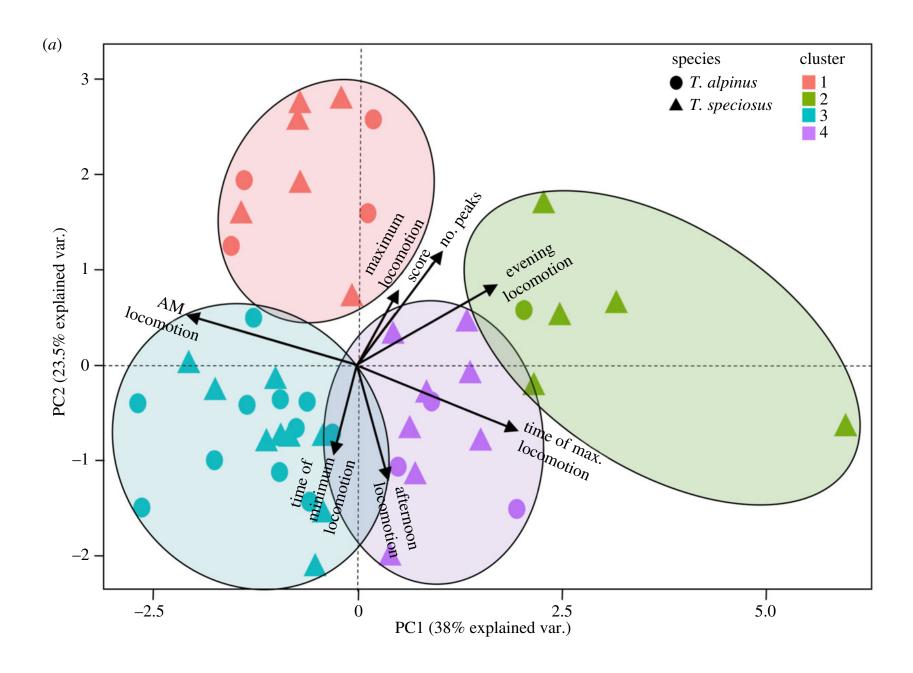


Figure 1. Daily activity budgets for *T. alpinus* (a) and *T. spedosus* (b). Mean proportion of each hour spent still (light shading), moving in place (medium shading) or in locomotion (dark shading) is shown; no significant differences in activity were found between species. Species distributions are shown on the left. (Online version in colour.)

From following individual activity, 7 variables were generated per individual

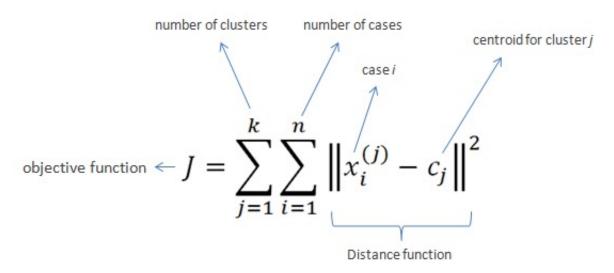
feature	description
maximum	magnitude of maximum locomotion
time of maximum	time of maximum locomotion
time of minimum	time of minimum locomotion
afternoon (\sim 10:45 $-$ 15:15) locomotion	area under the curve (AUC) of afternoon hours divided by AUC of daylight hours
morning (\sim 06:30 – 10:45) locomotion	AUC of morning hours divided by AUC of daylight hours
evening (\sim 15:15 $-$ 19:30) locomotion	AUC of evening hours divided by AUC of daylight hours
no. of peaks	modality of locomotion curve (e.g. bimodal $=$ 2)



Clustering of activity patterns. A biplot showing clustering of activity data along the first two PCs of locomotion-based features

The basis of k-means

- Partition *n* points (observations) across multiple variables into k groups.
- The goal is to minimize an objective function (here the sum-of-squares of multivariate distances (Euclidean) within groups).



Learning from the data – Machine learning algorithms: k – means

We will consider only two dimensions here for visual simplicity (Height and Weight)

Unlabeled data

Unsupervised Learning Algorithm

Prediction based on finding patterns in the data

Height > 180cm

Yes No

Weight > 80kg

Group 1

Yes No

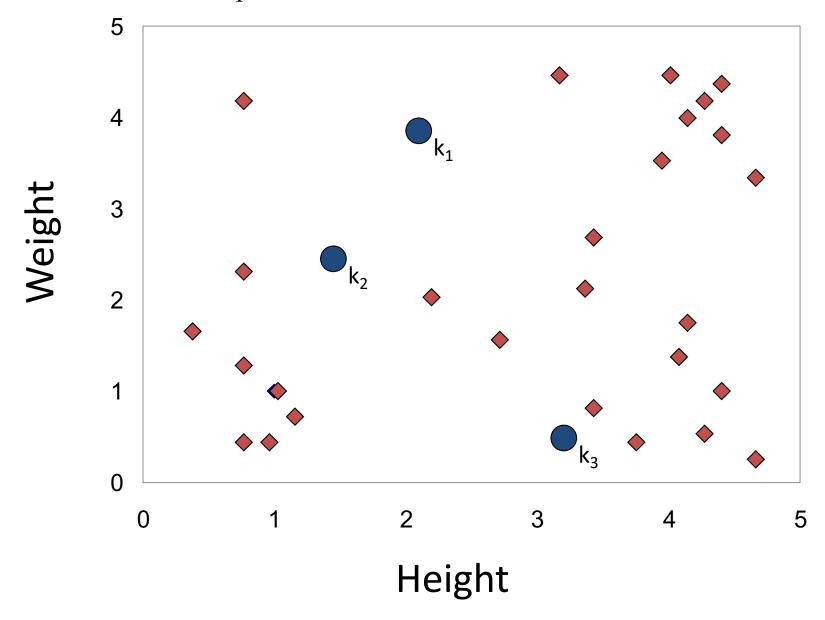
Group 2

Group 3

e.g., Finding number of groups in data and ways to classify (predict) observations based on their characteristics (height/weight)

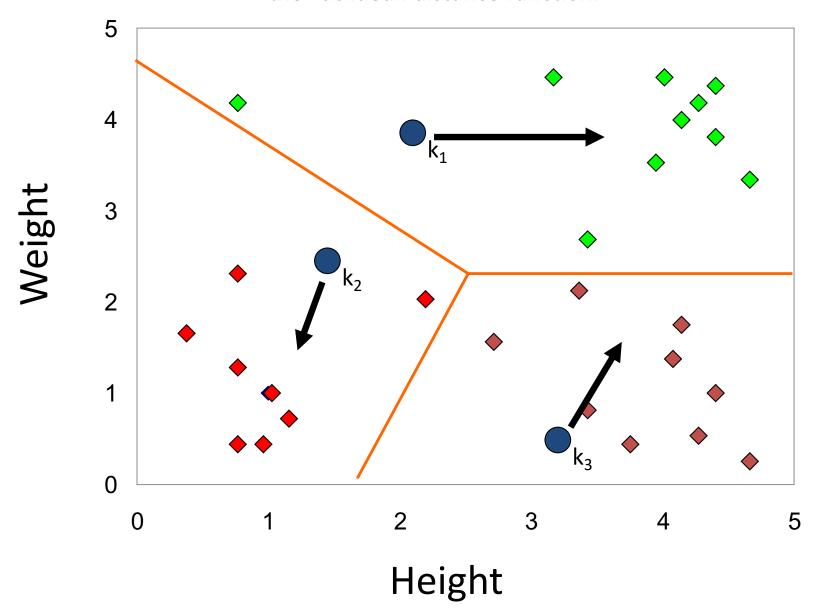
K-means Clustering – steps 1 & 2

- 1. Clusters the data into k groups where k is predefined.
- 2. Select *k* points at <u>random</u> as cluster centers.



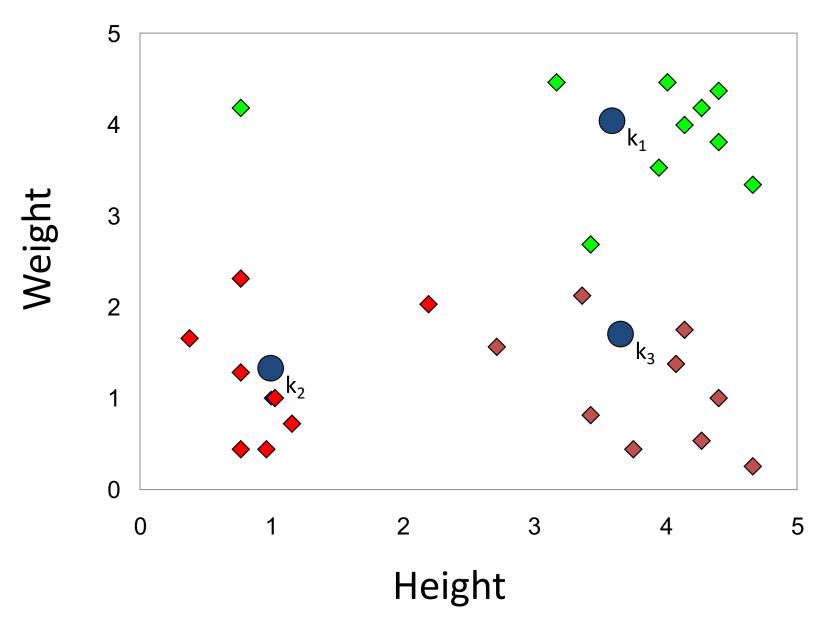
K-means Clustering – step 3

Assign objects to their closest cluster center according to the *Euclidean distance* function.



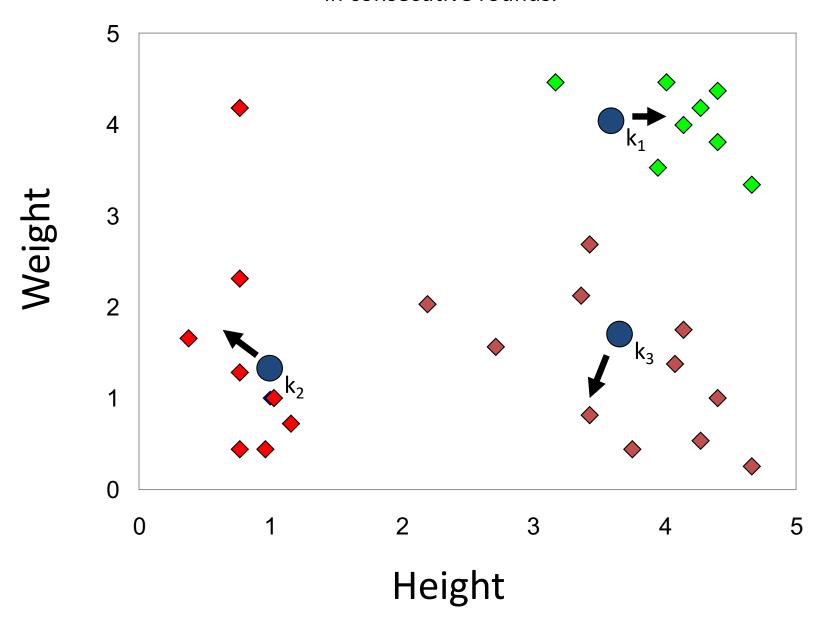
K-means Clustering – step 4

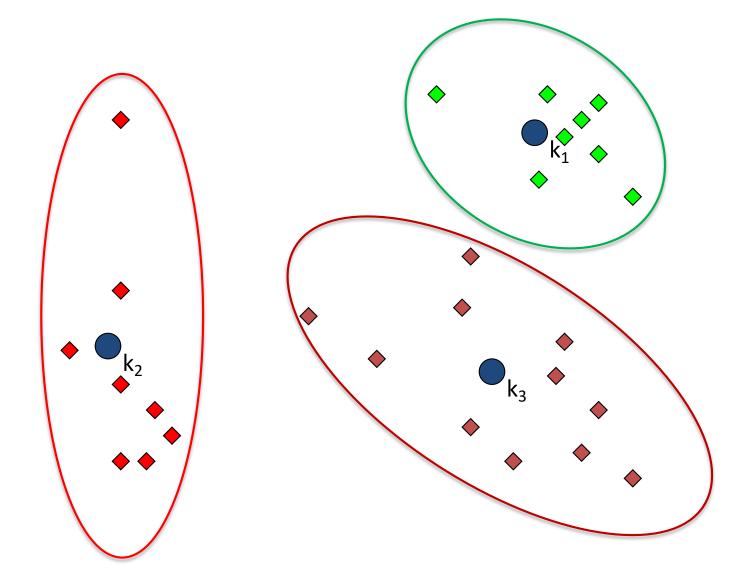
Calculate the centroid or mean of all objects in each cluster.

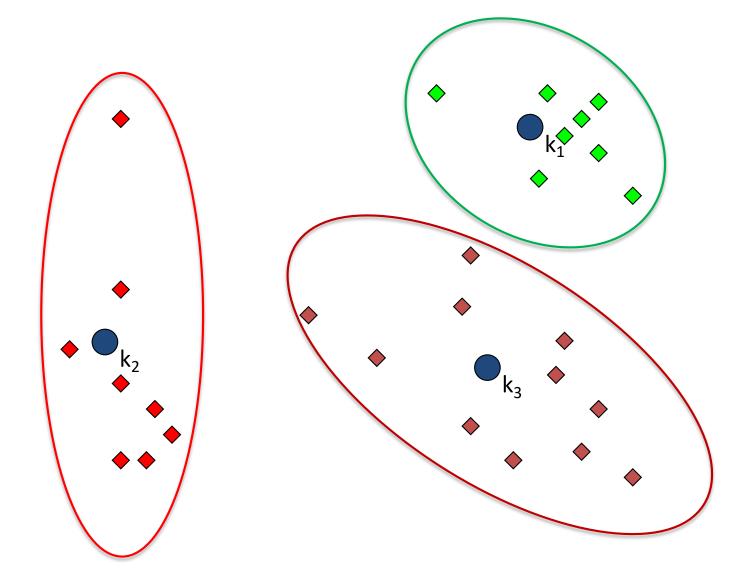


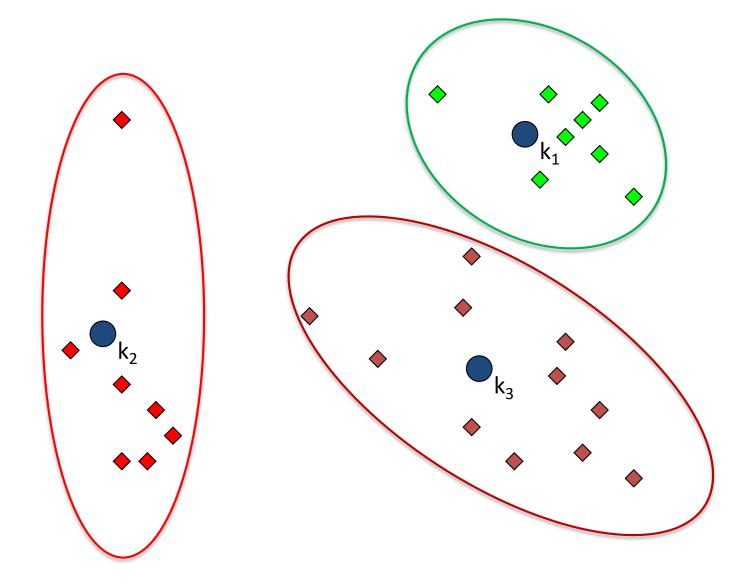
K-means Clustering – step 5

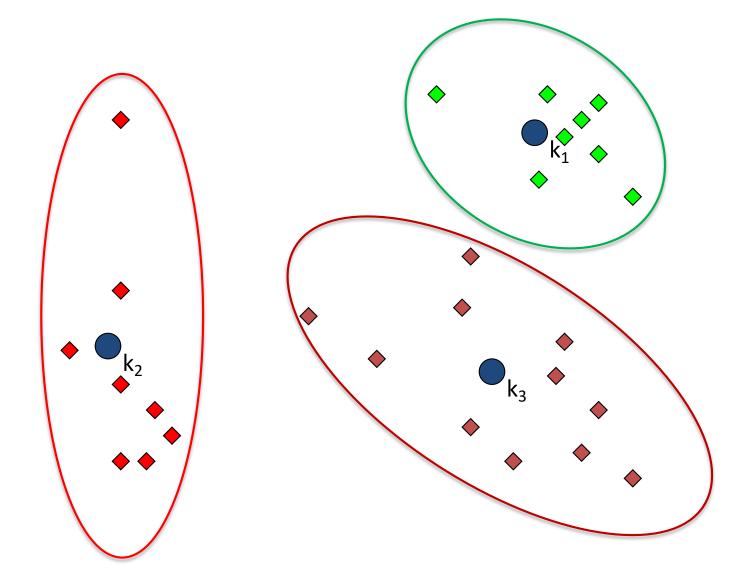
Repeat steps 2, 3 and 4 until the same points are assigned to each cluster in consecutive rounds.

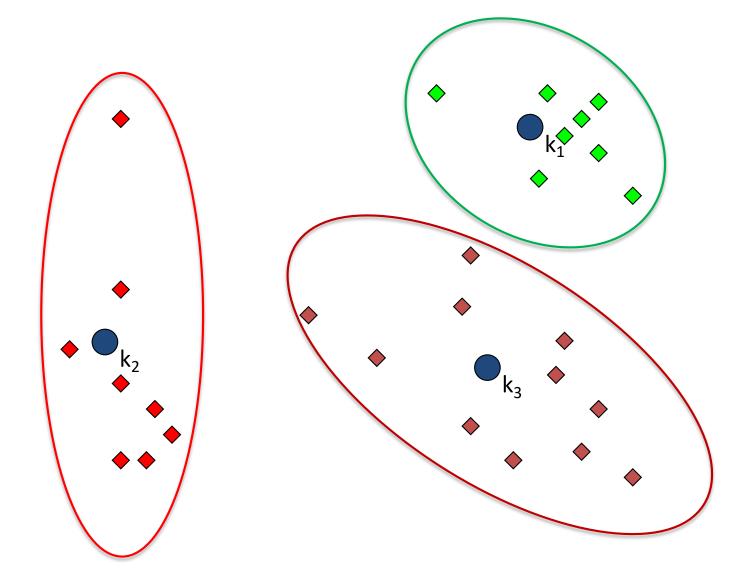


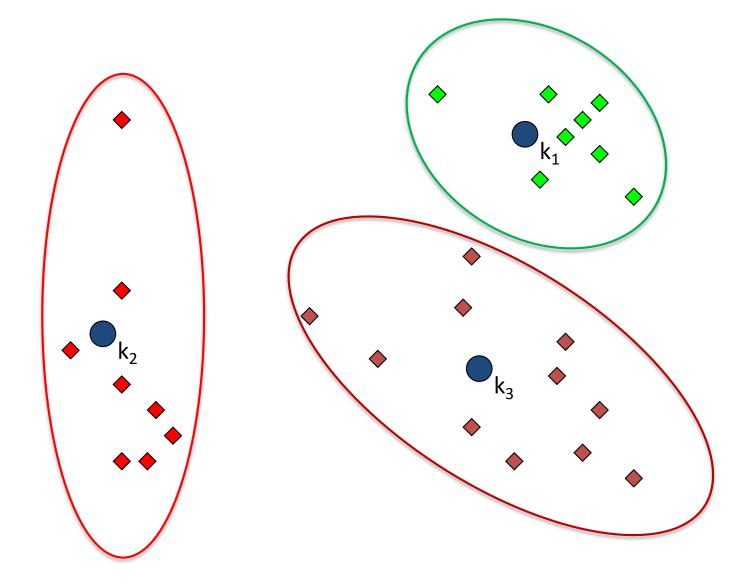












The (iterative) k-means algorithm (summary of "general" algorithm – there are others)

The number of clusters, k, is decided first; the iterative steps are then:

- 1) Generate an initial set of k points as the first estimate of the cluster points (random seed points).
- 2) Loop over all observations reassigning them to the group with the closest mean value.
- 3) Re-compute the mean of each group.

Iterate steps 2 and 3 until convergence (i.e., the mean distance of each object to its group mean does not change according to a very small threshold (e.g., 0.000001).

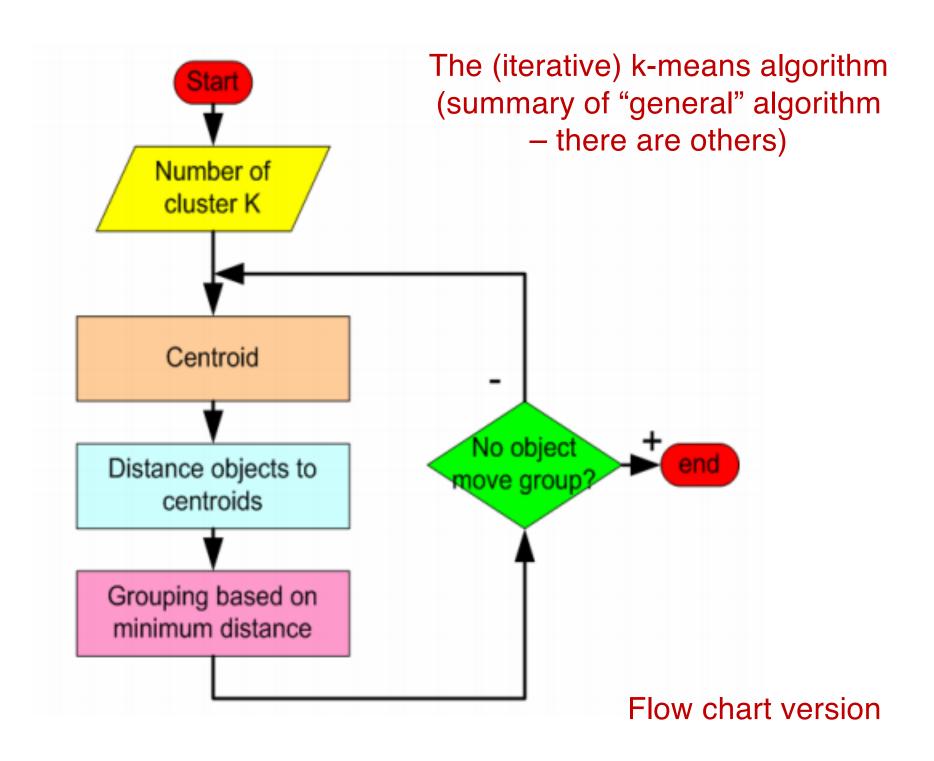
The (iterative) k-means algorithm (summary of "general" algorithm – there are others)

The number of clusters, k, is decided first; the iterative steps are then:

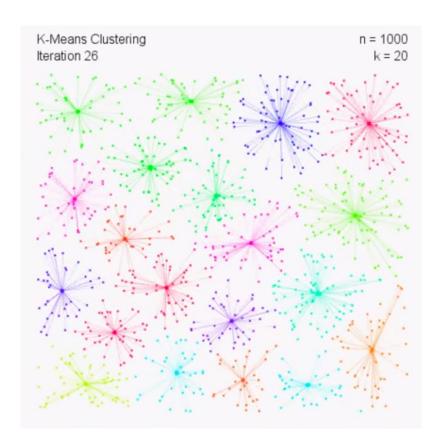
- 1) Generate an initial set of k points as the first estimate of the cluster points (random seed points).
- 2) Loop over all observations reassigning them to the group with the closest mean value. Assign objects to their closest cluster center according to the *Euclidean distance* function.
- 3) Re-compute the mean (multivariate centroids) of each group.

Iterate steps 2 and 3 until convergence (i.e., the mean distance of each object to its group mean does not change according to a very small threshold (e.g., 0.000001).

An **iterative method** is called convergent if the corresponding sequence converges regardless of the initial approximations (random seed points).



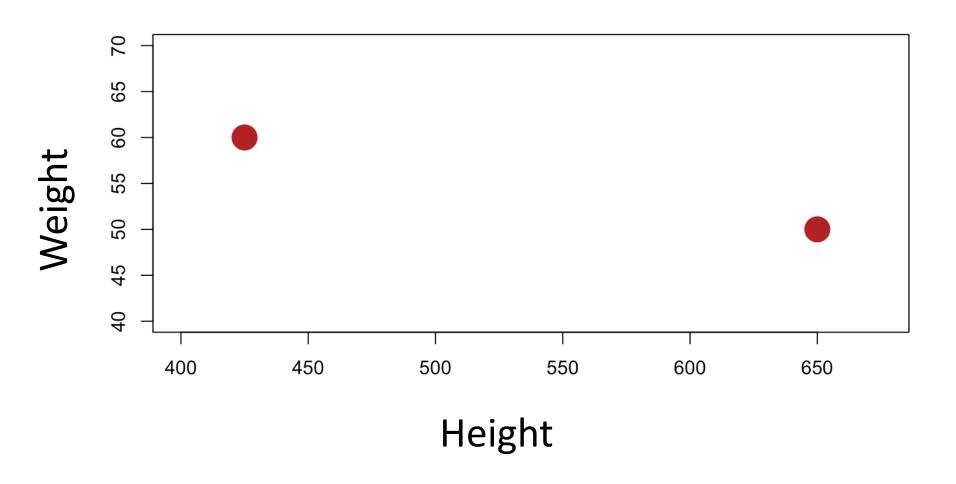
K-means Clustering: number of groups (k) and number of iterations (moving objects) (n)



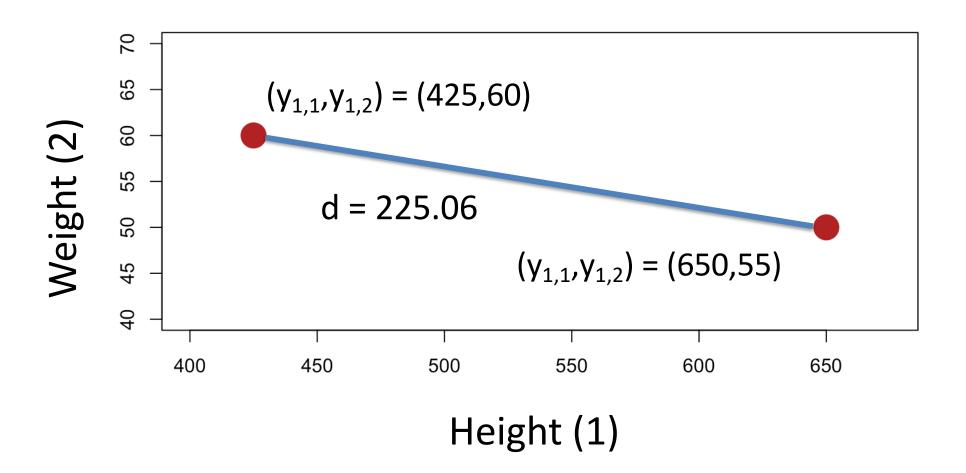
https://www.youtube.com/watch?v=BVFG7fd1H30

Measuring fit of the k-means clustering

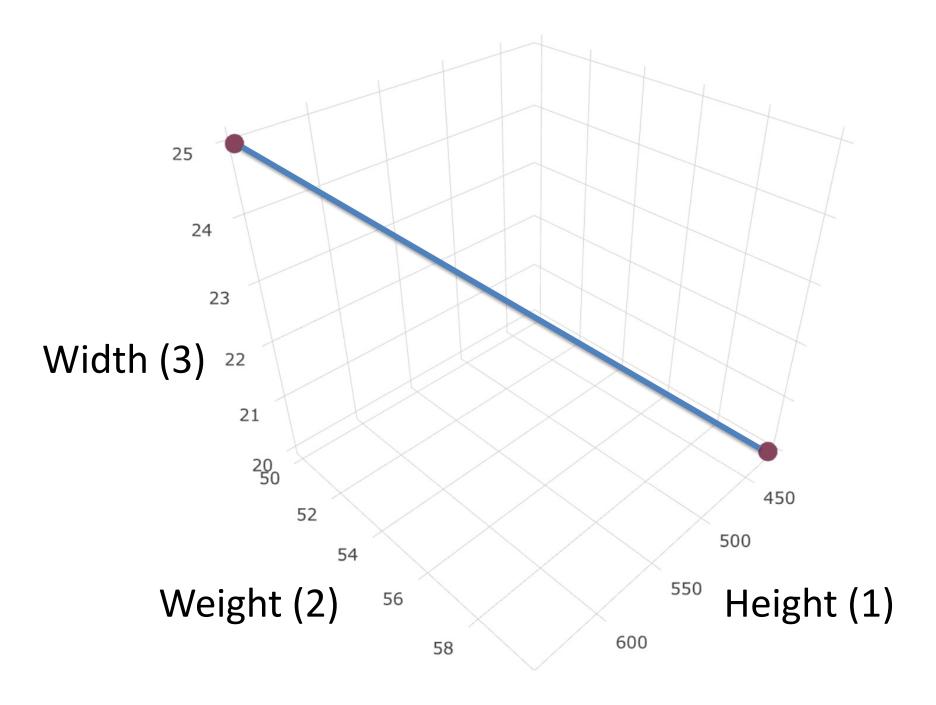
Fit metrics are based on Euclidean distances! How are they calculated? 2 dimensions



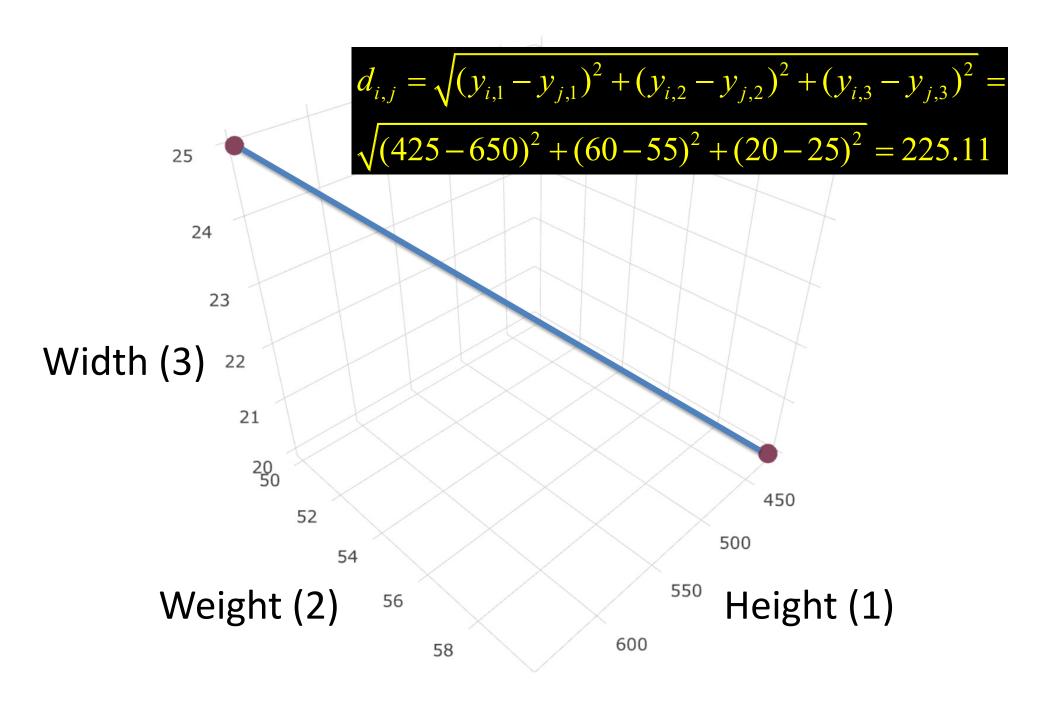
How are Euclidean distances calculated? 2 dimensions



$$d_{i,j} = \sqrt{(y_{i,1} - y_{j,1})^2 + (y_{i,2} - y_{j,2})^2} = \sqrt{(425 - 650)^2 + (60 - 55)^2} = 225.06$$



Euclidean distance – 3 dimensions



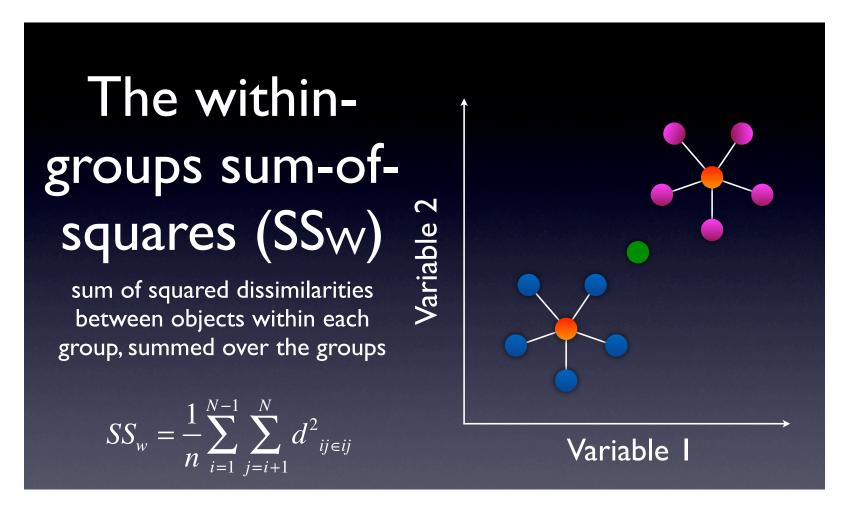
Euclidean distance – 3 dimensions

Euclidean distance in p (here 5) dimensions

$$d_{ij} = \sqrt{\sum_{k=1}^{p} (x_{ik} - x_{jk})^2}$$

1	2	3	4	5		
						(0.006 0.654)?
0.086	0.465	0.144	0.760	0.229		1(0.086 — 0.651)4·
0.651	0.790	0.982	0.844	0.413		
0.791	0.730	0.178	0.282	0.805		(0.465 0.700)
0.409	0.637	0.119	0.468	0.364		I(U.465 — U./9U) ^{2.}
0.984	0.701	0.879	0.570	0.098		
0.093	0.268	0.115	0.357	0.104	٦ _	$(0.086 - 0.651)^{2}$ $(0.465 - 0.790)^{2}$ $(0.144 - 0.982)^{2}$
0.164	0.294	0.143	0.028	0.044	$u_{12} =$	(U.144 — U.90Z)=:
0.623	0.879	0.329	0.217	0.139	14	
0.668	0.651	0.048	0.179	0.987		l(n 76n — n 8 <i>1</i> .4)2.
0.071	0.846	0.715	0.909	0.653		$(0.760 - 0.844)^2$
0.659	0.432	0.595	0.523	0.241	1	$(0.229 - 0.413)^2$
0.928	0.274	0.344	0.189	0.634	\	<i>(</i> () 229 — () 413)4
0.877	0.451	0.223	0.517	0.872		
0.281	0.836	0.172	0.349	0.179		
0.373	0.773	0.050	0.439	0.924		

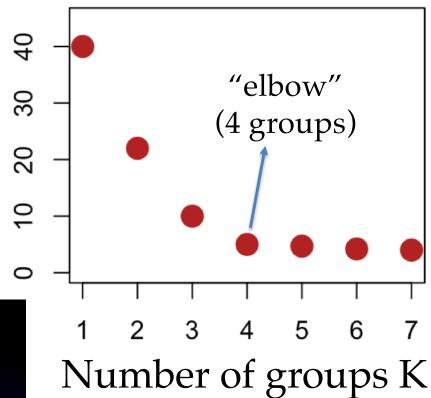
K – means clustering method Assessing quality of the clustering in *k* groups (minimize distances of points within clusters)

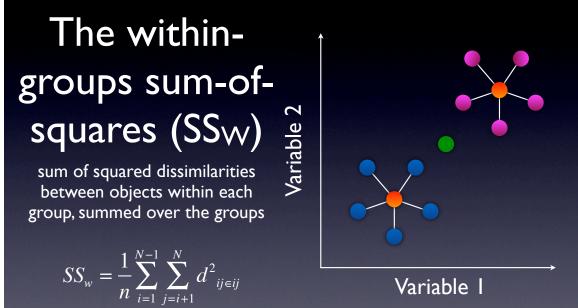


We would like to produce clusters with the smallest possible SSw.

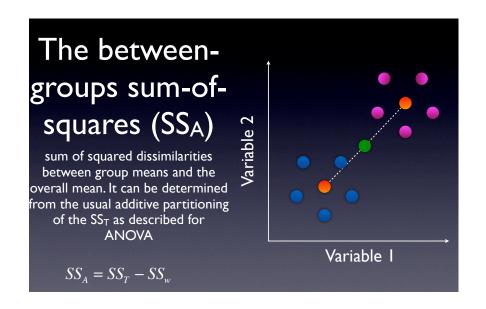
What is the optimal number of group? lots of methods, e.g., the "elbow method"

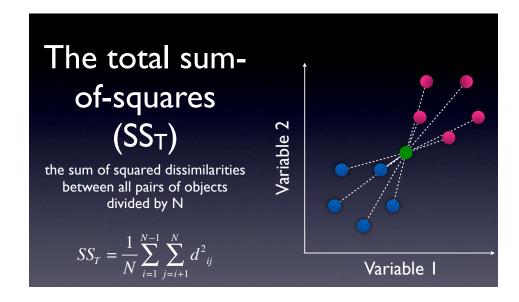
SSw = Average within cluster distance to centroid





K – means clustering method Quality of the clustering in k groups : SS_A/SS_T

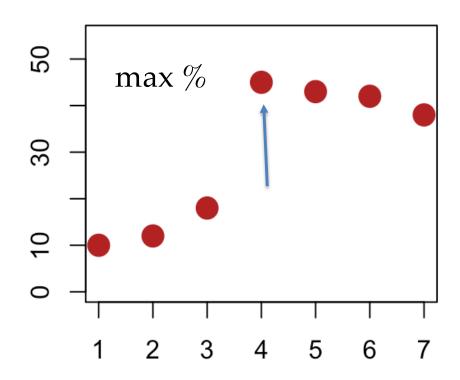




The SS_A/SS_T % is a measure of the total variance in the data set that is explained by the clustering. k-means minimize the within group dispersion and maximize the between-group dispersion. By assigning the samples to k clusters rather than n (number of samples) clusters achieved a reduction in sums of squares of SS_A/SS_T %.

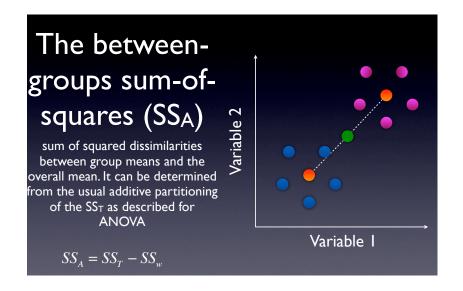
What is the optimal number of group? lots of methods, e.g., total variance explained

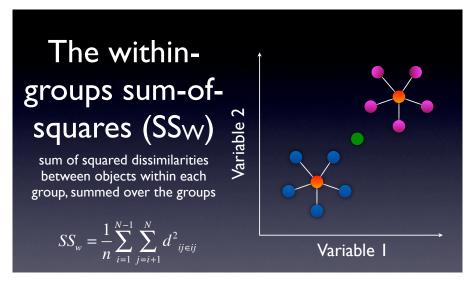
total variance explained (SS_A/SS_T)



Number of groups K

K – means clustering method Quality of the clustering in k groups : SSI

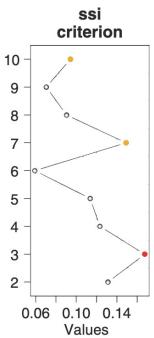




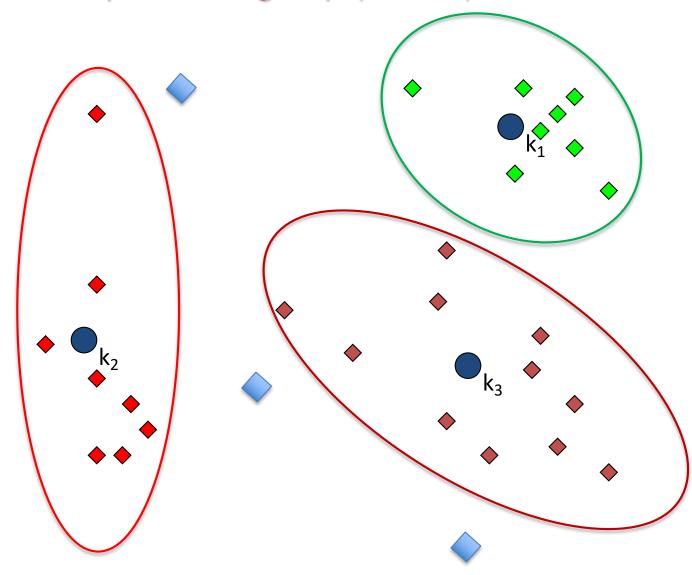
simple structure index (SSI) =

$$(SS_A/(K-1))/(SS_W/(n-K))$$

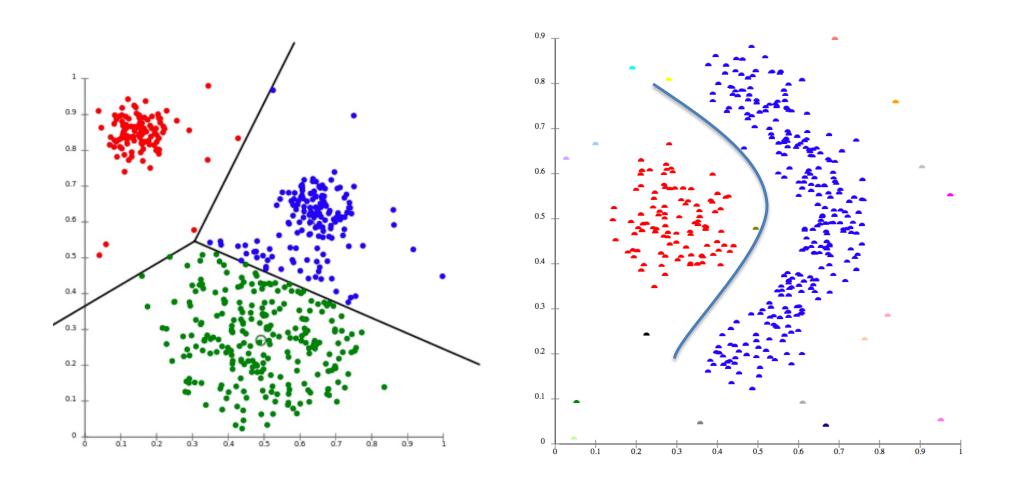
n = number of objects (observations, data points); k = number of groups



K-means as a predictive model: for each of new observations we can estimate its probability to belonging to a particular group (cluster)



Linear versus non-linear group partitioning



IJCAT International Journal of Computing and Technology, Volume 1, Issue 4, May 2014

ISSN: 2348 - 6090 www.IJCAT.org

Human Genome Data Clustering Using K-Means Algorithm

¹ Amrita A. Kulkarni, ² Prof. Deepak Kapgate

¹Department of C.S.E., GHRAET, Nagpur University, Nagpur, Maharashtra, India

² Department of C.S.E., GHRAET, Nagpur University, Nagpur, Maharashtra, India

Biomolecular Detection and Quantification 13 (2017) 7-31

Contents lists available at ScienceDirect

Biomolecular Detection and Quantification

Research paper

*K-means and cluster models for cancer signatures

Zura Kakushadze^{a,b,1,*}, Willie Yu^c

Methods in Ecology and Evolution

Volume 4, Issue 6 June 2013 Pages 542-551

Research Article

Free Access

Spherical k-means clustering is good for interpreting multivariate species occurrence data

Mark. O. Hill ⋈, Colin A. Harrower, Christopher D. Preston

First published: 2 April 2013 | https://doi.org/10.1111/2041-210X.12038 | Cited by:3

Advertisement

Frontiers of Environmental Science & Engineering

February 2014, Volume 8, <u>Issue 1</u>, pp 117–127 | <u>Cite as</u>

Application of k-means clustering to environmental risk zoning of the chemical industrial area

Authors

Authors and affiliations

Weifang Shi, Weihua Zeng

A protocol for classifying ecologically relevant marine zones, a statistical approach

Els Verfaillie ^{a,b,*}, Steven Degraer ^{c,d}, Kristien Schelfaut ^{a,e}, Wouter Willems ^c, Vera Van Lancker ^{a,d}

Estuarine, Coastal and Shelf Science 83 (2009) 175-185

Abiotic variables

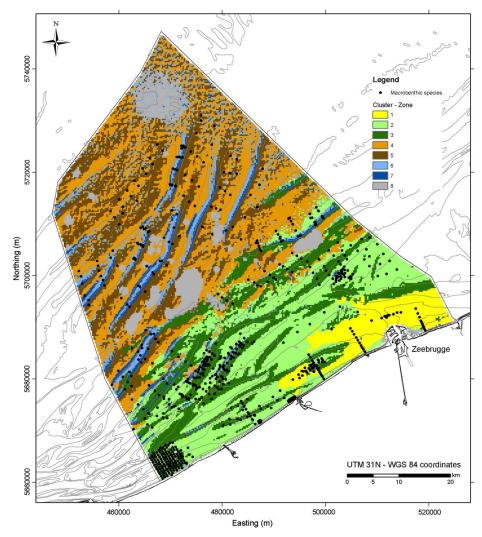
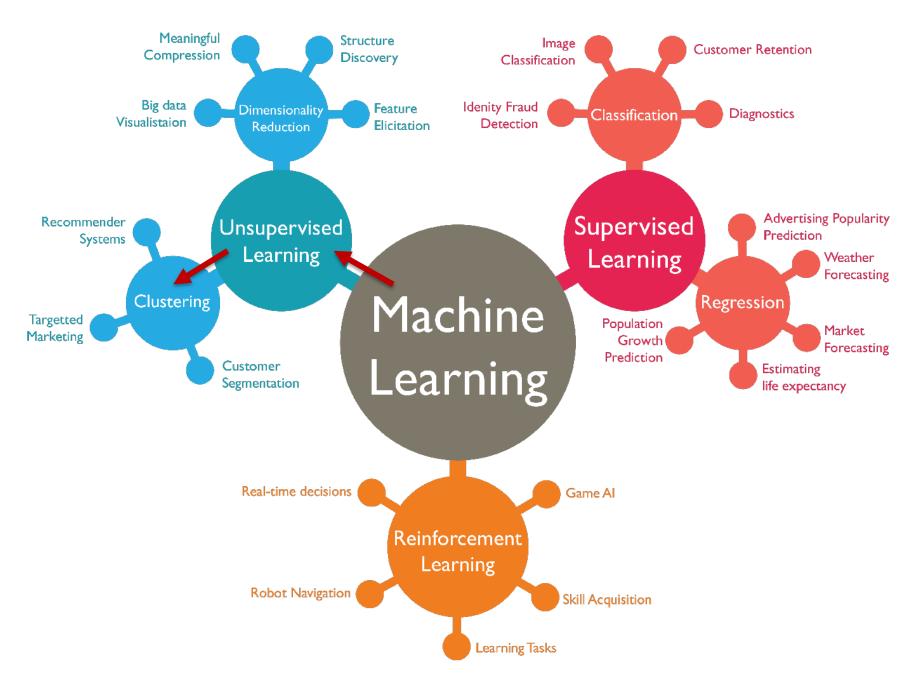


Fig. 2. Belgian part of the North Sea with 8 clusters or zones. The location of macrobenthic community samples is plotted for validation. Important patterns of the original abiotic variables are clearly visible on the map: e.g. high silt-clay % in cluster 1, alternation of sandbanks and flats-depressions in clusters 2, 3, 4, 5, 6 and 7; patches of gravel and shell fragments in cluster 8.

Abiotic variable	Unit	Reference
Sedimentology		
		All based on a sedimentological database ('sedisurf@') hosted at Ghen
Median grain-size of sand fraction (63–2000 μm) or d ₅ 50		University, Renard Centre of Marine Geology. Verfaillie et al. (2006)
wedian grain-size of sand fraction (63–2000 μm) or α₅50 Silt-clay percentage (0–63 μm)	μm %	Van Lancker et al. (2006)
Sand percentage (6-0-3 μm)	%	Van Lancker et al. (2007)
Gravel percentage (>2000 µm)	%	Van Lancker et al. (2007)
opography		
Digital terrain model (DTM) of bathymetry	m	Flemish Authorities, Agency for Maritime and Coastal Services, Flemis Hydrography
		All other topographic variables are derived from the DTM
Slope = a first derivative of the DTM	0	Evans (1980), Wilson et al. (2007)
Aspect = a first derivative of the DTM Indices of northness and eastness provide continuous measures $(-1 \text{ to } +1)$ describing		Hirzel et al. (2002), Wilson et al. (2007)
orientation of the slopes.		
Eastness = sin (aspect) Northness = cos (aspect)	-	
NOTTINIESS = COS (aspect)	-	
Rugosity = ratio of the surface area to the planar area across the neighborhood of the	-	Jenness (2002), Lundblad et al. (2006), Wilson et al. (2007)
central pixel		
athymetric Position Index (BPI) = measure of where a location, with a		Lundblad et al. (2006), Wilson et al. (2007)
defined elevation, is		
relative to the overall landscape		
3PI (broad-scale)	-	
PI (fine-scale)	-	
łydrodynamics		
Maximum bottom shear stress = frictional force exerted by the flow per unit	NI/m²	Management Unit of the North Sea Mathematical Models and the
area of the seahed	14/111	Scheldt estuary
Maximum current velocity	m/s	Scheidt estdary
mannan current resocut	111/3	
atellite derived variables		
Maximum Chlorophyll a (Chl a) concentration over a 2-year period (2003–2004)	mg/ m³	MERIS satellite datasets; compiled by European Space Agency and
		Management Unit of the North Sea Mathematical Models and the Sch
ximum Total Suspended Matter (TSM): measure for turbidity over a 2-year period		estuary
(2003–2004)		



https://medium.com/marketing-and-entrepreneurship/10-companies-using-machine-learning-in-cool-ways-887c25f913c3