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What is machine learning? 
by Sabine Hauert, University of Bristol 
(for the Royal Society)

https://www.youtube.com/embed/F1wlCerC40E



https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-
to-know-a36d136ef68
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What model do you prefer? Why?
Which model does better?
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What model do you prefer? Why?
“Intelligence is 10 million rules” 

(Doug Lenat)….but Rules are meant to be 
generalizable 

“locally fitted”“globally fitted”
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Machine learning algorithms

- Machine learning is a type of artificial intelligence (AI) that 
provides computers with the ability to learn without being 
explicitly programmed (Wikipedia). 

- Machine learning focuses on the development of computer 
algorithms that can change when exposed to new data. The 
process of machine learning is similar to that of data mining. 
The process is not strictly static following programming 
instructions; instead, they make data driven decisions 
(adapted from Wikipedia). 

- Analysis based on machine learning may change when the 
learning process algorithm is run on the same data multiple 
times.   
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Machine learning algorithms

Machine learning mixes computer 
sciences and statistics and relaxes 

assumptions (“sometimes”).
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Machine learning as an 
inductive process 

https://danielmiessler.com/blog/the-difference-between-
deductive-and-inductive-reasoning/

Specific

GeneralGeneral

Specific



Learning from the data -
Machine learning algorithms

Modified from 
http://www.cs.joensuu.fi/~whamalai/skc/ml.html

modelModel level

Data level training
data

prediction
& validation

Induction phase (specific to 
general; i.e., looking for a 
pattern in data and then 
generalize it)

deduction phase
(general to specific)



Labeled data Supervised Learning 
Algorithm

Prediction based
on knowing the label
of observations

Label = gender

Heigth Weight

Learning from the data 
Machine learning algorithms - Two main types



Labeled data Supervised Learning 
Algorithm

Prediction based 
on knowing the label

Label = gender

Predicting gender
on the basis of 

Height and Weight 

Learning from the data 
Machine learning algorithms - Two main types



Unlabeled 
data

Unsupervised 
Learning 
Algorithm

Prediction based 
on finding patterns 

in the data

e.g., Finding number of
groups in data and 

ways to classify (predict)
observations based on

their characteristics 
(height/weight)

Group 3Group 2

Group 1

Learning from the data [TODAY]
Machine learning algorithms - Two main types



https://medium.com/marketing-and-entrepreneurship/10-companies-
using-machine-learning-in-cool-ways-887c25f913c3



The k-means clustering algorithm

wake up

@cjlortie

Easy to see what it does (video)

https://www.youtube.com/watch?v=4b5d3muP
QmA



Learning from the data - Machine learning algorithms

K – means clustering method
(unsupervised algorithm)

(an example outside of biology)

6 groups seem to describe the data quite well
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Abstract

Identification of geographic ecoregions has long been of interest to environmental scientists and ecologists for
identifying regions of similar ecological and environmental conditions. Such classifications are important for pre-
dicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and
remediation efforts. Hargrove and Hoffman [1, 2] have developed geographical spatio-temporal clustering algorithms
and codes and have successfully applied them to a variety of environmental science domains, including ecological
regionalization; environmental monitoring network design; analysis of satellite-, airborne-, and ground-based remote
sensing, and climate model-model and model-measurement intercomparison. With the advances in state-of-the-art
satellite remote sensing and climate models, observations and model outputs are available at increasingly high spatial
and temporal resolutions. Long time series of these high resolution datasets are extremely large in size and growing.
Analysis and knowledge extraction from these large datasets are not just algorithmic and ecological problems, but also
pose a complex computational problem. This paper focuses on the development of a massively parallel multivariate
geographical spatio-temporal clustering code for analysis of very large datasets using tens of thousands processors on
one of the fastest supercomputers in the world.

Keywords:
ecoregionalization, k-means clustering, data mining, high performance computing

1. Introduction

There has been a long history of both theoretical and utilitarian interest in ecological regions, or ecoregions:
regions on a map within which there exist generally similar combinations of ecologically relevant conditions like
temperature, precipitation, and soil characteristics. Because species assemblages show a high degree of fidelity to
environmental conditions, particular flora and fauna can be strongly associated with particular ecological regions, and
delineating the extent of the ecoregions can also be used to infer the the location and size of areas that are potentially
suitable for particular types of animals and plants. Thus, the classification of areas into ecoregions is useful for pre-
dicting suitable species ranges, for stratification of ecological samples, and to help prioritize habitat preservation and

Email addresses: jkumar@climatemodeling.org (Jitendra Kumar), rmills@climate.ornl.gov (Richard T. Mills),
forrest@climatemodeling.org (Forrest M. Hoffman), hnw@geobabble.org (William W. Hargrove)

1Corresponding author

Open access under CC BY-NC-ND license.

1610  Jitendra Kumar et al. / Procedia Computer Science 4 (2011) 1602–1611

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 0  200  400  600  800  1000  1200

N
o
. 
o
f 
d
is

ta
n
ce

 c
a
lc

u
la

tio
n
s

Processor no.

acceleration no acceleration

(a) fullUS dataset: with and without acceleration

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 0  200  400  600  800  1000  1200

N
o
. 
o
f 
d
is

ta
n
ce

 c
a
lc

u
la

tio
n
s

Processor no.

acceleration no acceleration

(b) AmeriFluxIIIA dataset: with and without acceleration

Figure 5: Load imbalance due to triangle inequality acceleration

Figure 6: The 2008 map of 50 phenoregions defined for the CONUS derived from cluster analysis of Phenology data

conterminous United States for the year 2008 derived from geospatiotemporal cluster analysis from the Phenology
dataset. Comparison of phenostates over time could allow the identification of abnormal events, like change in vege-
tation health, forest fires, disease outbreaks, etc. Such analyses are one of the primary motivation for the current work
under the U.S. Forest Service’s Forest Incidence Recognition and State Tracking (FIRST) program [14]. The results
of the cluster analysis of Phenology datasets has been successfully applied to the identification of several anomalous
forest incidents, like the mountain pine beetle (MPB) outbreak in Colorado, USA. Figure 7 shows the results of such
an analysis of phenostate transition between 2003 and 2008 in Colorado successfully identifying the MPB outbreak.

5. Conclusion

Such efforts as these should make it possible to realistically consider clustering even larger datasets, such as the
entire historical run of MODIS data, which has covered the conterminous United States at 500 m2 resolution every 16
days, from 2002 to present. We envision that such a dataset, in conjunction with parallel clustering implementations
such as those described here, could form the basis for a national ecological monitoring and early warning system. This
system could compare the state of ecosystems as just observed to all past historical states, checking for deviations from
expected or nominal seasonal behavior. Unusual or unexpected activity, once highlighted, could be verified on the
ground for the presence of ecological threats like wildfire, insect outbreaks, or invasive species. Once the exhaustive
historical clustered states are statistically identified, the assignment of each map cell to the most similar pre-defined



a DAICc of less than 4 were included in model averaging
(‘model.avg’) to generate the final optimum model.

3. Results
(a) Effects of accelerometers on faecal glucocorticoid

metabolites
No significant differences were detected between pre- and
post-accelerometer FGMs (Ta: V ¼ 72, p ¼ 0.37; Ts: V ¼ 261,
p ¼ 0.19; electronic supplementary material, figure S2).

(b) Activity budgets
Accelerometers were recovered from 19 Ta (15F, 4M) and 28
Ts (18F, 10M). These units collected data over a mean+ s.d.
of 57.4+ 14 h per individual for Ta and 56.9+18.1 h per
individual for Ts. Overall activity budgets were similar
across species (figure 1); both species were diurnal, with no
significant differences in the proportion of the day spent on
any behavioural category (all p . 0.35).

(c) Clustering of activity patterns
Scree plots (electronic supplementary material, figure S3)
indicated four clusters of locomotor activity (figure 2a).
While the distribution of individual Ts across clusters was
not uneven (x2 ¼ 1.43, p ¼ 0.70), Ta’s distribution differed
from expectation (x2 ¼ 11.9, p ¼ 0.008). Ta was disproportion-
ately abundant in cluster 3 (11/19 individuals); averaged
activity patterns (GAM output for all individuals in a cluster;
figure 2b) revealed that animals in this cluster were more
active in the morning, such that peak locomotion did not
coincide with peak daily temperatures (figure 2b). By con-
trast, Ta was underrepresented in clusters 2 (1/19) and

4 (3/19), in which animals exhibited locomotion peaks later
in the day, when temperatures were higher, and was found
in expected numbers in cluster 1 (4/19), where individuals
were also more active in the morning.

(d) Locomotion and environmental parameters
Species, deployment date and species co-occurrence score
were retained in GLMMs predicting the first PCs of loco-
motion data; sex and the interaction between species and
species co-occurrence were also retained, although they had
limited predictive power (table 2). Model results were consist-
ent with cluster analyses, suggesting that activity patterns of
the focal species were significantly different. More specifi-
cally, Ta exhibited higher proportions of activity in the
mornings and earlier activity peaks in comparison with Ts
(table 2; electronic supplementary material, table S3). As co-
occurrence with heterospecifics increased, activity patterns
for both species changed, with individuals becoming more
active in the evening and less active in the morning (elec-
tronic supplementary material, table S3). As the season
progressed (i.e. later deployment dates), peak activity for
both species shifted to later in the day (table 2).

4. Discussion
Our results indicate that accelerometers provide valuable
information on activity patterns of small mammals. With
validation [16], accelerometer data can be used to monitor
specific behavioural categories, including locomotion, which
has clear implications for patterns of habitat use. Our FGM
analyses revealed no post-deployment changes, suggesting
that accelerometers were not stressful to study animals.

While overall activity budgets for the study species were
similar, individual patterns of locomotion revealed important
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Figure 1. Daily activity budgets for T. alpinus (a) and T. speciosus (b). Mean proportion of each hour spent still (light shading), moving in place (medium shading)
or in locomotion (dark shading) is shown; no significant differences in activity were found between species. Species distributions are shown on the left. (Online
version in colour.)

rsbl.royalsocietypublishing.org
Biol.Lett.14:20180115

3

rsbl.royalsocietypublishing.org

Research
Cite this article: Hammond TT, Palme R,
Lacey EA. 2018 Ecological specialization,
variability in activity patterns and response
to environmental change. Biol. Lett. 14:
20180115.
http://dx.doi.org/10.1098/rsbl.2018.0115

Received: 22 February 2018
Accepted: 30 May 2018

Subject Areas:
behaviour, ecology

Keywords:
accelerometers, behaviour, climate change,
locomotion, plasticity

Author for correspondence:
Talisin T. Hammond
e-mail: talisintess@gmail.com

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.4128563.

Animal behaviour

Ecological specialization, variability
in activity patterns and response
to environmental change
Talisin T. Hammond1,2, Rupert Palme3 and Eileen A. Lacey1
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Differences in temporal patterns of activity can modulate the ambient con-
ditions to which organisms are exposed, providing an important mechanism
for responding to environmental change. Such differences may be particularly
relevant to ecological generalists, which are expected to encounter a wider
range of environmental conditions. Here, we compare temporal patterns of
activity for partially sympatric populations of a generalist (the lodgepole chip-
munk, Tamias speciosus) and a more specialized congener (the alpine chipmunk,
Tamias alpinus) that have displayed divergent responses to the past century of
environmental change. Although mean activity budgets were similar between
species, analyses of individual-level variation in locomotion revealed that
T. alpinus exhibited a narrower range of activity patterns than T. speciosus.
Further analyses revealed that T. alpinus was more active earlier in the day,
when temperatures were cooler, and that activity patterns for both species
changed with increased interspecific co-occurrence. These results are consistent
with the greater responsiveness of T. alpinus to changes in environmental con-
ditions. In addition to highlighting the utility of accelerometers for collecting
behavioural data, our findings add to a growing body of evidence, suggesting
that the greater phenotypic variability displayed by ecological generalists may
be critical to in situ responses to environmental change.

1. Background
Ecological generalists often display different responses to environmental con-
ditions from ecological specialists, with the latter tending to be more sensitive
to external changes [1,2]. This distinction has most often been examined with
regard to morphological and physiological attributes, although specialization of
behavioural traits [3,4] may also be important in the context of environmental
change. For example, temporal differences in activity can alter the conditions to
which organisms are exposed [5,6] and species with greater intraspecific variabil-
ity in such traits are expected to be better able to accommodate environmental
changes [7]. Such variability may also facilitate behavioural partitioning of
resources when confronted with novel competitors due to climate-induced
range shifts and associated changes in community dynamics [8,9]. While the
behavioural data needed to evaluate temporal differences in activity have histori-
cally been difficult to obtain, the growing use of accelerometers allows remote
monitoring of activity in free-living animals [10].

Here, we focus on two co-occurring congeners characterized by distinct
responses to the past century of environmental change. The alpine chipmunk
(Tamias alpinus, Ta), an ecological specialist endemic to alpine habitats in the
Sierra Nevada mountains, has undergone a significant upward range contraction
paired with changes in morphology, genetics and diet. By contrast, the more

& 2018 The Author(s) Published by the Royal Society. All rights reserved.



generalist lodgepole chipmunk (T. speciosus, Ts) has not experi-
enced any consistent patterns of change [11–14]. Ecological
modelling suggests that Ta’s range is constrained by abiotic,
climatic factors; by contrast, Ts may be more limited by
interspecific competition [14,15].

To determine whether activity patterns contribute to the
differential responses of Ta and Ts to environmental con-
ditions, we used accelerometers to characterize patterns of
locomotion, examining interspecific differences in activity
and the extent to which such differences are associated with
external and intrinsic parameters. We also quantified gluco-
corticoids to assess the impacts of accelerometers on study
subjects. Our analyses of both species- and individual-level
variability in activity generate intriguing new insights
into how activity patterns may contribute to interspecific
differences in responses to environmental change.

2. Material and methods
(a) Study species and sites
Ta is a 30–50 g alpine specialist chipmunk; Ts weighs 50–80 g
and occurs at and below the treeline. Chipmunks at three
study sites (electronic supplementary material, table S1) were
captured using grids of Sherman traps that encompassed areas
occupied by one or both species.

(b) Accelerometers
Acceleration loggers (Corvus Scientific) consisting of a tri-axial
accelerometer, a data logger, and a battery and weighing 1.5–
2.5 g (less than 5% body mass; detailed specifications in [16])
were deployed in approximately July–September 2015. Units
were affixed to 8–15 individuals per species per site with eyelash
extension glue after shaving a dorsal patch of fur. Units activated
every 15 min to record 10 s of 20 Hz acceleration readings. A pre-
viously validated machine learning system assigned these data to
one of three behavioural categories (‘still’, ‘in-place movement’,
‘locomotion’) with 82–90% accuracy [16].

(c) Glucocorticoid analyses
Faeces were collected from traps when animals were captured to
deploy and recover accelerometers, and faecal glucocorticoid
metabolites (FGMs) were measured as described in [17] (see
electronic supplementary material for details).

(d) Climatic data
iButton loggers (DS1921G) were deployed near approximately
75% of trapping stations (within approx. 1 m of the ground) to

collect hourly temperature readings. Data collected during accel-
erometer deployment were used to calculate mean, maximum,
minimum and variance in daily temperatures as well as mean
daytime and afternoon temperature at each individual’s trapping
grid. Principal components analysis (PCA) was applied to these
data to reduce dimensionality (electronic supplementary
material, table S2) and the first PC axis was used as a predictor
in models (§2e).

(e) Statistics
(i) Faecal glucocorticoid metabolites
Wilcoxon signed-rank tests were used to compare pre- and
post-accelerometer FGMs.

(ii) Activity budgets
Wilcoxon rank-sum tests were used to assess interspecific differ-
ences in the proportion of the day spent on each behavioural
category (§2b).

(iii) Activity patterns
For each individual, a generalized additive model (GAM; gam
package in R) was fitted for behaviour as a function of time of
day. The response variable was the number of seconds in each
10 s sampling period (§2b) scored as ‘locomotion’. Each model
was plotted and PCA (electronic supplementary material, table
S3) was applied to the correlation matrix of locomotion features
(table 1; electronic supplementary material, figure S1) extracted
from each individual’s plot. PCA loadings were un-rotated. We
repeated analyses for overall activity (locomotion and in-place
movement), which showed reduced interspecific differentiation;
thus, we focused only on locomotion for subsequent analyses.

To group individuals by differences in patterns of daily loco-
motion, K-means cluster analyses were applied to the first two
PCs (electronic supplementary material, table S3) of locomotion
features [18]. Sum-of-squared error scree plots were used to
determine the optimal number of clusters; each animal was
assigned to the cluster with the centroid nearest to its PC pos-
ition. For each species, x2-tests were used to determine if the
number of individuals per cluster differed from expectation
(equal distribution across clusters).

Generalized linear mixed models (GLMMs) were constructed
to test whether patterns of locomotion differed between species,
whether individuals altered their activity in areas of sympatry
versus allopatry and whether patterns of locomotion were associ-
ated with selected climatic or phenotypic factors (electronic
supplementary material, table S4). A set of models containing
all possible subsets of variables was constructed (‘dredge’ func-
tion, MuMIn package). All models for which comparisons with
the lowest-AIC (Akaike information criterion) model exhibited

Table 1. Activity features extracted from individual GAM plots of locomotion as a function of smoothed time.

feature description

maximum magnitude of maximum locomotion

time of maximum time of maximum locomotion

time of minimum time of minimum locomotion

afternoon (!10:45 – 15:15) locomotion area under the curve (AUC) of afternoon hours divided by AUC of daylight hours

morning (!06:30 – 10:45) locomotion AUC of morning hours divided by AUC of daylight hours

evening (!15:15 – 19:30) locomotion AUC of evening hours divided by AUC of daylight hours

no. of peaks modality of locomotion curve (e.g. bimodal ¼ 2)

rsbl.royalsocietypublishing.org
Biol.Lett.14:20180115

2

a DAICc of less than 4 were included in model averaging
(‘model.avg’) to generate the final optimum model.

3. Results
(a) Effects of accelerometers on faecal glucocorticoid

metabolites
No significant differences were detected between pre- and
post-accelerometer FGMs (Ta: V ¼ 72, p ¼ 0.37; Ts: V ¼ 261,
p ¼ 0.19; electronic supplementary material, figure S2).

(b) Activity budgets
Accelerometers were recovered from 19 Ta (15F, 4M) and 28
Ts (18F, 10M). These units collected data over a mean+ s.d.
of 57.4+ 14 h per individual for Ta and 56.9+18.1 h per
individual for Ts. Overall activity budgets were similar
across species (figure 1); both species were diurnal, with no
significant differences in the proportion of the day spent on
any behavioural category (all p . 0.35).

(c) Clustering of activity patterns
Scree plots (electronic supplementary material, figure S3)
indicated four clusters of locomotor activity (figure 2a).
While the distribution of individual Ts across clusters was
not uneven (x2 ¼ 1.43, p ¼ 0.70), Ta’s distribution differed
from expectation (x2 ¼ 11.9, p ¼ 0.008). Ta was disproportion-
ately abundant in cluster 3 (11/19 individuals); averaged
activity patterns (GAM output for all individuals in a cluster;
figure 2b) revealed that animals in this cluster were more
active in the morning, such that peak locomotion did not
coincide with peak daily temperatures (figure 2b). By con-
trast, Ta was underrepresented in clusters 2 (1/19) and

4 (3/19), in which animals exhibited locomotion peaks later
in the day, when temperatures were higher, and was found
in expected numbers in cluster 1 (4/19), where individuals
were also more active in the morning.

(d) Locomotion and environmental parameters
Species, deployment date and species co-occurrence score
were retained in GLMMs predicting the first PCs of loco-
motion data; sex and the interaction between species and
species co-occurrence were also retained, although they had
limited predictive power (table 2). Model results were consist-
ent with cluster analyses, suggesting that activity patterns of
the focal species were significantly different. More specifi-
cally, Ta exhibited higher proportions of activity in the
mornings and earlier activity peaks in comparison with Ts
(table 2; electronic supplementary material, table S3). As co-
occurrence with heterospecifics increased, activity patterns
for both species changed, with individuals becoming more
active in the evening and less active in the morning (elec-
tronic supplementary material, table S3). As the season
progressed (i.e. later deployment dates), peak activity for
both species shifted to later in the day (table 2).

4. Discussion
Our results indicate that accelerometers provide valuable
information on activity patterns of small mammals. With
validation [16], accelerometer data can be used to monitor
specific behavioural categories, including locomotion, which
has clear implications for patterns of habitat use. Our FGM
analyses revealed no post-deployment changes, suggesting
that accelerometers were not stressful to study animals.

While overall activity budgets for the study species were
similar, individual patterns of locomotion revealed important
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Figure 1. Daily activity budgets for T. alpinus (a) and T. speciosus (b). Mean proportion of each hour spent still (light shading), moving in place (medium shading)
or in locomotion (dark shading) is shown; no significant differences in activity were found between species. Species distributions are shown on the left. (Online
version in colour.)
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interspecific differences that were likely masked by marked
intraspecific variation during analyses of mean activity bud-
gets. Specifically, our findings indicated that Ta was more
likely to exhibit higher proportions of and peak values of
locomotor activity during the morning, when temperatures
were cooler. This finding is consistent with the suggested
greater sensitivity of this species to thermal conditions
[14,19]. Given the correlational nature of our study and the
limited sample size and spatio-temporal scope of our study,

we cannot conclude that these results are due solely to temp-
erature, with no input from other environmental parameters
(e.g. predation risk, vapour pressure, forage quality). Our
findings do, however, underscore the importance of explor-
ing individual variation in activity patterns rather than
simply assessing differences in average activity [18].

Members of both species displayed altered locomotor
activity in areas of sympatry, with a shift towards greater
locomotion later in the day. Areas of sympatry tended to
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Figure 2. Clustering of activity patterns. (a) A biplot showing clustering of activity data along the first two PCs of locomotion-based features (table 1). Arrows
represent vectors indicating the direction and magnitude of each variable’s PC score along the two axes. Each point represents an individual chipmunk (shape
denotes species and colour denotes cluster). (b) GAM locomotion curves for each cluster; averaged values are depicted in bold, coloured by cluster, with
curves for all individuals in each cluster in grey. Dotted red lines show smoothed hourly temperatures from data collection periods and sampling localities averaged
across all individuals in each cluster.
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Clustering of activity patterns. A biplot showing clustering of activity data 
along the first two PCs of locomotion-based features



The basis of k-means

- Partition n points (observations) across 
multiple variables into k groups.

- The goal is to minimize an objective function 
(here the sum-of-squares of multivariate 
distances (Euclidean) within groups).



Learning from the data –
Machine learning algorithms: k – means

We will consider only two dimensions here for visual simplicity
(Height and Weight)

Unlabeled 
data

Unsupervised 
Learning 
Algorithm

Prediction based 
on finding patterns 

in the data

e.g., Finding number of
groups in data and 

ways to classify (predict)
observations based on

their characteristics 
(height/weight)

Group 3Group 2

Group 1
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1. Clusters the data into k groups where k is predefined.
2. Select k points at random as cluster centers.

K-means Clustering – steps 1 & 2
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Assign objects to their closest cluster center according to 
the Euclidean distance function.

K-means Clustering – step 3
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K-means Clustering – step 4
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Repeat steps 2, 3 and 4 until the same points are assigned to each cluster 
in consecutive rounds.

K-means Clustering – step 5
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K-means Clustering: final cluster – no more movements 
that greater improve the fit (threshold = 0.00001) are 
possible
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The (iterative) k-means algorithm (summary of “general” 
algorithm – there are others)

The number of clusters, k, is decided first; the iterative steps are 
then:

1) Generate an initial set of k points as the first estimate of the 
cluster points (random seed points).

2) Loop over all observations reassigning them to the group with 
the closest mean value.

3) Re-compute the mean of each group.

Iterate steps 2 and 3 until convergence (i.e., the mean distance 
of each object to its group mean does not change according to a 
very small threshold (e.g., 0.000001).



The (iterative) k-means algorithm (summary of “general” 
algorithm – there are others)

The number of clusters, k, is decided first; the iterative steps are then:

1) Generate an initial set of k points as the first estimate of the cluster points (random 
seed points).

2) Loop over all observations reassigning them to the group with the closest mean 
value. Assign objects to their closest cluster center according to the Euclidean 
distance function.

3) Re-compute the mean (multivariate centroids) of each group.

Iterate steps 2 and 3 until convergence (i.e., the mean distance of each object to its 
group mean does not change according to a very small threshold (e.g., 0.000001).

An iterative method is called convergent if the corresponding sequence 
converges regardless of the initial approximations
(random seed points). 



The (iterative) k-means algorithm 
(summary of “general” algorithm 

– there are others)

Flow chart version



K-means Clustering: number of groups (k) and 
number of iterations (moving objects) (n)

https://www.youtube.com/watch?v=BVFG7fd1H30

https://www.youtube.com/watch?v=BVFG7fd1H30


Measuring fit of the k-means clustering

wake up

@cjlortie
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Fit metrics are based on Euclidean distances! 
How are they calculated? 2 dimensions
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How are Euclidean distances calculated? 2 dimensions
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Euclidean distance – 3 dimensions
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Euclidean distance – 3 dimensions



Euclidean distance in p (here 5) dimensions

𝑑!" = #
#$%

&

(𝑥!# − 𝑥"#)'

1 2 3 4 5

0.086 0.465 0.144 0.760 0.229
0.651 0.790 0.982 0.844 0.413
0.791 0.730 0.178 0.282 0.805
0.409 0.637 0.119 0.468 0.364
0.984 0.701 0.879 0.570 0.098
0.093 0.268 0.115 0.357 0.104
0.164 0.294 0.143 0.028 0.044
0.623 0.879 0.329 0.217 0.139
0.668 0.651 0.048 0.179 0.987
0.071 0.846 0.715 0.909 0.653
0.659 0.432 0.595 0.523 0.241
0.928 0.274 0.344 0.189 0.634
0.877 0.451 0.223 0.517 0.872
0.281 0.836 0.172 0.349 0.179
0.373 0.773 0.050 0.439 0.924

𝑑%' =

(0.086 − 0.651)'+
(0.465 − 0.790)'+
(0.144 − 0.982)'+
(0.760 − 0.844)'+
(0.229 − 0.413)'



The within-
groups sum-of-
squares (SSW)
sum of squared dissimilarities 
between objects within each 
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n = observations
p = factors

N = Total Number of observations (np)
i = observation i
j= observation j

K – means clustering method
Assessing quality of the clustering in k groups
(minimize distances of points within clusters)

From Alejandro Ordonez

We would like to produce clusters with the smallest
possible SSw.



What is the optimal number of group?
lots of methods, e.g., the “elbow method”

Number of groups K

SSw = Average within 
cluster distance to centroid

“elbow” 
(4 groups)

The within-
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n = observations
p = factors

N = Total Number of observations (np)
i = observation i
j= observation j



The between-
groups sum-of-
squares (SSA)
sum of squared dissimilarities 
between group means and the 

overall mean. It can be determined 
from the usual additive partitioning 

of the SST as described for 
ANOVA
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SSA = SST − SSw

K – means clustering method
Quality of the clustering in k groups : SSA/SST

The total sum-
of-squares 

(SST)
the sum of squared dissimilarities 

between all pairs of objects 
divided by N

SST =
1
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j= i+1

N

∑
i=1

N −1

∑
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n = observations
p = factors

N = Total Number of observations (np)
i = observation i
j= observation j

The SSA/SST % is a measure of the total variance in the data 
set that is explained by the clustering.  k-means minimize the 
within group dispersion and maximize the between-group 
dispersion. By assigning the samples to k clusters rather than 
n (number of samples) clusters achieved a reduction in sums 
of squares of SSA/SST %.



What is the optimal number of group?
lots of methods, e.g., total variance explained

Number of groups K

total variance explained
(SSA/SST)

max %



The between-
groups sum-of-
squares (SSA)
sum of squared dissimilarities 
between group means and the 

overall mean. It can be determined 
from the usual additive partitioning 

of the SST as described for 
ANOVA

Variable 1
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SSA = SST − SSw

K – means clustering method
Quality of the clustering in k groups : SSI

simple structure index (SSI) =

(SSA/(K-1))/(SSW/(n-K))

n = number of objects (observations, data 
points); k = number of groups

The within-
groups sum-of-
squares (SSW)
sum of squared dissimilarities 
between objects within each 

group, summed over the groups

SSw =
1
n

d 2ij∈ij
j= i+1

N

∑
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N −1
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n = observations
p = factors

N = Total Number of observations (np)
i = observation i
j= observation j
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K-means as a predictive model: for each of new 
observations we can estimate its probability to belonging 

to a particular group (cluster)



Linear versus non-linear group partitioning



K-means is used in a variety of problems
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A B S T R A C T

We present *K-means clustering algorithm and source code by expanding statistical clustering methods applied
in https://ssrn.com/abstract=2802753 to quantitative finance. *K-means is statistically deterministic without
specifying initial centers, etc. We apply *K-means to extracting cancer signatures from genome data without
using nonnegative matrix factorization (NMF). *K-means’ computational cost is a fraction of NMF’s. Using 1389
published samples for 14 cancer types, we find that 3 cancers (liver cancer, lung cancer and renal cell carcinoma)
stand out and do not have cluster-like structures. Two clusters have especially high within-cluster correlations
with 11 other cancers indicating common underlying structures. Our approach opens a novel avenue for
studying such structures. *K-means is universal and can be applied in other fields. We discuss some potential
applications in quantitative finance.

1. Introduction and summary

Every time we can learn something new about cancer, the motiva-
tion goes without saying. Cancer is different. Unlike other diseases, it is
not caused by “mechanical” breakdowns, biochemical imbalances, etc.
Instead, cancer occurs at the DNA level via somatic alterations in the
genome structure. A common type of somatic mutations found in cancer
is due to single nucleotide variations (SNVs) or alterations to single
bases in the genome, which accumulate through the lifespan of the
cancer via imperfect DNA replication during cell division or sponta-
neous cytosine deamination [1,2], or due to exposures to chemical in-
sults or ultraviolet radiation [3,4], etc. These mutational processes
leave a footprint in the cancer genome characterized by distinctive al-
teration patterns or mutational signatures.

If we can identify all underlying signatures, this could greatly fa-
cilitate progress in understanding the origins of cancer and its

development. Therapeutically, if there are common underlying struc-
tures across different cancer types, then a therapeutic for one cancer
type might be applicable to other cancers, which would be a great
news.2 However, it all boils down to the question of usefulness, i.e., is
there a small enough number of cancer signatures underlying all
(100+) known cancer types, or is this number too large to be mean-
ingful or useful? Indeed, there are only 96 SNVs,3 so we cannot have
more than 96 signatures.4 Even if the number of true underlying sig-
natures is, say, of order 50, it is unclear whether they would be useful,
especially within practical applications. On the other hand, if there are
only a dozen or so underlying signatures, then we could hope for an
order of magnitude simplification.

To identify mutational signatures, one analyzes SNV patterns in a
cohort of DNA sequenced whole cancer genomes. The data is organized
into a matrix Gis, where the rows correspond to the N = 96 mutation
categories, the columns correspond to d samples, and each element is a
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2 Another practical application is prevention by pairing the signatures extracted from cancer samples with those caused by known carcinogens (e.g., tobacco, aflatoxin, UV radiation,
etc).

3 In brief, DNA is a double helix of two strands, and each strand is a string of letters A, C, G, T corresponding to adenine, cytosine, guanine and thymine, respectively. In the double
helix, A in one strand always binds with T in the other, and G always binds with C. This is known as base complementarity. Thus, there are six possible base mutations C>A, C>G, C>T,
T>A, T>C, T>G, whereas the other six base mutations are equivalent to these by base complementarity. Each of these 6 possible base mutations is flanked by 4 possible bases on each
side thereby producing 4× 6×4 = 96 distinct mutation categories.

4 Nonlinearities could undermine this argument. However, again, it all boils down to usefulness.
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a b s t r a c t

Mapping ecologically relevant zones in the marine environment has become increasingly important.
Biological data are however often scarce and alternatives are being sought in optimal classifications of
abiotic variables. The concept of ‘marine landscapes’ is based on a hierarchical classification of geological,
hydrographic and other physical data. This approach is however subject to many assumptions and
subjective decisions.
An objective protocol for zonation is being proposed here where abiotic variables are subjected to
a statistical approach, using principal components analysis (PCA) and a cluster analysis. The optimal
number of clusters (or zones) is being defined using the Calinski–Harabasz criterion. The methodology
has been applied on datasets of the Belgian part of the North Sea (BPNS), a shallow sandy shelf envi-
ronment with a sandbank–swale topography.
The BPNS was classified into 8 zones that represent well the natural variability of the seafloor. The
internal cluster consistency was validated with a split-run procedure, with more than 99% correspon-
dence between the validation and the original dataset. The ecological relevance of 6 out of the 8 zones
was demonstrated, using indicator species analysis.
The proposed protocol, as exemplified for the BPNS, can easily be applied to other areas and provides
a strong knowledge basis for environmental protection and management of the marine environment. A
SWOT-analysis, showing the strengths, weaknesses, opportunities and threats of the protocol was
performed.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Biodiversity is of utmost importance to maintain the long-term
stability of ecosystems, certainly with changing environmental
conditions, such as global warming (e.g. Keytsman and Jones,
2007). This applies to both the terrestrial and marine environment,
species and communities, many of which are threatened by the
ever-growing pressure.

For the term ‘habitat’, the International Council for the Explo-
ration of the Sea (ICES) Working Group on Marine Habitat Mapping
(ICES, 2006) gave an overview of definitions starting with the
classical definition of Darwin (1859) that considered only ‘‘The
locality in which a plant or animal naturally lives’’. The final ICES
definition was based on definitions of the European Nature

Information System (EUNIS, 2002), Kostylev et al. (2001) and
Valentine et al. (2005): ‘‘A particular environment which can be
distinguished by its abiotic characteristics and associated biological
assemblage, operating at particular, but dynamic spatial and
temporal scales in a recognizable geographic area’’. As such,
a habitat is the combination of both the abiotic and the biotic
environment. Generally, species and communities are related to
their substrate type, topographic position, and energy regime.

A ‘marine landscape’ is similar to a marine habitat, meaning that
it is also a recognizable geographic area distinguished by its specific
abiotic and biological characteristics. Generally, marine landscape
mapping is a broad-scale approach to habitat mapping (Van
Lancker and Foster-Smith, 2007).

In the framework of marine protection or for management,
available biotic data (e.g. absence/presence of benthic organisms)
are often patchy and highly variable in nature. Moreover, offshore
areas are generally devoid of samples. In response, the mapping of
‘‘marine landscapes’’ was developed, as a surrogate of biologically
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Mapping ecologically relevant zones in the marine environment has become increasingly important.
Biological data are however often scarce and alternatives are being sought in optimal classifications of
abiotic variables. The concept of ‘marine landscapes’ is based on a hierarchical classification of geological,
hydrographic and other physical data. This approach is however subject to many assumptions and
subjective decisions.
An objective protocol for zonation is being proposed here where abiotic variables are subjected to
a statistical approach, using principal components analysis (PCA) and a cluster analysis. The optimal
number of clusters (or zones) is being defined using the Calinski–Harabasz criterion. The methodology
has been applied on datasets of the Belgian part of the North Sea (BPNS), a shallow sandy shelf envi-
ronment with a sandbank–swale topography.
The BPNS was classified into 8 zones that represent well the natural variability of the seafloor. The
internal cluster consistency was validated with a split-run procedure, with more than 99% correspon-
dence between the validation and the original dataset. The ecological relevance of 6 out of the 8 zones
was demonstrated, using indicator species analysis.
The proposed protocol, as exemplified for the BPNS, can easily be applied to other areas and provides
a strong knowledge basis for environmental protection and management of the marine environment. A
SWOT-analysis, showing the strengths, weaknesses, opportunities and threats of the protocol was
performed.
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1. Introduction

Biodiversity is of utmost importance to maintain the long-term
stability of ecosystems, certainly with changing environmental
conditions, such as global warming (e.g. Keytsman and Jones,
2007). This applies to both the terrestrial and marine environment,
species and communities, many of which are threatened by the
ever-growing pressure.

For the term ‘habitat’, the International Council for the Explo-
ration of the Sea (ICES) Working Group on Marine Habitat Mapping
(ICES, 2006) gave an overview of definitions starting with the
classical definition of Darwin (1859) that considered only ‘‘The
locality in which a plant or animal naturally lives’’. The final ICES
definition was based on definitions of the European Nature

Information System (EUNIS, 2002), Kostylev et al. (2001) and
Valentine et al. (2005): ‘‘A particular environment which can be
distinguished by its abiotic characteristics and associated biological
assemblage, operating at particular, but dynamic spatial and
temporal scales in a recognizable geographic area’’. As such,
a habitat is the combination of both the abiotic and the biotic
environment. Generally, species and communities are related to
their substrate type, topographic position, and energy regime.

A ‘marine landscape’ is similar to a marine habitat, meaning that
it is also a recognizable geographic area distinguished by its specific
abiotic and biological characteristics. Generally, marine landscape
mapping is a broad-scale approach to habitat mapping (Van
Lancker and Foster-Smith, 2007).

In the framework of marine protection or for management,
available biotic data (e.g. absence/presence of benthic organisms)
are often patchy and highly variable in nature. Moreover, offshore
areas are generally devoid of samples. In response, the mapping of
‘‘marine landscapes’’ was developed, as a surrogate of biologically
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rotated component matrix (Table 2) shows the factor loads, being
the correlations between the rotated PCs and the original
variables.

In decreasing order, PC 1 has high loads (r<!0.5 or r> 0.5) for
the variables distance to coast, DTM, maximum TSM, ds50,
maximum Chl a, silt–clay % and gravel %; PC 2 for maximum bottom
shear stress and maximum current velocity; PC 3 for slope and
rugosity; PC 4 for BPI broad-scale and BPI fine-scale; PC 5 for
eastness and northness; and PC 6 for sand % and gravel %. Gravel % is

the only variable that has a high load for 2 PCs, meaning that this
relationship is not exclusive.

3.2. Step 2: hierarchical cluster analysis based on Ward’s method

The 54 307 cases with 6 PC variables were clustered to achieve
a hierarchical partition tree. This tree is not at all appropriate as end
result of the clustering, but the partitions are very useful as starting
positions for the K-means partitioning.

Fig. 2. Belgian part of the North Sea with 8 clusters or zones. The location of macrobenthic community samples is plotted for validation. Important patterns of the original abiotic
variables are clearly visible on the map: e.g. high silt–clay % in cluster 1, alternation of sandbanks and flats–depressions in clusters 2, 3, 4, 5, 6 and 7; patches of gravel and shell
fragments in cluster 8.
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The Software used is SPSS version 12 for PCA, ClustanGraphics
version 8.03 for the hierarchical and K-means clustering, R version
2.5.1 for the calculation of the Calinski and Harabasz (1974) indices
(called C–H in this paper), and PC-ORD 4.41 (McCune and Mefford,
1999) for the INDVAL analysis.

2.2.1. Step 1: PCA
For data reduction and to avoid multi-colinearity (i.e. high

degree of linear correlation) of the abiotic variables, a PCA was
performed (theoretical background e.g. in Jongman et al., 1987;
Legendre and Legendre, 1998). PCA computes a reduced set of new,
linearly independent variables, called principal components (PCs)
that account for most of the variance of the original variables. The
PCs are a linear combination of the original variables. The PCA was
based on a correlation matrix, implying that the Kaiser–Guttman
criterion could be applied (Legendre and Legendre, 1998). This
means that PCs with Eigen values larger than 1 were preserved as
meaningful components for the analysis. To maximize the inde-
pendence of each PC, a Varimax rotation of the PCs was computed.
The PCs were the input variables for the cluster analysis.

Similar applications of PCA for data reduction of abiotic vari-
ables are found in Cardillo et al. (1999), Fairbanks (2000), Moreda-
Piñeiro et al. (2006), and Frontalini and Coccioni (2008).

2.2.2. Step 2: hierarchical cluster analysis based on Ward’s method
To group the pixels with abiotic data on a statistical basis,

a hierarchical clustering, based on Ward’s (1963) or Orlóci ’s (1967)

minimum variance method was applied on the PCs (theoretical
background, e.g. in Jongman et al., 1987; Legendre and Legendre,
1998). This method is an agglomerative clustering algorithm that
minimizes an objective function which is the same ‘‘squared error’’
criterion that is used in multivariate analysis of variance and results
into clusters with a minimal variance between each cluster. At each
clustering step, this method finds the pair of objects or clusters
whose fusion increases as little as possible the sum, over all objects
of the squared Euclidean distances between objects and cluster
centroids (Legendre and Legendre, 1998). The Euclidean distance is
an appropriate model for the relationships among abiotic variables
(Legendre and Legendre, 1998). Applications of Ward’s method for
the clustering of abiotic variables can be found in Cao et al. (1997),
Frontalini and Coccioni (2008), Primpas et al. (2008) and Scholz and
Sadowski (2009).

2.2.3. Step 3: K-means partitioning
Although the result of a hierarchical cluster analysis on its own

is prone to multiple errors, a hierarchical clustering, based on
Ward’s method, can generate excellent starting positions (i.e.
cluster centroids used as cluster seeds) for a K-means partitioning
(Milligan, 1980; Wishart, 1987; Legendre and Legendre, 1998).
Partitioning clustering methods produce clusters in a predefined
number of groups (K). K-means is the most widely used numerical
method for partitioning data (examples from the marine environ-
ment are found in Legendre et al. (2002), Legendre (2003), Preston
and Kirlin (2003), Hewitt et al. (2004), and Zharikov et al. (2005)).

Table 1
Abiotic variables as input for the PCA and cluster analysis (–, No unit).

Abiotic variable Unit Reference

Sedimentology
All based on a sedimentological database (‘sedisurf@’) hosted at Ghent
University, Renard Centre of Marine Geology.

Median grain-size of sand fraction (63–2000 mm) or ds50 mm Verfaillie et al. (2006)
Silt–clay percentage (0–63 mm) % Van Lancker et al. (2007)
Sand percentage (63–2000 mm) % Van Lancker et al. (2007)
Gravel percentage (>2000 mm) % Van Lancker et al. (2007)

Topography
Digital terrain model (DTM) of bathymetry m Flemish Authorities, Agency for Maritime and Coastal Services, Flemish

Hydrography
All other topographic variables are derived from the DTM

Slope¼ a first derivative of the DTM " Evans (1980), Wilson et al. (2007)

Aspect¼ a first derivative of the DTM Hirzel et al. (2002), Wilson et al. (2007)
Indices of northness and eastness provide continuous measures (#1 to þ1) describing

orientation of the slopes.
Eastness¼ sin (aspect) –
Northness¼ cos (aspect) –

Rugosity¼ ratio of the surface area to the planar area across the neighborhood of the
central pixel

– Jenness (2002), Lundblad et al. (2006), Wilson et al. (2007)

Bathymetric Position Index (BPI)¼measure of where a location, with a
defined elevation, is
relative to the overall landscape

Lundblad et al. (2006), Wilson et al. (2007)

BPI (broad-scale) –
BPI (fine-scale) –

Hydrodynamics
Maximum bottom shear stress¼ frictional force exerted by the flow per unit

area of the seabed
N/m2 Management Unit of the North Sea Mathematical Models and the

Scheldt estuary
Maximum current velocity m/s

Satellite derived variables
Maximum Chlorophyll a (Chl a) concentration over a 2-year period (2003–2004) mg/

m3
MERIS satellite datasets; compiled by European Space Agency and
Management Unit of the North Sea Mathematical Models and the Scheldt
estuaryMaximum Total Suspended Matter (TSM): measure for turbidity over a 2-year period

(2003–2004)
mg/l

Distance to coast m Computed in GIS
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Abiotic variables

K-means is used in a variety of problems
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