


Dealing with “some” important statistical assumptions.

1) The issue of normality (today):

- Parametric (e.g., ANOVA): assume parametrized 
families of probability distributions (e.g., normal 
defined by two parameters, i.e., mean and variance).  
Parameter estimates tend to be sensitive to non-
normality (e.g., issue in regression slopes), but not 
necessarily in statistical hypothesis testing (P-values 
may be not as sensitive).  

- Non-parametric: either distribution free (e.g., 
permutation tests) or ranked based tests.



Dealing with “some” important statistical 
assumptions.

2) The issue of homogeneity of variances (later 
in the course):

- Standard (e.g., ANOVAs, regressions) assume 
homoscedasticity.  

- Robust approaches (Welch’s ANOVA, Weighted 
least squares) are good to deal with 
heteroscedasticity.



One response variable &
Multiple categorical factors (ANOVAs)

YESNO

Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)
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One response variable &
Multiple categorical factors

YESNO

Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)

YESNO

Are variances equal among 
all populations? 
(Levene’s test)

ANOVA

PARAMETRIC 
TESTS

Parametric is supposed to be about assuming 
parameters about the population where data 
were sampled; but many practitioners see as 
only about normality (which is not true).
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Multiple categorical factors
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Are variables normally distributed in each 
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transformations
(log, square root, etc)



One response variable &
Multiple categorical factors

YESNO

Data Transformation
(rank, log, square root, Box-Cox 
power transformation, etc) and 
verify data normality again after 

transformation

Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)

NON-PARAMETRIC 
TESTS
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If NOT normal 
after 

transformation

Even though parametric tests are robust against normality, we
often don’t know how much for the particular data at hands; the 
tradition is then to use non-parametric tests
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If not normal after 
transformation

YESNO

One response variable &
Multiple categorical factors

Can we assume that variances 
are equal among all 

populations? (Levene’s test)

NO

Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)

Welch’s ANOVA
Weighted least 

squares on ranks Kruskal-Wallis
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YESNO

One response variable &
Multiple categorical factors

Can we assume that variances 
are equal among all 

populations? (Levene’s test)

YESNO
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Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)
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SUMMARY



The role of data transformations: 
improve normality (today) & 
homoscedasticity (covered in another lecture)



square-root
transformation



log
transformation



A few words on data transformation

One size may not fit all:

1) One transformation may help approximate normality, but
another transformation may be required to approximate 
homoscedasticity (e.g., log(sqrt(data))).

2) One transformation may negate (reverse) the other – the one that 
makes the data approximate homoscedasticity may make data non-
longer normal.

3) If data are complex (e.g., several predictors in a regression model), it 
may not be possible that one single transformation will allow data to 
behave properly under assumptions.
Possible solution: focus on analytical solutions (many covered in this 
course) and not always transformations; or combine different 
transformation.  



A few words on data transformation
3) If data are complex (e.g., several predictors in a regression model), it may not be 
possible that one single transformation will allow data to behave properly under 
assumptions.

Possible solution: focus on analytical solutions (many covered later in the semester) and 
not always transformations; or combine different transformation.  



The effects of non-normality
on statistical inference

wake up

@cjlortie



Dealing with non-normality in statistical inference -
hypothesis testing
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Non-normal distributions have many shapes and would be 
quite hard to develop sampling distributions for all these 

different shapes 
(though it can and has been done in more advanced analysis)

Dealing with non-normality in statistical inference –
hypothesis testing



Parametric tests assuming normality (e.g., t-test & ANOVA) are 
often robust against non-normality; but depending on the type 
of non-normality (shape), parametric tests can have type I errors 
different (often greater) from alpha; and also low power 
(increased type II error).

The effects of non-normality on statistical test

One challenge is to separate normality from heteroscedasticity 
issues (even in simulations).

The other challenge is when samples come all from 
populations with different distributions (even though they 
could have the same means, i.e., H0 is true).



Parametric tests assuming normality (e.g., t-test & ANOVA) are often 
robust against non-normality; but depending on the type of non-
normality (shape of the distribution), parametric tests can have type I 
errors (false positives) that differ (often greater) from alpha; and low 
power (increased type II error; false negatives).

The effects of non-normality on statistical test



Parametric tests assuming normality (e.g., t-test & 
ANOVA) are often robust against non-normality; but 
depending on the type of non-normality (shape), 
parametric tests can have type I errors different (often 
greater) from alpha and also low power (increased type II 
error).

What happens if the Type I error probability (rate) is 
greater than alpha? i.e., increase number of False Positives.

The effects of non-normality on statistical test



Parametric tests assuming normality (e.g., t-test & 
ANOVA) are often robust against non-normality; but 
depending on the type of non-normality (shape), 
parametric tests can have type I errors different (often 
greater) from alpha and also low power (increased type II 
error).

What happens if the Type I error probability (rate) is 
greater than alpha? i.e., increase number of False Positives.

The effects of non-normality on statistical test

What happens if the Type I error probability (rate) is 
smaller than alpha? decrease False Positives but also 
decrease True Positives (i.e., lower statistical power).



A Type I error (false positive) is an error in every sense of 
the word. A conclusion is drawn that the null hypothesis is 
false when, in fact, it is true.

Therefore, Type I errors are generally considered more 
serious than Type II errors (false negatives). 

Type II errors are often considered as “oh well, we were not 
able to detect an effect”…perhaps increase sample size! 

Adapted from http://davidmlane.com/hyperstat/A2917.html

Type I versus Type II errors – the “common” view



A Type I error (false positive) is an error in every sense of 
the word. A conclusion is drawn that the null hypothesis is 
false when, in fact, it is true.

Therefore, Type I errors are generally considered more 
serious than Type II errors (false negatives). Type II errors are 
often considered as “oh well, we were not able to detect an 
effect”…perhaps increase sample size! 

Adapted from http://davidmlane.com/hyperstat/A2917.html

Type I versus Type II errors – the “common” view

When committing a type I error, you are stating that something 
that is false to be true.  

CONFUSING: When committing at type II error, you are NOT 
stating that something that is true to be false (you are just not 
discovering something new).



Non-parametric tests based on ranks are those that can 
handle non-normal data

These are the main tests traditionally used in Biology for comparing
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) –
The Mann–Whitney U-test (also known as the Mann–Whitney–Wilcoxon test,
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).



These are the main tests traditionally used in Biology for comparing
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) –
The Mann–Whitney U-test (also known as the Mann–Whitney–Wilcoxon test,
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).

2) For comparing multiple samples (analogue of the parametric ANOVA) – The
Kruskal-Wallis test (generalization of the U-test)

The P-value for the The Mann–Whitney U-test and the The Kruskal-Wallis test
is mathematically the same; as such, we will cover only the latter.

Note: remember that t2 = F; we often cover t-tests (and not only ANOVAs) in
courses for two main reasons – [1] one sample t-tests; [2] understand the nature
of post-hoc testing (e.g., post-hoc pairwise comparisons of means after ANOVA
and because there is a t-test dealing with samples when their populations
differ in their variances).

Non-parametric tests based on ranks are those that can 
handle non-normal data



YESNO

One response variable &
Multiple categorical factors

Are variances equal among 
all populations? 
(Levene’s test)

YESNO

Data Transformation
(rank, log, square root, etc)

Are variables normally distributed in each 
combination of treatment?

(Normal QQ Plot of residuals)
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Many non-parametric tests are based on rank transformations

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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Example: FST is a measure of the amount of 
geographic variation in a genetic polymorphism. 
Here, McDonald et al. (1996) compared two 
populations of the American oyster regarding the FST
based on six anonymous DNA polymorphisms 
(variation in random bits of DNA of no known 
function) and compared them to FST values on 13 
proteins. 

Question: Do protein differ in FST values in contrast 
to anonymous DNA polymorphisms?

http://www.biostathandbook.com/kruskalwallis.html Data from McDonald et al. (1996)

Zero FST = no genetic variation (panmictic) 
negative FST = more genetic variation within   
populations than between the two populations being 
compared.
positive FST = more variation between populations than 
within the two populations being compared.



Fst data highly non-normal, so transformation is advised; let’s 
apply the rank transformation

Normal Q-Q normal residual plot for the t-test

Theoretical quantiles 
(normally distributed)
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genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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http://www.biostathandbook.com/kruskalwallis.html Data from McDonald et al. (1996)

(2+3)/2=2.5

(9+10)/2=9.5

Many non-parametric tests are based on rank transformations



We want to know whether samples come from statistical populations 
that vary in their ranks

What is the probability that a randomly sampled observation from population 
P is greater (or smaller) in rank than a randomly sampled observation from Q? 
If the probability is small, then the samples come from different populations!

P
Original values for each 
population

Varga and Delanay (1998)

Q



We want to know whether samples come from statistical populations 
that vary in their ranks – example from two large samples

What is the probability that a randomly sampled observation from population 
P is greater (or smaller) in rank than a randomly sampled observation from Q? 
If the probability is small, then the samples come from different populations!

P
Original values for each 
population

Varga and Delanay (1998)

Q

Two distributions 
of ranks combined
(always uniform)rank-transformation



Let’s see that “manually” 
using R code

Two distributions of ranks combined
(always uniform)



Ranked-based statistical tests remove the natural ways we think about the original 
units of the variables of interest

and they also reduce statistical power to detect true differences, i.e., increase type 
II error (false negatives).



Rank based tests
wake up

@cjlortie



Kruskal-Wallis test 
(akin to one-factorial ANOVA but based on ranks)

Ho: no population from where the samples 
were taken stochastically dominates 
another population (stochastic 
homogeneity). 

Ha: at least one population from where the 
sample was taken stochastically dominates 
another population (stochastic 
heterogeneity).  

Which sample? Post-hoc tests 
(based on ranks)

Sample A stochastically
dominates sample B

A

B



H0 : DNA and protein do not stochastically dominate each 
other in their FSTs. 

HA : Either DNA or protein stochastically dominate each 
other in their FSTs. 

H0: no population from where the samples were taken 
stochastically dominates another population (stochastic 
homogeneity). 

HA: at least one population from where the sample was taken 
stochastically dominates another population (stochastic 
heterogeneity).  

FSTs data

Kruskal-Wallis test 
(akin to one-factorial ANOVA but based on ranks)



 

H = 12
N(N +1)

( rj,i )
2

j=1

ni

∑
nii=1

k

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

− 3(N +1)

Kruskal-Wallis test – statistic H

Total number of 
observations

Number of observations in 
group (samples) i

Number of groups 
(samples) Sum of ranks in 

group i

No need to memorize or understand this formula (F much more 
important) – but I think is relevant to understand that statisticians 

spend serious time on these formulae (or formulas).



Kruskal-Wallis test – statistic H

Equations also demonstrate the work 
others do to make test statistics (H here) 
to be contrastable to existing probability 
distributions (chi-square in this case)

No need to memorize or 
understand this formula 
(keep your “energy” for 
F if you want to).

But I think is relevant to 
understand that 
statisticians spend 
serious time on those. 
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Kruskal-Wallis test – statistic H

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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Sum   60.5    149.5
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Kruskal-Wallis test – statistic H

genetic polymorphism) in two populations of the American oyster, Crassostrea virginica.
McDonald et al. (1996) collected data on FST for six anonymous DNA polymorphisms (variation
in random bits of DNA of no known function) and compared the FST values of the six DNA
polymorphisms to FST values on 13 proteins from Buroker (1983). The biological question was
whether protein polymorphisms would have generally lower or higher FST values than
anonymous DNA polymorphisms. McDonald et al. (1996) knew that the theoretical distribution
of FST for two populations is highly skewed, so they analyzed the data with a Kruskal–Wallis
test.

When working with a measurement variable, the Kruskal–Wallis test starts by substituting
the rank in the overall data set for each measurement value. The smallest value gets a rank of 1,
the second-smallest gets a rank of 2, etc. Tied observations get average ranks; in this data set, the
two Fst values of -0.005 are tied for second and third, so they get a rank of 2.5.

gene class FST Rank Rank
CVJ5 DNA -0.006 1  
CVB1 DNA -0.005 2.5  
6Pgd protein -0.005   2.5
Pgi protein -0.002   4
CVL3 DNA 0.003 5  
Est-3 protein 0.004   6
Lap-2 protein 0.006   7
Pgm-1 protein 0.015   8
Aat-2 protein 0.016   9.5
Adk-1 protein 0.016   9.5
Sdh protein 0.024   11
Acp-3 protein 0.041   12
Pgm-2 protein 0.044   13
Lap-1 protein 0.049   14
CVL1 DNA 0.053 15  
Mpi-2 protein 0.058   16
Ap-1 protein 0.066   17
CVJ6 DNA 0.095 18  
CVB2m DNA 0.116 19  
Est-1 protein 0.163   20

You calculate the sum of the ranks for each group, then the test statistic, H. H is given by a
rather formidable formula that basically represents the variance of the ranks among groups,
with an adjustment for the number of ties. H is approximately chi-square distributed, meaning
that the probability of getting a particular value of H by chance, if the null hypothesis is true, is
the P value corresponding to a chi-square equal to H; the degrees of freedom is the number of
groups minus 1. For the example data, the mean rank for DNA is 10.08 and the mean rank for
protein is 10.68, H=0.043, there is 1 degree of freedom, and the P value is 0.84. The null
hypothesis that the FST of DNA and protein polymorphisms have the same mean ranks is not
rejected.

For the reasons given above, I think it would actually be better to analyze the oyster data with one-way
anova. It gives a P value of 0.75, which fortunately would not change the conclusions of McDonald et al.

Kruskal–Wallis test - Handbook of Biological Statistics http://www.biostathandbook.com/kruskalwallis.html
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Sum   60.5    149.5

Correction for ties

Number of 
values from 
a set of ties

Number of ties
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 Hc = H / CH = 0.0425 / 0.998 = 0.04258517

 

H = 0.029∗(610.04+1596.45)⎡⎣ ⎤⎦ − 63=

H = 0.0425
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For small samples sizes (n <= 5), a special H distribution needs to be used 
(though R does not have it and uses the standard X2); if n > 5, then H follows a 

chi-square distribution with (k-1) degrees of freedom (df=2-1=1)

 Hc = H / CH = 0.0425 / 0.998 = 0.04258517

df=1

0.04258517

P=0.8365; 
probability of finding by chance
an Hc greater than the observed
when assuming that H0 is true.

 χ2

Kruskal-Wallis test – statistic H



Fun fact: The chi-square distribution is the distribution of the sum of 
squared standard normal deviates. 

Good place to generate more intuition about statistical distributions!

R code to generate the chi-square computationally versus analytically 
for 20 degree of freedom



sum.vector sum.vector

The chi-square distribution is the distribution of the 
sum of squared standard normal deviates. 



=

computational approach

analytical approach



The chi-square distribution is the distribution 
of the sum of squared standard normal 
deviates. 

fun fact: The F distribution is the ratio of two 
(scaled) chi-square distributed values. The 
scaling is done by appropriate division of 
degrees of freedom. 



A general solution to rank-
based tests
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Kruskal-Wallis test is equivalent (close enough) to an 
ANOVA on ranks

Ho: no sample stochastically dominates another sample
(stochastic homogeneity). 

Ha: at least one sample stochastically dominates one other 
sample (stochastic heterogeneity).  

“Stochastic homogeneity is equivalent to the equality of the expected values 
of the rank sample means. This finding implies that the null hypothesis of 
stochastic homogeneity can be tested by an ANOVA performed on the rank 
transforms, which is essentially equivalent to doing a Kruskal-Wallis H test.”

Varga and Delanay (1998) Journal of Educational and Behavioral Statistics 
Summer 1998, Vol. 23, No. 2, pp. 170-192 
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For the comparison of more than two independent samples the Kruskal-Wallis 
H test is a preferred procedure in many situations. However, the exact null and 
alternative hypotheses, as well as the assumptions of this test, do not seem to be 
very clear among behavioral scientists. This article attempts to bring some 
order to the inconsistent, sometimes controversial treatments of the Kruskal-
Wallis test. First we clarify that the H test cannot detect with consistently 
increasing power any alternative hypothesis other than exceptions to stochastic 
homogeneity. It is then shown by a mathematical derivation that stochastic 
homogeneity is equivalent to the equality of the expected values of the rank 
sample means. This finding implies that the null hypothesis of stochastic 
homogeneity can be tested by an ANOVA performed on the rank transforms, 
which is essentially equivalent to doing a Kruskal-Wallis H test. If the variance 
homogeneity condition does not hold then it is suggested that robust ANOVA 
alternatives performed on ranks be used for testing stochastic homogeneity. 
Generalizations are also made with respect to Friedman's G test. 

The Kruskal-Wallis H test (hereafter abbreviated as KWt) is a nonparametric 
statistical procedure frequently used to compare several populations. However, 
current statistical textbooks written for the behavioral sciences are quite incon-
sistent or unclear about what aspects of the populations can really be compared 
by the KWt and under what conditions. 

Regarding the null and alternative hypotheses of the KWt, several authors 
(e.g., Howell, 1992; Hurlburt, 1994; Lehman, 1991; Pagano, 1994; Triola, 1995; 
Wilcox, 1996) consider the null hypothesis to be that the distribution of the 
dependent variable is the same in the different populations to be compared, and 

Much of the work reported in this article resulted from the collaborative efforts of Drs. 
Vargha and Delaney while Vargha was at the University of New Mexico under the 
support of a Fulbright grant from the U.S. government and while Vargha was a Szechenyi 
Professor Scholar and supported by Hungarian grant OTKA No. T018353. 
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Ho: no sample stochastically dominates another sample
(stochastic homogeneity). 

Ha: at least one sample stochastically dominates one other 
sample (stochastic heterogeneity).  

Kruskal-Wallis test = ANOVA on ranks

Ho: no mean differences in ranked values

Ha: at least one sample differs in mean ranked values from 
another sample

Kruskal-Wallis:

ANOVA:

Varga and Delanay (1998)



They are slightly 
different, no?

Kruskal-Wallis test = ANOVA on ranks



Kruskal-Wallis test = ANOVA on ranks

Kruskal-Wallis and ANOVA are “asymptotically equivalent” (i.e., the two 
functions "eventually" become "essentially equal") and so P-values are exactly 
the same for very large samples and they do not differ by much for small 
sample size.

Two sample Kruskal-Wallis 
P-values (chi-square based) 
and F-based P values)



Kruskal-Wallis and ANOVA are “asymptotically equivalent” and so P-values are 
the same for very large samples and they do not differ by much for small sample 
size.  Using R code to demonstrate the asymptotic equivalence. 



Kruskal-Wallis and ANOVA are “asymptotically equivalent”



Kruskal-Wallis test = ANOVA on ranks

Kruskal-Wallis and ANOVA are “asymptotically equivalent” 
and so P-values are exactly the same for very large samples 
and they do not differ by much for small sample size.

Because of the equivalence, we can then expand non-
parametric analysis based on ranks to any multi-factorial 
ANOVAs, regressions, MANOVA, ANCOVA, etc



NOTE: Non-parametric tests are those that can handle 
non-normal data

There is a common misunderstanding in the statistical 
literature and among practitioners, including many 
biostatistics books, that non-parametric tests can also 
handle differences in variances among samples.  

THIS IS NOT TRUE! They are also affected by variance 
differences among groups/treatments (i.e., 
homoscedasticity).

Test variance differences in ranks (almost never done in 
the literature)!
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