ASSUMPTIONS
AHEAD




Dealing with “some” important statistical assumptions.
1) The issue of normality (today):

- Parametric (e.g., ANOVA): assume parametrized
families of probability distributions (e.g., normal
defined by two parameters, i.e., mean and variance).
Parameter estimates tend to be sensitive to non-
normality (e.g., issue in regression slopes), but not
necessarily in statistical hypothesis testing (P-values
may be not as sensitive).

- Non-parametric: either distribution free (e.g.,
permutation tests) or ranked based tests.



Dealing with “some” important statistical
assumptions.

2) The issue of homogeneity of variances (later
in the course):

- Standard (e.g., ANOVAs, regressions) assume
homoscedasticity.

- Robust approaches (Welch’'s ANOVA, Weighted
east squares) are good to deal with
neteroscedasticity.
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Multiple categorical factors (ANOVAs)
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One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

NO

PARAMETRIC
TESTS

Standardized residuals

Normal Q-Q

10190

Theoretical Quantiles

YES

d

Are variances equal among
all populations?
(Levene’s test)

NO YES

ANOVA




One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

Standardized residuals

NO YES
PARAMETRIC / Are variances equal among
all populations?
TESTS (Levene’s test)
Normal Q-Q NO YES
| ANOVA

Theoretical Quantiles

Parametric is supposed to be about assuming
parameters about the population where data
were sampled; but many practitioners see as
only about normality (which is not true).



One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

Theoretical Quantiles

(log, square root, etc)

NO YES
PARAMETRIC / Are variances equal among
all populations?
TESTS (Levene’s test)
Normal Q-Q NO YES
& o7 Welch’s ANOVA ANOVA
% | Weighted least
S squares (later in the
> 7 semester) ﬁ
a0 1 g s transformations |




One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

NO

YES

Data Transformation
(rank, log, square root, Box-Cox
power transformation, etc) and
verify data normality again after

transformation
l

!
If NOT normal

after
transformation

Even though parametric tests are robust against normality, we

v

often don’t know how much for the particular data at hands; the
tradition is then to use non-parametric tests

NON-PARAMETRIC
TESTS

Normal Q-Q

Standardized residuals
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Theoretical Quantiles




One response variable &

Multiple categorical factors

combination of treatment?
(Normal QQ Plot of residuals)

Are variables normally distributed in each

If not normal after
transformation

Can we assume that variances
are equal among all
populations? (Levene’s test)

NO
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Kruskal-Wallis

NON-PARAMETRIC
TESTS

Standardized residuals

Normal Q-Q

Theoretical Quantiles




One response variable &

Multiple categorical factors
|

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

NO

If not normal after
transformation

Can we assume that variances
are equal among all <]
populations? (Levene’s test)

NON-PARAMETRIC

TESTS

YES

NO

Rank
transformation

Welch’s ANOVA
Weighted least
squares on ranks

Standardized residuals
1

Kruskal-Wallis

Normal Q-Q

ANOVA .

Theoretical Quantiles




SUMMARY

One response variable &

Multiple categorical factors
|

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

NO YES

Data Transformation / Are variances equal among

(rank, log, square root, etc)

all populations?

' - (Levene’s test)
Can we assume that variances -f_,—’
are equal among all x g NO YES

populations? (Levene’s test) T 5

r -

2

NO YES g Welch’s ANOVA ANOVA
Weighted least
squares
Welch’s ANOVA ANOVA
Weighted least
i Kruskal-Wallis




improve normality (today) &
homoscedasticity (covered in another lecture)

Normal Q-Q Plot
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square-root

improve normality & transformation

homoscedasticity (another lecture)

Normal Q-Q Plot
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log

improve normality & y
transformation

homoscedasticity (another lecture)
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A few words on data transformation

One size may not fit all:

1) One transformation may help approximate normality, but
another transformation may be required to approximate
homoscedasticity (e.g., log(sqrt(data))).

2) One transformation may negate (reverse) the other — the one that
makes the data approximate homoscedasticity may make data non-
longer normal.

3) If data are complex (e.g., several predictors in a regression model), it
may not be possible that one single transformation will allow data to
behave properly under assumptions.

Possible solution: focus on analytical solutions (many covered in this
course) and not always transformations; or combine different
transformation.



A few words on data transformation

3) If data are complex (e.g., several predictors in a regression model), it may not be
possible that one single transformation will allow data to behave properly under
assumptions.

Possible solution: focus on analytical solutions (many covered later in the semester) and
not always transformations; or combine different transformation.

The R Package trafo for Transforming Linear
Regression Models

Lily Medina Piedad Castro
Humboldt Universitiat zu Berlin Humboldt Universitiat zu Berlin
Ann-Kristin Kreutzmann Natalia Rojas-Perilla

Freie Universitit Berlin Freie Universitat Berlin
Abstract

The linear regression model has been widely used for descriptive, predictive, and infer-
ential purposes. This model relies on a set of assumptions, which are not always fulfilled
when working with empirical data. In this case, one solution could be the use of more
complex regression methods that do not strictly rely in the same assumptions. However,
in order to improve the validity of model assumptions, transformations are a simpler ap-
proach and enable the user to keep using the well-known linear regression model. But
how can a user find a suitable transformation? The R package trafo offers a simple user-
friendly framework for selecting a suitable transformation depending on the user needs.
The collection of selected transformations and estimation methods in the package trafo
complement and enlarge the methods that are existing in R so far.



The effects of non-normality
on statistical inference




Dealing with non-normality in statistical inference -

hypothesis testing
1200 1200 -
1000 1000 -
800 - 800 -
600 600 —
400 400
>~
O 200 200
c
Q 0 - 0-
3 [ I I I ] [ T I T 1
O 02 04 06 08 1.0 00 02 04 06 038
Q
| -
L
1500
1000 A
500
O —_

Values



Dealing with non-normality in statistical inference —
hypothesis testing

Site 1 i Site 2 5 Site 3 i Site 4 Site 5

0 - 0
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1e7

1e8 1e7
Standard Deviation of Daily September Flows

Non-normal distributions have many shapes and would be
quite hard to develop sampling distributions for all these
different shapes
(though it can and has been done in more advanced analysis)



The effects of non-normality on statistical test

Parametric tests assuming normality (e.g., t-test & ANOVA) are
often robust against non-normality; but depending on the type
of non-normality (shape), parametric tests can have type I errors
different (often greater) from alpha; and also low power
(increased type II error).

One challenge is to separate normality from heteroscedasticity
issues (even in simulations).

The other challenge is when samples come all from
populations with different distributions (even though they
could have the same means, i.e., H; is true).



The effects of non-normality on statistical test

Parametric tests assuming normality (e.g., t-test & ANOVA) are often
robust against non-normality; but depending on the type of non-
normality (shape of the distribution), parametric tests can have type I
errors (false positives) that differ (often greater) from alpha; and low
power (increased type Il error; false negatives).

Br J Math Stat Psychol. 2013 May;66(2):224-44. doi: 10.1111/].2044-8317.2012.02047 .x. Epub 2012 May 24.

The impact of sample non-normality on ANOVA and alternative methods.
Lantz B'.

# Author information

Abstract

In this journal, Zimmerman (2004, 2011) has discussed preliminary tests that researchers often use to choose an appropriate method for

comparing locations when the assumption of normality is doubtful. The conceptual problem with this approach is that such a two-stage

process makes both the power and the significance of the entire procedure uncertain, as type | and type Il errors are possible at both stages.
_ A type | error at the first stage, for example, will obviously increase the probability of a type Il error at the second stage. Based on the idea of
Schmider et al. (2010), which proposes that simulated sets of sample data be ranked with respect to their degree of normality, this paper =
investigates the relationship between population non-normality and sample non-normality with respect to the performance of the ANOVA,
Brown-Forsythe test, Welch test, and Kruskal-Wallis test when used with different distributions, sample sizes, and effect sizes. The overall
conclusion is that the Kruskal-Wallis test is considerably less sensitive to the degree of sample normality when populations are distinctly
non-normal and should therefore be the primary tool used to compare locations when it is known that populations are not at least
approximately normal. o




The effects of non-normality on statistical test

Parametric tests assuming normality (e.g., t-test &
ANOVA) are often robust against non-normality; but
depending on the type of non-normality (shape),
parametric tests can have type I errors different (often
greater) from alpha and also low power (increased type II
error).

What happens if the Type I error probability (rate) is
greater than alpha? i.e., increase number of False Positives.



The effects of non-normality on statistical test

Parametric tests assuming normality (e.g., t-test &
ANOVA) are often robust against non-normality; but
depending on the type of non-normality (shape),
parametric tests can have type I errors different (often
greater) from alpha and also low power (increased type II
error).

What happens if the Type I error probability (rate) is
greater than alpha? i.e., increase number of False Positives.

What happens if the Type I error probability (rate) is
smaller than alpha? decrease False Positives but also
decrease True Positives (i.e., lower statistical power).



Type | versus Type Il errors — the “common” view

A Type | error (false positive) is an error in every sense of
the word. A conclusion is drawn that the null hypothesis is
false when, in fact, it is true.

Therefore, Type | errors are generally considered more
serious than Type Il errors (false negatives).

Type Il errors are often considered as “oh well, we were not
able to detect an effect”...perhaps increase sample size!

Adapted from http://davidmlane.com/hyperstat/A2917.html



Type | versus Type Il errors — the “common” view

A Type | error (false positive) is an error in every sense of
the word. A conclusion is drawn that the null hypothesis is
false when, in fact, it is true.

Therefore, Type | errors are generally considered more
serious than Type Il errors (false negatives). Type Il errors are
often considered as “oh well, we were not able to detect an
effect”...perhaps increase sample size!

Adapted from http://davidmlane.com/hyperstat/A2917.html

When committing a type | error, you are stating that something
that is false to be true.

CONFUSING: When committing at type Il error, you are NOT
stating that something that is true to be false (you are just not
discovering something new).



Non-parametric tests based on ranks are those that can
handle non-normal data

These are the main tests traditionally used in Biology for comparing
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) —
The Mann—Whitney U-test (also known as the Mann-Whitney—Wilcoxon test,
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).



Non-parametric tests based on ranks are those that can
handle non-normal data

These are the main tests traditionally used in Biology for comparing
samples:

1) For comparing two samples (analogue of the parametric two sample t-test) —
The Mann—Whitney U-test (also known as the Mann-Whitney—Wilcoxon test,
the Wilcoxon rank-sum test, or the Wilcoxon two-sample test).

2) For comparing multiple samples (analogue of the parametric ANOVA) — The
Kruskal-Wallis test (generalization of the U-test)

The P-value for the The Mann—-Whitney U-test and the The Kruskal-Wallis test
is mathematically the same; as such, we will cover only the latter.

Note: remember that t?> = F; we often cover t-tests (and not only ANOVAs) in
courses for two main reasons — [1] one sample t-tests; [2] understand the nature
of post-hoc testing (e.g., post-hoc pairwise comparisons of means after ANOVA
and because there is a t-test dealing with samples when their populations
differ in their variances).



One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

NO

Data Transformation
(rank, log, square root, etc)

YES

NO

transformation

Are variances equal among
all populations? x
(Levene’s test) §
YES
ANOVA

Kruskal-Wallis

TODAY



Many non-parametric tests are based on rank transformations

gene class Fgr
CV]J5 DNA -0.006
CVB1 DNA  -0.005
6Pgd  protein -0.005
Pgi protein -0.002
CVL3 DNA  0.003
Est-3  protein 0.004
Lap-2  protein 0.006
Pgm-1 protein 0.015
Aat-2  protein 0.016
Adk-1 protein 0.016
Sdh protein 0.024
Acp-3 protein 0.041
Pgm-2 protein 0.044
Lap-1  protein 0.049
CVL1 DNA  0.053
Mpi-2  protein 0.058
Ap-1  protein 0.066
CVJe DNA  0.095
CVB2m DNA  0.116
Est-1  protein 0.163

Example: Fqr is a measure of the amount of
geographic variation in a genetic polymorphism.
Here, McDonald et al. (1996) compared two
populations of the American oyster regarding the Fgr
based on six anonymous DNA polymorphisms
(variation in random bits of DN A of no known
function) and compared them to Fg values on 13
proteins.

Question: Do protein differ in Fgr values in contrast
to anonymous DNA polymorphisms?

Zero Fs; = no genetic variation (panmictic)

negative Fi; = more genetic variation within
populations than between the two populations being
compared.

positive Fg; = more variation between populations than
within the two populations being compared.

http://www.biostathandbook.com/kruskalwallis.html Data from McDonald et al. (1996)



F. data highly non-normal, so transformation is advised; let’s
apply the rank transformation

Normal Q-Q normal residual plot for the t-test
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(normally distributed)



Many non-parametric tests are based on rank transformations

gene class Fgt Rank Rank
CV]J5 DNA -0.006 1

CVB1 DNA -0.005 |25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2 protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1 protein 0.016 9.5
Sdh protein  0.024 11
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1 protein 0.049 14
CVL1 DNA  0.053 15

Mpi-2  protein 0.058 16
Ap-1  protein 0.066 17
CVJe DNA  0.095 18

CVB2m DNA  0.116 19

Est-1 protein 0.163 20

http://www.biostathandbook.com/kruskalwallis.html

(2+3)/2=2.5

(9+10)/2=9.5

Data from McDonald et al. (1996)



We want to know whether samples come from statistical populations
that vary in their ranks

What is the probability that a randomly sampled observation from population
P is greater (or smaller) in rank than a randomly sampled observation from Q?
If the probability is small, then the samples come from different populations!

300 - P 300 - Varga and Delanay (1998)
250 250
200 - 200
150 - 150 - Original values for each
100 100 - population
50 - 50
0- | | 0 -




We want to know whether samples come from statistical populations
that vary in their ranks — example from two large samples

What is the probability that a randomly sampled observation from population
P is greater (or smaller) in rank than a randomly sampled observation from Q?
If the probability is small, then the samples come from different populations!

300 - P 300 - Q Varga and Delanay (1998)
250 - 250 -
200 - 200
150 - 150 Original values for each
100 - 100 - population
50 - 50 -
( T em——— 0 - Two distributions
0 2 46 8 12 > 46 8 12 of ranks combined
@ rank-transformation@ (always uniform)
140 -
150 ] 120 ]
100 -
100 ] 80 _
60 -
50 - 40 4
20
0- | | | 0- | , I , | 0- | T T T
0 500 1500 0 500 1500 0 500 1500



Two distributions of ranks combined
(always uniform)

Let’s see that “manually”
using R code

Histogram of x
Histogram of x2
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Ranked-based statistical tests remove the natural ways we think about the original
units of the variables of interest

and they also reduce statistical power to detect true differences, i.e., increase type
Il error (false negatives).

Histogram of x

Histogram of x2
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Rank based tests




Kruskal-Wallis test
(akin to one-factorial ANOVA but based on ranks)

Ho: no population from where the samples
were taken stochastically dominates
another population (stochastic
homogeneity).

Ha: at least one population from where the
sample was taken stochastically dominates
another population (stochastic
heterogeneity).

4

Which sample? Post-hoc tests
(based on ranks)
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Kruskal-Wallis test
(akin to one-factorial ANOVA but based on ranks)

Hy: no population from where the samples were taken
stochastically dominates another population (stochastic
homogeneity).

H,: at least one population from where the sample was taken
stochastically dominates another population (stochastic
heterogeneity).

FSTS data

H,: DNA and protein do not stochastically dominate each
other in their Fqp,.

H, : Either DNA or protein stochastically dominate each
other in their Fqr,.



Kruskal-Wallis test — statistic H

Number of groups
(samples)

12

NIN+1) 45

v

Total number of
observations

n.

1

r..)?

Sum of ranks in

)17

v

> group i

3(N+1)

Number of observations in
group (samples) i

No need to memorize or understand this formula (F much more
important) — but I think is relevant to understand that statisticians
spend serious time on these formulae (or formulas).



Kruskal-Wallis test — statistic H

()

No need to memorize or
understand this formula
(keep your “energy” for
F if you want to).

But I think is relevant to
understand that
statisticians spend
serious time on those.

Number of groups n;

(samples)

2 Sum of ranks in
12 (2} I'Jl ) group i
H= = —-3(N+1)

N+1)3 ﬁ}

Number of observations in
Total number of group (samples) i
observations

0.5 -

0.41

0.3 1

0.2

0.17

??‘??‘?H?‘?T‘P?‘??‘
O OO = Wi

o

Equations also demonstrate the work
others do to make test statistics (H here)
to be contrastable to existing probability
distributions (chi-square in this case)



Kruskal-Wallis test — statistic H

gene class Fgtr Rank Rank
CV]J5 DNA -0.006 1

CVB1I DNA -0.005 25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1  protein 0.016 9.5
Sdh protein 0.024 11
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1  protein 0.049 14
CVL1T DNA  0.053 15
Mpi-2  protein 0.058 16
Ap-1 protein  0.066 17
CVJe DNA  0.095 18
CVB2m DNA  0.116 19

Est-1  protein 0.163

Sum 60.5 149.5

12

2
%
20(20+ 1) 2;

<Z Jl)

60.5

~3(20+1)

149.5°
_|_

| 20(20+1)

*(

6

14

)

—3(20+1)

=[0.029%(610.04 +1596.45) |- 63 =

H =0.0425



Kruskal-Wallis test — statistic H

gene class Fgtr Rank Rank
CV]J5 DNA -0.006 1

CVB1I DNA -0.005 |25

6Pgd  protein -0.005 2.5
Pgi protein -0.002 4
CVL3 DNA  0.003 5

Est-3  protein 0.004 6
Lap-2  protein 0.006 7
Pgm-1 protein 0.015 8
Aat-2  protein 0.016 9.5
Adk-1  protein 0.016 9.5
Sdh protein 0.024 T
Acp-3  protein 0.041 12
Pgm-2 protein 0.044 13
Lap-1  protein 0.049 14
CVL1T DNA  0.053 15

Mpi-2  protein 0.058 16
Ap-1 protein  0.066 17
CVJe DNA  0.095 18

CVB2m DNA  0.116 19

Est-1  protein 0.163 20

H =10.029%(610.04 +1596.45) |- 63 =

H =0.0425

Correction for ties

T ).

C

%(Tf_
— 1_ 1=1 -

t N°—N

2

z (Ti3 - Ti)

C,=1-+

" 20° - 20

:1_(23+2)+(23+2)

N

—>» Number of ties

Number of
values from
a set of ties

=0.998

20° - 20

Sum 605 1495 4 =H/C, =0.0425/0.998=0.04258517



0.4

0.3

0.2

0.1

0.0

Kruskal-Wallis test — statistic H

H =H/C, =0.0425/0.998 = 0.04258517

For small samples sizes (n <=5), a special H distribution needs to be used
(though R does not have it and uses the standard X?); if n > 5, then H follows a
chi-square distribution with (k-1) degrees of freedom (df=2-1=1)

| > df=

1

\ 0.04258517

P=0.8365;

probability of finding by chance
an H_ greater than the observed
when assuming that H, is true.



Fun fact: The chi-square distribution is the distribution of the sum of
squared standard normal deviates.

Good place to generate more intuition about statistical distributions!

R code to generate the chi-square computationally versus analytically
for 20 degree of freedom




Frequency

600000 1000000

0 200000

The chi-square distribution is the distribution of the
sum of squared standard normal deviates.

density.default(x = sum.vector)
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density.default(x = sum2.vector)

Chi-Square Density Graph
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The chi-square distribution is the distribution
of the sum of squared standard normal
deviates.

fun fact: The F distribution is the ratio of two
(scaled) chi-square distributed values. The
scaling is done by appropriate division of
degrees of freedom.



A general solution to rank-
based tests




Kruskal-Wallis test is equivalent (close enough) to an
ANOVA on ranks

Ho: no sample stochastically dominates another sample
(stochastic homogeneity).

Ha: at least one sample stochastically dominates one other
sample (stochastic heterogeneity).

“Stochastic homogeneity is equivalent to the equality of the expected values
of the rank sample means. This finding implies that the null hypothesis of
stochastic homogeneity can be tested by an ANOVA performed on the rank
transforms, which is essentially equivalent to doing a Kruskal-Wallis H test.”

Varg a and De/anay (1 998) Journal of Educational and Behavioral Statistics
Summer 1998, Vol. 23, No. 2, pp. 170-192

The Kruskal-Wallis Test and Stochastic
Homogeneity
Andrds Vargha
Eo6tvos Lordnd University

Harold D. Delaney
University of New Mexico




Kruskal-Wallis test = ANOVA on ranks

Kruskal-Wallis:

Ho: no sample stochastically dominates another sample
(stochastic homogeneity).

Ha: at least one sample stochastically dominates one other
sample (stochastic heterogeneity).

G Varga and Delanay (1998)

ANOVA:

Ho: no mean differences in ranked values

Ha: at least one sample differs in mean ranked values from
another sample



.rank rank(Fst.values)

(Fst.rank,col

values~Fst.group)

kruskal.test(Fst.values

Kruskal-Wallis

They are slightly
different, no?




Kruskal-Wallis test = ANOVA on ranks

Kruskal-Wallis and ANOVA are “asymptotically equivalent” (i.e., the two

functions "eventually" become "essentially equal") and so P-values are exactly
the same for very large samples and they do not differ by much for small

sample size.
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Kruskal-Wallis and ANOVA are “asymptotically equivalent” and so P-values are
the same for very large samples and they do not differ by much for small sample
size. Using R code to demonstrate the asymptotic equivalence.

n.simul
Pvector matrix(@,n.simul,
n
n.vector matrix(@,n.simul,
1 n.simul
groups c(rep(l,n),rep(Z2,n
X rnorm(n
Pvector|1i, kruskal . test(x~groups)$p.value
Pvector[i,Z anova(lm(rank(x)~groups))
n n
n.vector[1i

plot(n.vector/2,abs(Pvector[,1]-Pvector[,
ablineCh=0, col




Kruskal-Wallis and ANOVA are “asymptotically equivalent”
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Kruskal-Wallis test = ANOVA on ranks

144

Kruskal-Wallis and ANOVA are “asymptotically equivalent
and so P-values are exactly the same for very large samples
and they do not differ by much for small sample size.

Because of the equivalence, we can then expand non-

parametric analysis based on ranks to any multi-factorial
ANOVAs, regressions, MANOVA, ANCOVA, etc



NOTE: Non-parametric tests are those that can handle
non-normal data

There is a common misunderstanding in the statistical
literature and among practitioners, including many
biostatistics books, that non-parametric tests can also
handle differences in variances among samples.

THIS IS NOT TRUE! They are also affected by variance
differences among groups/treatments (i.e.,
homoscedasticity).

Test variance differences in ranks (almost never done in
the literature)!



NEXT STEPS

One response variable &
Multiple categorical factors

Are variables normally distributed in each
combination of treatment?
(Normal QQ Plot of residuals)

MONTE CARLO
APPROACHES

NO

Data Transformation

YES

(rank, log, square root, etc)

|

Are variances equal among
all populations?
(Levene’s test)

NO YES

Rank
transformation

Welch’s ANOVA ANOVA

Weighted least

sqgquares .
9 Kruskal-Wallis

Are variances equal among
all populations?
(Levene’s test)

NO YES
Welch’s ANOVA ANOVA
Weighted least
squares




