Tackling important statistical assumptions.
1) The issue of normality (last lecture):
2) The issue of homogeneity of variances (today):

- Standard (e.g., ANOVAs, regressions) assume
homoscedasticity.

- Robust approaches (Welch’'s ANOVA, Weighted
east squares) are good to deal with
neteroscedasticity.




REMINDER: Classic non-parametric tests (ranked data,
permutation tests) are often considered those tests that
can handle non-normal data.

There is a common misunderstanding (however) in the
statistical literature, including many biostatistics books, that
non-parametric tests can also handle differences in
variances among samples (because the term “non-
parametric”, it is often assumed that they are completely
assumption free.

THIS IS NOT TRUE! They are also affected by variance
differences among groups (e.g., the Kruskal-Wallis,
ANOVAs on ranks).

Example: test variance differences in ranks (rarely done in
the literature but necessary)!



ANOVA design pipeline (also applies to regression; later on in the semester)

Can we assume that variables are normally
distributed within each combination of
treatment? (Residual Normal QQ Plot)

NO

Data Transformation
(rank, log, square root, etc)

YES

Are variances equal among
all populations?
(Levene’s test)

NO

YES

Rank
transformation

Welch’s ANOVA
Weighted least
squares

ANOVA

Kruskal-Wallis

Are variances equal among
all populations?
(Levene’s test)

NO YES
Welch’s ANOVA ANOVA
Weighted least

squares




ANOVA design pipeline — let’s use some normally distributed
homoscedastic simulated data to understand
the Weighted Least Squares approach (WLS)

30 7 6, (n=100) 30 q G, (n=80) 30 4 @ G3(n=120)
25 — 25
20 — 20
15 15
10 10
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One-factorial design - 3 groups, normally distributed

homoscedastic data (o = o5 = 0£=4), varying in means

(uf = 10,u3 = 12,u5 = 14)




[1] — Can we assume that variables are normally distributed within each
combination of treatment? (Residual Normal Q-Q Plot)
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Y = Factor(G1, G2) + residuals
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[2] — Can we assume that variances are equal among populations?
(Levene’s test)

YES

Can we assume that

variances are equal among

Can we assume that variables are normally : )
populations? (Levene’s test)

distributed in each combination of
treatment? (Residual Normal Q-Q Plot)

NO YES
Welch’s ANOVA ANOVA
ANOVA design pipeline Weighted least
squares




[2] — Can we assume that variances are equal among populations?
(Levene’s test); well, we simulated data, so no big surprises

eveneTest(values ~ as.factor(groups))

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F)

group 2 0.223 0.8003
297

YES

Can we assume that variables are normally
distributed in each combination of
treatment? (Residual Normal Q-Q Plot)

ANOVA design pipeline

Can we assume that
variances are equal among
populations? (Levene’s test)

NO

YES

Welch’s ANOVA
Weighted least

squares




Can we assume that variances are equal among all populations?
(alternative to the Levene’s test and they way to understand WLS)
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Predicted means per group

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from the
predicted mean group) against predicted mean group (you will see this one in the tutorial)
should look like a straight line (constant variance). The Breusch-Pagan test can be
employed to determine whether a deviation from a straight line is significant (we will use
this test to assess homoscedasticiy in regressions).




ANOVA design pipeline — let’s use some normally distributed
heteroscedastic simulated data to understand Weighted Least Squares

G, (n=100) G, (n=80) G; (n=120)

35 — 35 - 35 —

30 — 30 — 30 —

25 — 25 — o5 —

20 — 20 — o0 —

15 — 15 — 15 —

10 — 10 - 10 —

5 — 5 — 5

O " O~ %7
0O 15 30 O 15 130 0O 15 30

One-factorial design - 3 groups, normally distributed
heteroscedastic data (62 = 4,05 = 6.25, 62=9), varying in means
(uf = 10,u3 = 12,u5 = 14)



[1] — Can we assume that variables are normally distributed within each
combination of treatment? (Residual Normal Q-Q Plot)

Normal Q-Q normal residual plot
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Can we assume that variances are equal among populations?
(Levene’s test)

> LeveneTest(values ~ as.factor(groups).
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 12.295 7.414e-06 ***
297

YES
I

Are variances equal among

all populations?

Are variables normally distributed in each :
(Levene’s test)

combination of treatment?
(Residual Normal Q-Q Plot)

NO YES

Welch’s ANOVA ANOVA

ANOVA design pipeline Weighted least

squares (WLS)



Can we assume that variances are equal among populations?
(Levene’s test)

We can use the square of the residuals to assess that;
Note that the average of residuals is always zero.

First, we estimate the residuals of the ANOVA:
Y = Factor(G1, G2) + residuals

Then, for each group, square their respective residuals

residuals

-0.9723056
-0.8426648
-0.7130241
0.1944611
0.9723056
1.3612278

\/ |residuals]|

0.9860556
0.9179678
0.8444075
0.4409774
0.9860556
1.1667167

J1

- Qroup 1 var(residuals*)=0.005018537

Group 2 var(residuals?)=0.142741

—

\/Iresiduals|=squa re root of absolute values

Using here a “tiny” small number of
observations for demonstration purposes



Can we assume that variances are equal among populations?
(alternative to the Levene’s test and they way to understand WLS)

(67 = 4,04 = 6.25,0%=9) (u? = 10, u% = 12, u5 = 14)
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The plot between the square root of the absolute ANOVA residuals (i.e., deviations from
the predicted mean group) against predicted mean group (you will see this one in the
tutorial) should look like a straight line (constant variance). It doesn’t here, so clearly
indicating heteroscedasticity in the data.




Can we assume that variances are equal among populations?
(alternative to the Levene’s test and they way to understand WLS)

(67 = 4,04 = 6.25,0%=9) (u? = 10, u% = 12, u5 = 14)
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The plot between the square root of the absolute ANOVA residuals (i.e., deviations from
the predicted mean group) against predicted mean group (you will see this one in the
tutorial) should look like a straight line (constant variance). It doesn’t here, so clearly

indicating heteroscedasticity in the data.




ANOVA is a regression model!

They differ in “design” but not in
calculations!

W




The weighted least square (WLS) approach for dealing with heteroscedasticity

Welch’s ANOVA covered in Intro Stats and can only deal with
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in
ANOVAs?

And
2) How can we use the weighted least squares (WLS) approach to

deal with heteroscedasticity in ANOVAs
(original data or ranked-based ANOVA)




The weighted least square (WLS) approach for dealing with heteroscedasticity

Welch’s ANOVA covered in Intro Stats and can only deal with
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in
ANOVASs?

And
2) How can we use the weighted least squares (WLS) approach to

deal with heteroscedasticity in ANOVAs
(original data or ranked-based ANOVA)

But first we need to understand that:

ANOVA is a regression model




ANOVA is a regression model where the response variable is continuous and the
predictors are categorical; the categorical predictors are coded in such a way that
an ANOVA becomes a regression problem

Let’s use a tiny fictional example with 2 groups (control, Group_1)

Response Factor (predictor)
1.2 control
2.7 control
3.1 control
4.1 Group_1
5.3 Group_1

6.1 Group_1




ANOVA is a regression model where the response variable is continuous and the
predictors are categorical.

Response Factor (predictor) Contrast
1.2 control 0
2.7 control 0
3.1 control 0
4.1 Group_1 1
5.3 Group_1 1
6.1 Group_1 1

Contrasts are numerical values that can be used directly into a regression model
so that ANOVA becomes estimating a regression model; The ANOVA of the
regression model has then exactly the same results as the standard ANOVA.




ANOVA is a regression model where the response variable is continuous and the
predictors are categorical.

A tiny example:

groups -«

values <

Running ANOVA using the R function aov:

Df Sum Sg Mean Sq F value Pr(>F)

groups 1 12.042 12.042 11.94 0.0259 *
Residuals 4 4.033 1.008




ANOVA is a regression model where the response variable is continuous and the
predictors are categorical.

A tiny example:

groups <- ¢(

values <- c¢(

Running ANOVA using the R function aov:

Df Sum Sgq Mean Sq F value Pr(>F)
groups 1 12.042 12.042 11.94 0.0259 *
Residuals 4 4,033 1.008

Running ANOVA using the R function Im (linear model = regression) setting group as a factor:

Analysis of Variance Table

Response: values

Df Sum Sq Mean Sq F value Pr(>F)
factor(groups) 1 12.0417 12.0417 11.942 0.02592 *
Residuals 4 4.,0333 1.0083




Let’s (quickly) revisit a simple regression model (as seen in Intro Stats). More on
regressions later in our Multiple Regression module

Y = ,BO + Ing 4+ ¢ -erepresents the vector of

residual values.

:8 — (XTX)—l XTY - Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).



Simple regression model

Y = IBO + Ing 4+ ¢ -erepresents the vector of

residual values.

IB — (XTX)—l XTY - Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).

Y = ,BO + ,BlX - Y is called Y-hat and is a vector
' ' ' containing predicted values.




Y= ﬁo‘l‘ﬁlX‘l'e

B =X"X)"txly

/

Simple regression model

/

Y = By + B X

e

Y —

Y

- e represents the vector of
residual values.

- Slope and intercept estimated by
one single operation via Ordinary
Least Squares (OLS).

- Y is called Y-hat and is a vector
containing predicted values.

- e represents the vector of
residual values.



ANOVA as a regression model

Y= ﬁ()‘l‘ﬁlX‘l'e

Y = fo+ (X
IB — (XTX)_l xTy back to our tiny example
X
Bo =2333 -~ p;=2.833 , |
Response (Y) Constant (f,) Predictor (f4)
1.2 1 0
2.7 1 0
3.1 1 0
4.1 1 1
5.3 1 1
6.1 1 1



i-.<

N <
1

ﬁO — 2333 oo ﬁl = 2.833

Bo + 61X

Bo + 61X

ANOVA as a regression model

+ e

X't xly

Response (Y)
1.2
2.7
3.1
4.1
5.3
6.1

Constant (f)

N N = =

N

P =2.333 +2.833X,

AN

e=Y-—-Y

- Y is called Y-hat and represents the
vector of predicted values.

- e represents the vector of residual
values.

AN

Predictor X, (51) Y e
0 2.33 -1.13
0 2.33 0.37
0 2.33 0.77
1 5.17 -1.07
1 5.17 0.13
1 5.17 0.93



Response (Y)

1.2
2.7

3.1
4.1
5.3

- X

- X

6.1

ANOVA as a regression model

Constant (fy)

S = T Y Sy

Predictor (1)
0

R L R O O

AN

233
2.33
233
' 5.17
5.17
 5.17

-1.13
0.37
0.77
-1.07
0.13
0.93

In ANOVASs, predicted values are the predicted mean

values per group



ANOVA as a regression model

Response (Y) Constant (fy) Predictor (1)

1.2
2.7

3.1 |
4.1
5.3

0

- X

- X

6.1

S = T Y Sy
R L R O O

e;=6.10-5.17 =0.93

AN

- 2.33
2.33
233
' 5.17
5.17
' 5.17

-1.13
0.37
0.77
-1.07
0.13
0.93

In ANOVAs, predicted values are the predicted mean values per group, and
residuals (e) represent variation around the observed group mean not

explained by the regression model (or ANOVA).



Plot between the square root of the absolute ANOVA residuals (i.e., deviations

from the predicted mean group) against predicted mean per group

Response (Y)

1.2
2.7
3.1
4.1
5.3
6.1

~

Constant (S,) Predictor (f57) Y e
! 0 EN Variance of residuals looks ok,
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- 5 B o particularly given the small
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1 1 5.17 0.93 group.
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Plot of residuals on predicted values (ANOVA as a regression model) versus
standard Levene’s test for testing for homoscedasticity among groups

Response (Y)
1.2
2.7
3.1
4.1
53
6.1

Constant (S,)

Predictor (1)

~

Y

Levene’s test

Df F value Pr(GF)
group 1 0.0034 0.9562

4

1 0 2.33 -1.13

1 0 2.33 0.37

1 0 2.33 0.77

1 1 5.17 -1.07

1 1 5.17 0.13
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Variance of residuals are ok!




Coding for predictors with 3 groups (more groups and more factors, more predictors)

Response Factor Constant () Predictor (1) Predictor (£55)
1.2 control 1 0 0
2.7 control 1 0 0
3.1 control 1 0 0
4.1 Group_1 1 1 0
5.3 Group_1 1 1 0
6.1 Group_1 1 1 0
8.1 Group_2 1 0 1
9.4 Group_2 1 0 1
10.1 Group_2 1 0 1

Y = fo+ [1X1 + X, e

Multifactorial ANOVAs become then multiple regression models



How does heteroscedasticity affect
variance of residual variation in
ANOVAs?

b




Here we will understand:

[> 1) How heteroscedasticity affects variance of residual
variation in ANOVAs

And

2) How weighted least squares (WLS) approach can be used to
deal with heteroscedasticity in ANOVAs




GOING BACK TO the simulated normally distributed
homoscedastic simulated data

30 7 6, (n=100) 30 q G, (n=80) 30 4 @ G3(n=120)
25 — 25
20 — 20
15 15
10 10
S S
OIIIIII 0 T T T 1] 0
4 8 12 8 14 10 16

One-factorial design - 3 groups, normally distributed

homoscedastic data (o7 = o5 = o£=4), varying in means

(uf = 10,u3 = 12,u5 = 14)



One-factorial design - 3 groups, normally distributed homoscedastic

data (07 = 0% = 0%=4),

varying in means (u? = 10, u5 = 12, u% = 14)

5 simulated data sets

1.2 -
11 -
1.0 -
3 0.9 -
$ 0.8 F——
707 -
0.6 -
0.5 -

I I I I
11 12 13 14

Predicted means per group



One-factorial design - 3 groups, normally distributed

2 2

homoscedastic data (0¥ = o5 = o£=4), varying in means
(uf = 10,5 = 12,3 = 14)

\/Iresidualsl

1000 simulated data sets

| | | | |
10 11 12 13 14

Predicted means per group

Sample variation from
homoscedastic
populations -

H, for population mean (u)
differences is set to
FALSE.

H, for population variance

differences () is set to
TRUE.



One-factorial design - 3 groups, normally distributed
heteroscedastic data (67 = 4,07 = 6.25, 62=9),
varying in means (u? = 10, u5 = 12, u% = 14)

\/Iresidualsl

COO000 A==

GIO~NOO N

1000 simulated data sets

I

—I I I I I
10 11 12 13 14

Predicted means per group

Sample variation from
heteroscedastic
populations -

H, for population mean (u)
differences is set to
FALSE.

H, for population variance

differences () is set to
FALSE.



One-factorial design - 3 groups, normally distributed

2

2

homoscedastic data (0¥ = 05 = 0= 4) and heteroscedastic data

(67 = 4,0f = 6.25, 0£=9),

varying in means (u? = 10, u5 = 12, u% = 14)

1000 simulated data sets

Homoscedastic population

|

\/Iresidualsl
OO -
N0 OO -aN

© o
(@) o))

[ I [

| |
10 11 12 13 14
Predicted means per group

Heteroscedastic population

N | | | |
10 11 12 13 14

Predicted means per group
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F-statistic

Jresiduals|

120

For the same mean differences
among populations, the F-statistic
(based on samples) is much smaller
for heteroscedastic populations,
i.e., smaller statistical power in
contrast to the F-statistic for
homoscedastic populations.

8 1000 simulated
1 OO | e data sets
|
|
80 - |
o)
60 - i. B
| |
- |
40 L .
| 2 _
20 _ o U1 =
[ I
Homoscedastic Heteroscedastic
population population
N\ Ve
1.2 - . | 1.2 1 L1
1.1 - 1.1 -
1.0 - 1.0
0.9 0.9
o.c 0.8
0.7 0.7
0.6 - 0.6 -
o _1'0 1 12 13 14 05—
10 11 12 13 14

o2 = 0% = 2=

Predicted means per group

4

02 = 4,07

6.25, 04=9



On the other hand, when samples are taken from populations with the same
means, but their variances vary (heteroscedastic) then Type | error can increase!

(this will be demonstrated in TUTORIAL 5)
Sample variation from heteroscedastic populations:
H, for population mean (u) differences is set to TRUE.

H, for population variance differences (o) is set to FALSE.

AUSTRIAN JOURNAL OF STATISTICS
Volume 36 (2007), Number 3, 179—-188

How to keep the Type I Error Rate in ANOVA
if Variances are Heteroscedastic

Karl Moder

Institute of Applied Statistics and Computing,
University of Natural Resources and Applied Life Sciences, Vienna

Abstract: One essential prerequisite to ANOVA is homogeneity of variances

in underlying populations. Violating this assumption may lead to an increased
=1 typelerrorrate. The reason for this undesirable effect is due to the calculation
of the corresponding F'-value. A slightly different test statistic keeps the
level ov. The underlying distribution of this alternative method is Hotelling’s
T?. As Hotelling’s T can be approximated by a Fisher’s F-distribution, this
alternative test is very similar to an ordinary analysis of variance.




Here we will understand:

1) How heteroscedasticity affects variance of residual variation in

ANOVAs @

And

[> 2) How weighted least squares (WLS) approach
can be used to deal with heteroscedasticity in ANOVAs



The weighted least squares (WLS) approach

B=X'X)"t X'y (OLS)
B =X'wx)"tx'wy (WLS)

OLS and WLS are equal
when W is an identity
matrix in which all
(main) diagonal
elements equal to 1,
i.e., all observations
have the same weight
in the regression
estimates.

o O O O O ¥
o O o o ~» O
o ©O o » O O
o O » O O O
o »r O O O O
R O O O O O



The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates
(the case of the weighted mean)

1X2+2X3+3X4+4‘X5_ Weighted mean
14 =2.86 Weights = 2,3,4,5

1+2+3+4=2.5 regular mean

1X5+2X4‘+3X3+4‘X2 Weighted mean
14 =2 . 14 Weights = 5,4,3,2



The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates
(the case of the weighted mean)

1X2+2X3+3X4‘+4X5_ Weighted mean
14 =2.86 Weights = 2,3,4,5

1+1+2+2+2+3+3+3+3+4+4+4+4+4 40 2 36
14




The weighted least squares (WLS) approach

B=X'X)"t X'y (OLS)
B =X'wx)"tx'wy (WLS)

Response (Y)
1.2
2.7
3.1
4.1
5.3
6.1

Constant (f,)

S N S == M St

Predictor (1)
0

B R =R O O

AN

AN

Y
2.33
2.33
2.33
5.17
5.17
5.17

e
-1.13
0.37
0.77
-1.07
0.13
0.93

Variance of
residuals
per group

/

™\ 1.003333

/ll

..\ 1.013333




The weighted least squares (WLS) approach —
more variance, less influence in the regression estimation

b
b

XX~ X'y (OLS)
X'wx) "t xt'wy (WLS)

W=1/Sgoup

In OLS, each observation has the same weight (inform the model
in the same way. In WLS, we treat each observation as more
(smaller group residual variance) or less (larger groups residual
variance) informative about the underlying relationship between
Xand.




The weighted least squares (WLS) approach —
more variance, less influence in the regression estimation

B =X"X)"txTY (OLS)
IB — (XTWX)_l XTWY (WLS) 1 / Variance of

residuals
0997 0 0 0 0 0 ) Per grotp
/ 0 0997 0 0 0 0 - 1/1.003333
_ 0 0 0997 O 0 0 )
W_ 1/ 0 0 0 099 0 0 )
0 0 0 0 099 © - 1/1.013333
0 0 0 0 0 09%

The influence of each observation is the inverse of its
group residuals variance (i.e., reciprocal, 1/variance)



For the same mean differences among populations, the F-statistic (based on samples)
is much smaller for heteroscedastic populations, i.e., smaller statistical power in
contrast to the F-statistic for homoscedastic populations. The WLS makes it more
powerful (larger F-values) and much closer to what is expected for homoscedastic
populations.

120 T
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Homoscedastic Heteroscedastic

population population
of =0f=05=4 of =4,0f = 6.25,05=9

F-statistic
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