
Tackling important statistical assumptions.

1) The issue of normality (last lecture):

2) The issue of homogeneity of variances (today):

- Standard (e.g., ANOVAs, regressions) assume 
homoscedasticity.  

- Robust approaches (Welch’s ANOVA, Weighted 
least squares) are good to deal with 
heteroscedasticity.



REMINDER: Classic non-parametric tests (ranked data, 
permutation tests) are often considered those tests that 
can handle non-normal data.
There is a common misunderstanding (however) in the 
statistical literature, including many biostatistics books, that 
non-parametric tests can also handle differences in 
variances among samples (because the term “non-
parametric”, it is often assumed that they are completely 
assumption free.  

THIS IS NOT TRUE! They are also affected by variance 
differences among groups (e.g., the Kruskal-Wallis, 
ANOVAs on ranks).

Example: test variance differences in ranks (rarely done in 
the literature but necessary)!



YESNO

Are variances equal among 
all populations? 
(Levene’s test)

YESNO

Data Transformation
(rank, log, square root, etc)

Can we assume that variables are normally 
distributed within each combination of 
treatment? (Residual Normal QQ Plot)

YESNO

Are variances equal among 
all populations? 
(Levene’s test)
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Kruskal-Wallis

ANOVA design pipeline (also applies to regression; later on in the semester)



Histogram of values[groups == 1]

4 8 12

0
5
10
15
20
25
30

Histogram of values[groups == 2]

8 14

0
5
10
15
20
25
30

Histogram of values[groups == 3]

10 16

0
5
10
15
20
25
30

Histogram of values[groups == 1]

4 8 12

0
5
10
15
20
25
30

Histogram of values[groups == 2]

8 14

0
5
10
15
20
25
30

Histogram of values[groups == 3]

10 16

0
5
10
15
20
25
30

Histogram of values[groups == 1]

4 8 12

0
5
10
15
20
25
30

Histogram of values[groups == 2]

8 14

0
5
10
15
20
25
30

Histogram of values[groups == 3]

10 16

0
5
10
15
20
25
30

One-factorial design - 3 groups, normally distributed 
homoscedastic data (𝜎!" = 𝜎"" = 𝜎#"= 4), varying in means 
(𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

G1 (n=100) G2 (n=80) G3 (n=120)

ANOVA design pipeline – let’s use some normally distributed 
homoscedastic simulated data to understand 

the Weighted Least Squares approach (WLS)



Normal Q-Q normal residual plot
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[1] – Can we assume that variables are normally distributed within each 
combination of treatment? (Residual Normal Q-Q Plot)
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ANOVA

𝑌 = 𝐹𝑎𝑐𝑡𝑜𝑟(𝐺1, 𝐺2) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠



YES

YESNO

Can we assume that 
variances are equal among 
populations? (Levene’s test)

ANOVAWelch’s ANOVA
Weighted least 

squares
ANOVA design pipeline

[2] – Can we assume that variances are equal among populations? 
(Levene’s test)

Can we assume that variables are normally 
distributed in each combination of 

treatment? (Residual Normal Q-Q Plot)



YES

Can we assume that variables are normally 
distributed in each combination of 

treatment? (Residual Normal Q-Q Plot) YESNO

ANOVAWelch’s ANOVA
Weighted least 

squares
ANOVA design pipeline

[2] – Can we assume that variances are equal among populations? 
(Levene’s test); well, we simulated data, so no big surprises

Can we assume that 
variances are equal among 
populations? (Levene’s test)



Can we assume that variances are equal among all populations? 
(alternative to the Levene’s test and they way to understand WLS)

Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

G1 G2 G3

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from the 
predicted mean group) against predicted mean group (you will see this one in the tutorial) 
should look like a straight line (constant variance). The Breusch-Pagan test can be 
employed to determine whether a deviation from a straight line is significant (we will use 
this test to assess homoscedasticiy in regressions).



One-factorial design - 3 groups, normally distributed 
heteroscedastic data (𝜎!" = 4, 𝜎"" =  6.25, 𝜎#"= 9), varying in means 
(𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

G1 (n=100) G2 (n=80) G3 (n=120)
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ANOVA design pipeline – let’s use some normally distributed 
heteroscedastic simulated data to understand Weighted Least Squares
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[1] – Can we assume that variables are normally distributed within each 
combination of treatment? (Residual Normal Q-Q Plot)



YES

Are variables normally distributed in each 
combination of treatment?

(Residual Normal Q-Q Plot) YESNO

Are variances equal among 
all populations? 
(Levene’s test)

ANOVAWelch’s ANOVA
Weighted least 
squares (WLS)

ANOVA design pipeline

Can we assume that variances are equal among populations? 
(Levene’s test)



Can we assume that variances are equal among populations? 
(Levene’s test)

We can use the square of the residuals to assess that;
Note that the average of residuals is always zero.

First, we estimate the residuals of the ANOVA:

𝑌 = 𝐹𝑎𝑐𝑡𝑜𝑟(𝐺1, 𝐺2) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Then, for each group, square their respective residuals

-0.9723056 0.9860556
-0.8426648 0.9179678
-0.7130241 0.8444075
0.1944611 0.4409774
0.9723056 0.9860556
1.3612278 1.1667167

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Group 1

Group 2

𝑣𝑎𝑟(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠!)=0.005018537

𝑣𝑎𝑟(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠!)=0.142741

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =square root of absolute values
Using here a “tiny” small number of 

observations for demonstration  purposes



Can we assume that variances are equal among populations?
(alternative to the Levene’s test and they way to understand WLS)

Predicted means per group (order of groups from small to large variance)

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from 
the predicted mean group) against predicted mean group (you will see this one in the 
tutorial) should look like a straight line (constant variance).  It doesn’t here, so clearly 
indicating heteroscedasticity in the data.

G1 G2
G3

(𝜎!" = 4, 𝜎"" =  6.25, 𝜎#"= 9) (𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)



Can we assume that variances are equal among populations? 
(alternative to the Levene’s test and they way to understand WLS)

Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

The plot between the square root of the absolute ANOVA residuals (i.e., deviations from 
the predicted mean group) against predicted mean group (you will see this one in the 
tutorial) should look like a straight line (constant variance).  It doesn’t here, so clearly 
indicating heteroscedasticity in the data.

G1 G2

G3

(𝜎!" = 4, 𝜎"" =  6.25, 𝜎#"= 9) (𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)



ANOVA is a regression model! 

They differ in “design” but not in 
calculations!

wake up

@cjlortie



The weighted least square (WLS) approach for dealing with heteroscedasticity 

Welch’s ANOVA covered in Intro Stats and can only deal with 
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in 
ANOVAs?

And

2) How can we use the weighted least squares (WLS) approach to 
deal with heteroscedasticity in ANOVAs 
(original data or ranked-based ANOVA) 



The weighted least square (WLS) approach for dealing with heteroscedasticity 

Welch’s ANOVA covered in Intro Stats and can only deal with 
single factorial ANOVA designs

Today:

1) How does heteroscedasticity affect residual variation in 
ANOVAs?

And

2) How can we use the weighted least squares (WLS) approach to 
deal with heteroscedasticity in ANOVAs 
(original data or ranked-based ANOVA) 

But first we need to understand that:

ANOVA is a regression model



ANOVA is a regression model where the response variable is continuous and the 
predictors are categorical; the categorical predictors are coded in such a way that 

an ANOVA becomes a regression problem  

Let’s use a tiny fictional example with 2 groups (control, Group_1)

Response Factor (predictor)

1.2 control

2.7 control

3.1 control

4.1 Group_1

5.3 Group_1

6.1 Group_1



ANOVA is a regression model where the response variable is continuous and the 
predictors are categorical.  

Response Factor (predictor) Contrast

1.2 control 0

2.7 control 0

3.1 control 0

4.1 Group_1 1

5.3 Group_1 1

6.1 Group_1 1

Contrasts are numerical values that can be used directly into a regression model 
so that ANOVA becomes estimating a regression model; The ANOVA of the 

regression model has then exactly the same results as the standard ANOVA. 



ANOVA is a regression model where the response variable is continuous and the 
predictors are categorical.  

A tiny example:

Running ANOVA using the R function aov:



ANOVA is a regression model where the response variable is continuous and the 
predictors are categorical.  

Running ANOVA using the R function lm (linear model = regression) setting group as a factor:

Running ANOVA using the R function aov:

A tiny example:



Let’s (quickly) revisit a simple regression model (as seen in Intro Stats). More on 
regressions later in our Multiple Regression module

𝑌 = 𝛽: + 𝛽;𝑋 + 𝑒 - e represents the vector of 
residual values.

𝛽 = (𝑋<𝑋)=; 𝑋<𝑌 - Slope and intercept estimated by 
one single operation via Ordinary 
Least Squares (OLS). 



Simple regression model

𝑌 = 𝛽: + 𝛽;𝑋 + 𝑒

)𝑌 = 𝛽: + 𝛽;𝑋 - >𝑌 is called Y-hat and is a vector 
containing predicted values.

𝛽 = (𝑋<𝑋)=; 𝑋<𝑌

- e represents the vector of 
residual values.

- Slope and intercept estimated by 
one single operation via Ordinary 
Least Squares (OLS). 



𝑌 = 𝛽: + 𝛽;𝑋 + 𝑒

𝑒 = 𝑌 − )𝑌

)𝑌 = 𝛽: + 𝛽;𝑋

𝛽 = (𝑋<𝑋)=; 𝑋<𝑌

- >𝑌 is called Y-hat and is a vector 
containing predicted values.

- e represents the vector of 
residual values.

- Slope and intercept estimated by 
one single operation via Ordinary 
Least Squares (OLS). 

- e represents the vector of 
residual values.

Simple regression model



𝑌 = 𝛽: + 𝛽;𝑋 + 𝑒

)𝑌 = 𝛽: + 𝛽;𝑋

𝛽 = (𝑋<𝑋)=; 𝑋<𝑌

Response (Y) Constant (𝛽") Predictor (𝛽#)

1.2 1 0

2.7 1 0

3.1 1 0

4.1 1 1

5.3 1 1

6.1 1 1

𝛽: = 2.333 ∴ 𝛽;= 2.833
𝑋

back to our tiny example

ANOVA as a regression model



𝑌 = 𝛽: + 𝛽;𝑋 + 𝑒

)𝑌 = 𝛽: + 𝛽;𝑋

𝛽 = (𝑋<𝑋)=; 𝑋<𝑌

Response (Y) Constant (𝛽") Predictor X1 (𝛽#) ;𝑌 e

1.2 1 0 2.33 -1.13

2.7 1 0 2.33 0.37

3.1 1 0 2.33 0.77

4.1 1 1 5.17 -1.07

5.3 1 1 5.17 0.13

6.1 1 1 5.17 0.93

𝛽: = 2.333 ∴ 𝛽; = 2.833

!𝑌 = 2.333 + 2.833𝑋1
𝑒 = 𝑌 − )𝑌
- !𝑌 is called Y-hat and represents the 
vector of predicted values.
- e represents the vector of residual 
values.

ANOVA as a regression model



Response (Y) Constant (𝛽") Predictor (𝛽#) ;𝑌 e

1.2 1 0 2.33 -1.13

2.7 1 0 2.33 0.37

3.1 1 0 2.33 0.77

4.1 1 1 5.17 -1.07

5.3 1 1 5.17 0.13

6.1 1 1 5.17 0.93

!𝑋

!𝑋

In ANOVAs, predicted values are the predicted mean 
values per group

ANOVA as a regression model



Response (Y) Constant (𝛽") Predictor (𝛽#) ;𝑌 e

1.2 1 0 2.33 -1.13

2.7 1 0 2.33 0.37

3.1 1 0 2.33 0.77

4.1 1 1 5.17 -1.07

5.3 1 1 5.17 0.13

6.1 1 1 5.17 0.93

!𝑋

!𝑋

In ANOVAs, predicted values are the predicted mean values per group, and 
residuals (e) represent variation around the observed group mean not 

explained by the regression model (or ANOVA).

e6 = 6.10 – 5.17 = 0.93

ANOVA as a regression model



Plot between the square root of the absolute ANOVA residuals (i.e., deviations 
from the predicted mean group) against predicted mean per group

Predicted mean per group ( )𝑌) 

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

Variance of residuals looks ok, 
particularly given the small 
number of replicates per 
group. 



Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

Levene’s test

Variance of residuals are ok! 

Plot of residuals on predicted values (ANOVA as a regression model) versus 
standard Levene’s test for testing for homoscedasticity among groups



Coding for predictors with 3 groups (more groups and more factors, more predictors)

Response Factor Constant (𝛽") Predictor (𝛽#) Predictor (𝛽!)

1.2 control 1 0 0

2.7 control 1 0 0

3.1 control 1 0 0

4.1 Group_1 1 1 0

5.3 Group_1 1 1 0

6.1 Group_1 1 1 0

8.1 Group_2 1 0 1

9.4 Group_2 1 0 1

10.1 Group_2 1 0 1

𝑌 = 𝛽: + 𝛽;𝑋; + 𝛽?𝑋? + 𝑒

Multifactorial ANOVAs become then multiple regression models



How does heteroscedasticity affect 
variance of residual variation in 

ANOVAs?

wake up

@cjlortie



Here we will understand:

1) How heteroscedasticity affects variance of residual 
variation in ANOVAs

And

2) How weighted least squares (WLS) approach can be used to 
deal with heteroscedasticity in ANOVAs 
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One-factorial design - 3 groups, normally distributed 
homoscedastic data (𝜎!" = 𝜎"" = 𝜎#"= 4), varying in means 
(𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

G1 (n=100) G2 (n=80) G3 (n=120)

GOING BACK TO the simulated normally distributed 
homoscedastic simulated data



One-factorial design - 3 groups, normally distributed homoscedastic 
data (𝜎!" = 𝜎"" = 𝜎#"= 4), 
varying in means (𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

5 simulated data sets



One-factorial design - 3 groups, normally distributed 
homoscedastic data (𝜎!" = 𝜎"" = 𝜎#"= 4), varying in means 
(𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

1000 simulated data sets

Sample variation from
homoscedastic
populations -

H0 for population mean (𝜇) 
differences is set to 
FALSE.

H0 for population variance 
differences (𝜎) is set to 
TRUE.  



One-factorial design - 3 groups, normally distributed 
heteroscedastic data (𝜎!" = 4, 𝜎"" =  6.25, 𝜎#"= 9), 
varying in means (𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

Predicted means per group

Sample variation from
heteroscedastic
populations -

H0 for population mean (𝜇) 
differences is set to 
FALSE.

H0 for population variance 
differences (𝜎) is set to 
FALSE.  

1000 simulated data sets



One-factorial design - 3 groups, normally distributed 
homoscedastic data (𝜎!" = 𝜎"" = 𝜎#"= 4) and heteroscedastic data 
(𝜎!" = 4, 𝜎"" =  6.25, 𝜎#"= 9), 
varying in means (𝜇!" = 10, 𝜇"" = 12, 𝜇#" = 14)

Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

1000 simulated data sets

Heteroscedastic populationHomoscedastic population

Predicted means per group



Predicted means per group

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

Heteroscedastic
population

Homoscedastic
population

F-
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𝜎#! = 4, 𝜎!! =  6.25, 𝜎$!= 9𝜎#! = 𝜎!! = 𝜎$!= 4

𝜇#! = 10, 𝜇!! = 12, 𝜇$! = 14

For the same mean differences
among populations, the F-statistic 
(based on samples) is much smaller 
for heteroscedastic populations, 
i.e.,  smaller statistical power in 
contrast to the F-statistic for 
homoscedastic populations.

1000 simulated 
data sets
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How to keep the Type I Error Rate in ANOVA
if Variances are Heteroscedastic

Karl Moder
Institute of Applied Statistics and Computing,

University of Natural Resources and Applied Life Sciences, Vienna

Abstract: One essential prerequisite to ANOVA is homogeneity of variances
in underlying populations. Violating this assumption may lead to an increased
type I error rate. The reason for this undesirable effect is due to the calculation
of the corresponding F -value. A slightly different test statistic keeps the
level Æ. The underlying distribution of this alternative method is Hotelling’s
T

2. As Hotelling’s T
2 can be approximated by a Fisher’s F -distribution, this

alternative test is very similar to an ordinary analysis of variance.
Zusammenfassung: Eine wesentliche Voraussetzung der Varianzanalyse ist
Homoskedastizität in den zu Grunde liegenden Populationen. Eine Verlet-
zung dieser Annahme führt zu einer erhöhten Typ 1 Fehlerrate. Der Grund
für diesen unerwünschten Effekt liegt in der Berechnung des entsprechen-
den F -Wertes. Eine leicht veränderte Teststatistik hält das Niveau Æ. Die zu
Grunde liegende Verteilung dieses alternativen Verfahrens ist Hotelling’s T

2.
Da Hotelling’s T

2 durch eine F -Verteilung approximiert werden kann, ist der
alternative Test sehr ähnlich einer normalen Varianzanalyse.
Keywords: ANOVA, Heteroscedasticity, Hotelling’s T -squared, Levene-Test.

1 Introduction
ANOVA is one of the most frequently used methods in statistics. A correct application
of this method depends on three preconditions: (i) independence of samples; (ii) normal
distributed populations, and (iii) homoscedasticity. Dependence can be eliminated by an
appropriate model. The effects of non-normal distributed data on significance level are
low (see Box and Andersen, 1955) and can be ignored in most cases (see Lindman, 1992).
Inhomogeneity of variances however infects Æ as well as test efficiency. Although Box
(1954a) reported only little influence on this error rate with small differences in variances,
Box and Andersen (1955) found the effect of unequal variances to be appreciable even
when the ratio of block variances is moderate. In a second study Box (1954b) investigated
effects of inequality of variance in the two-way classification. For an assumed variance
ratio of main effects 1 : · · · : 1 : 3 a type I error rate of about 7% was found. In many
practical trials variance ratio is much broader and exceeds this values. As for example in
Figure 1.

A method proposed by Nelson and Dudewicz (2002) is applicable to such situations,
but hypothesis differs from that of analysis of variance and a new test statistic has to be
used. Transformation of data (e.g. log-, arcsin-, . . . , transformation) is another often used
practice in situations where variances are inhomogeneous. In a one factorial experiment,

On the other hand, when samples are taken from populations with the same 
means, but their variances vary (heteroscedastic) then Type I error can increase! 

(this will be demonstrated in TUTORIAL 5)

Sample variation from heteroscedastic populations:

H0 for population mean (𝜇) differences is set to TRUE.

H0 for population variance differences (𝜎) is set to FALSE.  



Here we will understand:

1) How heteroscedasticity affects variance of residual variation in 
ANOVAs

And

2) How weighted least squares (WLS) approach 
can be used to deal with heteroscedasticity in ANOVAs 



𝛽 = (𝑋<𝑋)=; 𝑋<𝑌 (𝑂𝐿𝑆)

The weighted least squares (WLS) approach 

𝛽 = (𝑋<𝑊𝑋)=; 𝑋<𝑊𝑌 (𝑊𝐿𝑆)
OLS and WLS are equal 
when W is an identity 
matrix in which all 
(main) diagonal 
elements equal to 1, 
i.e., all observations 
have the same weight 
in the regression 
estimates. 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

𝑊= 



The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates

(the case of the weighted mean) 

!"#"$"%
%

=2.5 regular mean

Weighted mean
Weights = 2,3,4,5

!×#"#×$"$×%"%×'
!%

=2.86

!×'"#×%"$×$"%×#
!%

=2.14 Weighted mean
Weights = 5,4,3,2



Weighted mean
Weights = 2,3,4,5

!×#"#×$"$×%"%×'
!%

=2.86

!"!"#"#"#"$"$"$"$"%"%"%"%"%
!%

= %(
!%

2.86

The weighted least squares (WLS) approach
Let’s understand how weights change statistical estimates

(the case of the weighted mean) 



𝛽 = (𝑋<𝑋)=; 𝑋<𝑌 (𝑂𝐿𝑆)

The weighted least squares (WLS) approach 

𝛽 = (𝑋<𝑊𝑋)=; 𝑋<𝑊𝑌 (𝑊𝐿𝑆)

1.003333

1.013333

Variance of
residuals
per group

Response (Y) Constant (𝛽") Predictor (𝛽#) ;𝑌 e

1.2 1 0 2.33 -1.13

2.7 1 0 2.33 0.37

3.1 1 0 2.33 0.77

4.1 1 1 5.17 -1.07

5.3 1 1 5.17 0.13

6.1 1 1 5.17 0.93



𝛽 = (𝑋<𝑋)=; 𝑋<𝑌 (𝑂𝐿𝑆)

The weighted least squares (WLS) approach –
more variance, less influence in the regression estimation

𝛽 = (𝑋<𝑊𝑋)=; 𝑋<𝑊𝑌 (𝑊𝐿𝑆)

𝑊= 1/𝒔𝒈𝒓𝒐𝒖𝒑𝟐

In OLS, each observation has the same weight (inform the model 
in the same way.  In WLS, we treat each observation as more 
(smaller group residual variance) or less (larger groups residual 
variance) informative about the underlying relationship between 
X and Y.



𝛽 = (𝑋<𝑋)=; 𝑋<𝑌 (𝑂𝐿𝑆)

The weighted least squares (WLS) approach –
more variance, less influence in the regression estimation

𝛽 = (𝑋<𝑊𝑋)=; 𝑋<𝑊𝑌 (𝑊𝐿𝑆)

1 / 1.003333

1 / 1.013333

1 / Variance of
residuals
per group

0.997 0 0 0 0 0

0 0.997 0 0 0 0

0 0 0.997 0 0 0

0 0 0 0.990 0 0

0 0 0 0 0.990 0

0 0 0 0 0 0.990

The influence of each observation is the inverse of its 
group residuals variance (i.e., reciprocal, 1/variance)

𝑊= 1/



Heteroscedastic
population

Homoscedastic
population

F-
st

at
ist

ic

WLS

For the same mean differences among populations, the F-statistic (based on samples) 
is much smaller for heteroscedastic populations, i.e., smaller statistical power in 
contrast to the F-statistic for homoscedastic populations. The WLS makes it more 
powerful (larger F-values) and much closer to what is expected for homoscedastic 
populations.

𝜇#! = 10, 𝜇!! = 12, 𝜇$! = 14

𝜎#! = 4, 𝜎!! =  6.25, 𝜎$!= 9𝜎#! = 𝜎!! = 𝜎$!= 4

OLSOLS


