
Multiple regression – the “models of all models”!

Part I (continuation): 

model, properties of estimators and 
sensibility to assumptions 

Part II: 

Goodness of fit and model simplicity metrics, 
hypotheses testing, standardized slopes, model 

selection, examples and diagnostics



The properties of a regression model -

[1] Properties of errors in response Y and 
predictors X



A regression model aims at predicting the average Y based on X, i.e., predict the 
average Y based on X.

Properties of errors
multiple regression assumes measurement errors in Y but not X

Values of X (predictor) 
are measured without 
error (hard to assess, 
often assumed).



Properties of errors: Values of X (predictor) are measured 
without measurement error 

(hard to assess, often assumed)

multiple regression assumes vertical offsets (residuals)

Type I and III sum-of-squares Type II sum-of-squares

Residuals for Type I regression
Error in Y but not in X

Residuals for Type II regression
Error in both Y and X

vertical offsets perpendicular offsets



Corinaldesi et al. (2003); APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May: 2664–2673.

Bacterial abundance (log transformed)
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If we assume here that bacterial and viral abundance have the same measurement errors, 
then we can’t use the regular regression model (the authors used a type II regression 
that is appropriate for this issue).

Properties of errors (assumption): values of X (predictor) is 
measured without measurement error



But first we need to revisit understand that the regression model 
based on samples are an unbiased estimate of the true intercepts 
and slopes. Let’s assume the following population regression model:

𝑌 = 0.879 + 1.300𝑋

interceptslope

Sampling variation in estimates

0.879

1.300

Properties of errors (assumption): values of X (predictor) is 
measured without measurement



Red dots are X values “measured” 
without error, whereas the smaller 
black dots are X values “measured” 
with error.

In this case there is little 
consequence because the error is 
small (0.1).

Properties of errors (assumption): values of X (predictor) is 
measured without error (hard to assess, often assumed)

SMALL MEASUREMENT ERROR



Red dots are X values “measured” without 
error, whereas the smaller black does are X 
values “measured” with error.

The consequence here is much bigger for 
estimating the regression model because 
the error is large (1.0).

BLUE line = Regression model 
without error in X.

BLACK line = Regression model with 
error in X.

ERROR IN X REDUCES SLOPES. 

Y = 0.977 + 0.498X
𝑌 = 0.929 + 1.23X without error in X

with error in X

Properties of errors (assumption): values of X (predictor) is 
measured without error (hard to assess, often assumed)

LARGE MEASUREMENT ERROR



True population model𝑌 = 0.879 + 1.300𝑋

Properties of errors (assumption): values of X (predictor) is 
measured without error (hard to assess, often assumed)



True population modelY = 0.879 + 1.300X

No measurement
error in X

Measurement
error in X

Properties of errors (assumption): values of X (predictor) is 
measured without error (hard to assess, often assumed)



The properties of a regression model -

[2] Properties of estimators of coefficients and 
residual variance

wake up

@cjlortie



Properties of estimators of coefficients
(sampling variation of coefficients; 10000 samples)

constant X1 X2

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e

True population 
values

True population model:
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Note that there is much more relative sampling error around constant than the slopes. 



Properties of estimators of residual variance

𝜎" = 𝐸 𝑠" =
∑#$!% (𝑒# − 0)"

𝑛 − (𝑘 + 1)

mean of residuals is always zero

number of parameters estimated 
(intercept + number of slopes)

1 degree of freedom is 
lost because of the mean 

of residuals, which is 
always zero here

𝑒# = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛



𝜎! = 𝐸 𝑠! =
∑"#$
% (𝑌" − 0)!

𝑛

𝜎! = 𝐸 𝑠! =
∑"#$
% (𝑌" − 0)!

𝑛 − (𝑘 + 1)
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To be properly estimated, the 
variance of residuals needs to 

take into account the number of 
predictors in the model

Properties of estimators of residual variance and the roles 
of degrees of freedom

(sampling variation of residual variance;
10 000 samples)

k = 3 (intercept + 2 predictors)



The properties of a regression model

[3] The influence of missing predictors that correlate with measured 
predictors (e.g., measuring the effect of bacteria without sun light); 

e.g., extreme cases are called multicollinearity

sun light
exposure 

bacteria
amount

residual variation

versus

sun light
exposure 

bacteria
amount

residual variation



Compare the two models – both slopes for X1 are very similar



The properties of a regression model

Small influence of missing predictors that do not 
correlate strongly with measured predictors

sun light
exposure 

bacteria
amount

residual variation





Compare the two models – slopes are now very different, i.e., the missing predictor X2 in the first model affected 
the true estimation of X1.



The properties of a regression model

Strong influence of missing predictors that 
correlate strongly with measured predictors

sun light
exposure 

bacteria
amount

residual variation



Experimental (likely close to orthogonal) versus observational 
(likely non-orthogonal) approaches.
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optimal	combination

Manipulative	experiment

Environmental	variable	1

Observational	study

Optimal combination of the two variables 
for fish growth.

Resources (g/m3) Resources (g/m3)
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Manipulative Experiment
(balanced = orthogonal)

Observational study
(non-balanced)



The properties of a regression model
(now let’s use a small simulation)

Properties of estimators
[4] sampling variation of coefficients

low versus high correlation among predictors
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But even when we consider the « correct » predictors, the error estimation (sampling 
error) of slopes is affected when they are very correlated.
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high correlationlow correlation

Level of correlation between predictors affects estimation accuracy (Variation 
Inflation) – we can trust less the slopes of predictors that are correlated

X1 X2 X1 X2

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e



[5] Homoscedasticity of residuals

(the assumption of constant variance)

e residual error assumed to be 𝑁 0, 𝜎/

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e



e residual error assumed to be 𝑁 0, 𝜎/
The assumption of constant residual variance 

(homoscedasticity)

Predicted values

Y



e residual error assumed to be 𝑁 0, 𝜎/
The assumption of constant residual variance 

(this one is not constant)

Predicted values

Y



Another example of residual 
heteroscedasticity

e residual error assumed to be 𝑁 0, 𝜎/
The assumption of constant residual variance 

(this one is not constant)

Predicted values

Y



Predicted values

Y
Another example of residual 
heteroscedasticity

e residual error assumed to be 𝑁 0, 𝜎/
The assumption of constant residual variance 

(this one is not constant)



constant variance

X1 X2

non constant residual variance affects estimation 
accuracy

Predicted values

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e



non-constant variance

X1 X2

non constant residual variance affects estimation 
accuracy

Predicted values

𝑟𝑒
𝑠𝑖
𝑑𝑢
𝑎𝑙
𝑠

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e



constant variance non-constant variance

X1 X2X1 X2

non constant residual variance affects estimation 
precision BUT not accuracy

𝑌 = 42cm + 𝟐. 𝟑X! + 𝟏𝟏X" + e
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