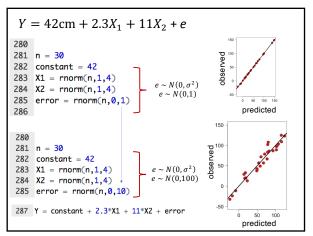
How well does the model fit the data?

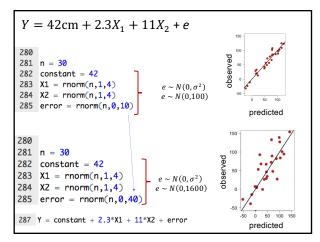
Goodness of fit metrics

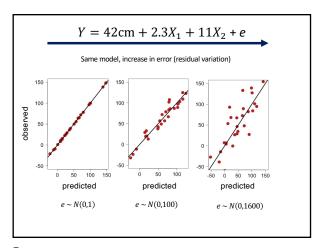
1

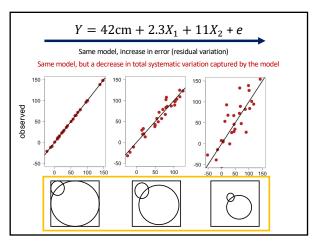
```
Y = 42cm + 2.3X_1 + 11X_2 + e
     The variance of residuals in relation to the variance of
      predictors regulates how well the model fits the data
e \sim N(0, \sigma^2) :: e \sim N(0, 1)
                                      150
280
                                    281 n = 30
282 constant = 42
283 X1 = rnorm(n,1,4)
284 X2 = rnorm(n,1,4)
285 error = rnorm(n,0,1)
286
                                                  100 150
287 Y = constant + 2.3*X1 + 11*X2 + error
                                              predicted
```

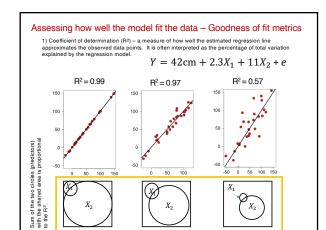
2











Assessing how well the model fit the data - Goodness of fit metrics

 Coefficient of determination (R²) – a measure of how well the estimated regression line approximates the observed data points. It is often interpreted as the percentage of total variation explained by the regression model.

It can be calculated in many ways (always leading to the same result), but here are three of them (no need to memorize them):

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \hat{Y})^2}{\sum_{i=1}^n (Y_i - Y)^2} = \frac{total~SS~predicted}{total~SS~observed}$$

8

Assessing how well the model fit the data - Goodness of fit metrics

1) Coefficient of determination (R^2) – a measure of how well the estimated regression line approximates the observed data points. It is often interpreted as the percentage of total variation explained by the regression model.

It can be calculated in many ways (always leading to the same result), but here are three of them:

$$R^2 = \frac{\sum_{i=1}^{n} (\mathring{Y}_i - \mathring{Y})^2}{\sum_{i=1}^{n} (Y_i - Y)^2} = \frac{total~SS~predicted}{total~SS~observed}$$

$$R^2 = 1 - \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n \left(Y_i - Y\right)^2} = 1 - \frac{total \, SS \, error \, (residuals)}{total \, SS \, observed}$$

Assessing how well the model fit the data - Goodness of fit metrics

 Coefficient of determination (R²) – a measure of how well the estimated regression line approximates the observed data points. It is often interpreted as the percentage of total variation explained by the regression model.

It can be calculated in many ways (always leading to the same result), but here are three of them:

$$R^2 = \frac{\sum_{i=1}^n (\hat{Y}_i - \hat{Y})^2}{\sum_{i=1}^n (Y_i - Y)^2} = \frac{total~SS~predicted}{total~SS~observed}$$

$$R^2 = 1 - \frac{\sum_{i=1}^n e_i^2}{\sum_{i=1}^n \left(Y_i - Y\right)^2} = 1 - \frac{total \, SS \, error \, (residuals)}{total \, SS \, observed}$$

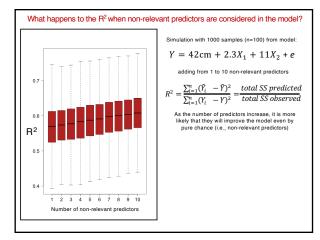
 $R^2 = cor(observed, predicted)^2$

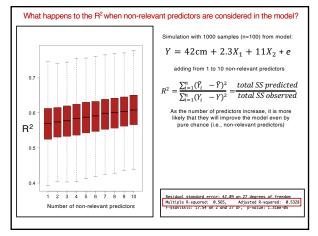
10

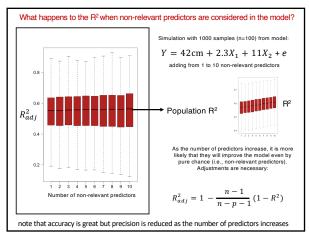
Assessing how well the model fit the data - Goodness of fit metrics

R

11







A complete empirical example

16

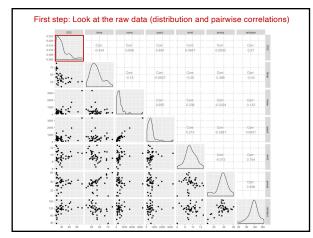
Empirical example: Understanding the drivers of pollution in US cities

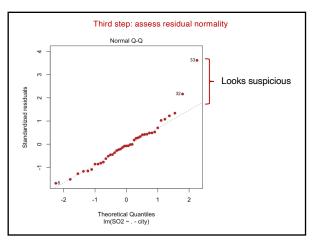
17

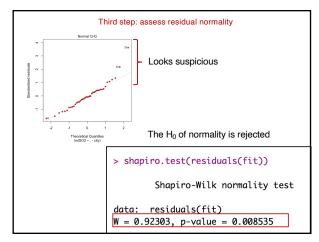
Empirical example - What are the drivers of air pollution (sulfur dioxide) in US cities?

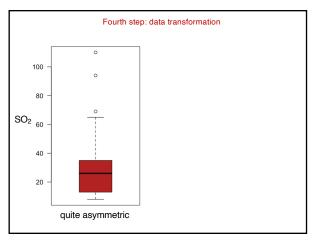
- City: City
 SO2: Sulfur dioxide content of air in
 micrograms per cubic meter.
 Temp: Average annual temperature in
 degrees Fahrenheit.
 Manu: Number of manufacturing
 enterprises employing 20 or more
 workers.
 Popul: Population size in thousands
 from the 1970 census.
 Wind: Average annual wind speed in
 miles per hour.
 Precip: Average annual precipitation in
 inches.
 Raindays: Average number of days with
 precipitation per year.

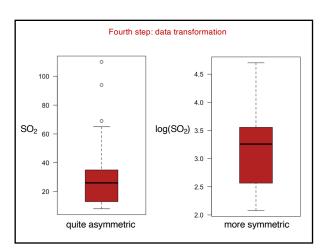
n=41

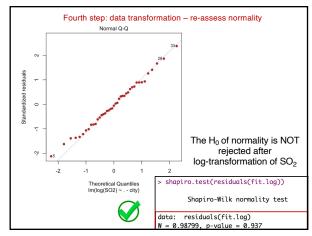


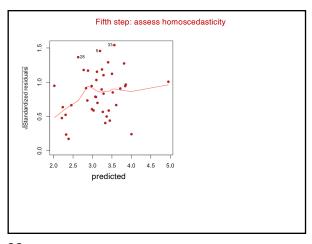


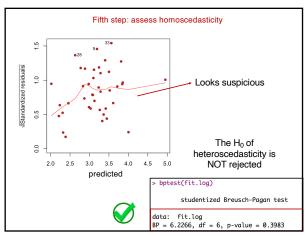












Sixth step: assess overall significance of the regression model

- H₀: The total amount of predicted variation in SO₂ is the same amount as a regression model based on the mean SO₂ (this is referred to the null model of a regression or an intercept only model).
- H_A: The total amount of predicted variation in SO₂ is greater than the regression model based on the average SO₂.

28

Sixth step: assess overall significance of the regression model

- H₃: The total amount of predicted variation in SO₂ is the same amount as a regression model based on the mean SO₃ (this is referred to the null model of a regression or a intercept only model).
- H_i: The total amount of predicted variation in SO_i is greater than the regression model based on the average SO_i.

reject H₀

29

Sixth step: assess overall significance of the regression model

- H_b: The total amount of predicted variation in SO₂ is the same amount as a regression model based on the mean SO₂ (this is referred to the null model of a regression or a intercept only model).
- H_b: The total amount of predicted variation in SO_b is greater than the regression model based on the average SO_b.

Residual standard error: 0.448 on 34 degrees of freedom Multiple R-squared: 0.6541, Adjusted R-squared: 0.5931 F-statistic: 10.72 on 6 and 34 DF, p-value: 1.126e-06

Degrees of freedom – numerator (model) = number of predictors (p = 6) denominator (error or residual) = n (41) – p (6) – 1 = 34

One way of reporting:

A multiple linear regression model was fit to predict SO_2 concentrations across major US cities as a function of different factors. A significant regression was found ($F_{(6,34)} = 10.72$, P < 0.0001), with an adjusted R^2 of 0.593.

Seventh step: assess predictor significance

For each predictor (test the partial coefficient):

- H_0 : The partial contribution of β_1 is zero.
- H_A : The partial contribution of β_1 is different from zero.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + e$$

 eta_1,eta_2,\dots,eta_p Partial regression coefficients (or partial slopes)

31

Seventh step: assess predictor significance

For each predictor (test the partial coefficient):

Ho: The partial contribution of β_1 is zero.

Ha: The partial contribution of β_1 is different from zero.

> summary(fit.log)

```
Coefficients:

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
temp -0.0599017 0.0199138 -3.150 0.00339 **
nanu 0.001639 0.0004632 -1.528 0.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
prectp 0.0173723 0.0111036 1.565 0.12695
raindays 0.0004347 0.0045991 0.088 0.93066
---
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 '.' 0.1 ' ' 1
```

32

Eighth step: contrast importance of predictors

Predictors are expressed in the ratio of the response unit / predictor unit;

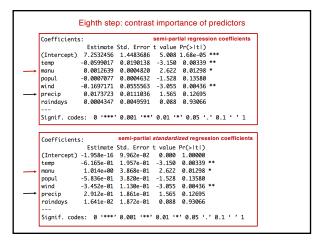
For example, the partial slope of manufacturing is significant but its slope is much smaller than the slope of precipitation which is not significant.

As such, we need to standardize the response and predictor values (mean = 0, standard deviation = 1). As such, they will all become dimensionless (unit less) and vary in a common scale.

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
temp -0.0599017 0.0190138 -3.150 0.00339 **
manu 0.0012639 0.0004820 2.622 0.01298 *
popul -0.0007077 0.0004632 -1.528 0.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
precip 0.0173723 0.0111036 1.565 0.12695
raindays 0.0004347 0.0049591 0.088 0.93066
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



General linear models (not Generalized linear model)	
Linear Model	Common name
$Y = \mu + X$	Simple linear regression
$Y = \mu + A_1$	One-factorial (one-way) ANOVA
$Y = \mu + A_1 + A_2 + A_1 \times A_2$	Two-factorial (two-way) ANOVA
$Y = \mu + A_1 + X (+A_1 \times X)$	Analysis of Covariance (ANCOVA)
$Y = \mu + X_1 + X_2 + X_3$	Multiple regression
$Y = \mu + A_1 + g + A_1 \times g$	Mixed model ANOVA
$Y_1 + Y_2 = \mu + A_1 + A_2 + A_1 \times A_2$	Multivariate ANOVA (MANOVA)
Y (response) is a continuous variable X (predictor) is a continuous variable A represents categorical predictors (factors) g represents groups of data (more on this later) $(+A_1\times X) - \text{step 1 on an ANCOVA, but not in the final analysis Multiple factors } A_1 + A_2 + \text{etc} \text{ (and their interactions)}$	