How well does the model fit
the data?

Goodness of fit metrics
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Y =42cm + 2.3X; + 11X, +e

The variance of residuals in relation to the variance of
predictors regulates how well the model fits the data
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Y =42cm + 2.3X; + 11X, +e

Same model, increase in error (residual variation)
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Sum of the two circles (predictors)
with the shared area is proportional

to the R2

Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated regression line
approximates the observed data points. It is often interpreted as the percentage of total variation

explained by the regression model.
Y =42cm + 2.3X; + 11X, +e

R2=0.99 R2=0.97 R2=0.57
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Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated
regression line approximates the observed data points. It is often
interpreted as the percentage of total variation explained by the
regression model.

It can be calculated in many ways (always leading to the same result), but
here are three of them (no need to memorize them):

Y. (% —1)?2  total SSpredicted

2 —
R T yn (Y, —Y)2  total SS observed

Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated
regression line approximates the observed data points. It is often
interpreted as the percentage of total variation explained by the
regression model.

It can be calculated in many ways (always leading to the same result), but
here are three of them:

o Xi, (%, —P)? _ total SSpredicted
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Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated
regression line approximates the observed data points. It is often
interpreted as the percentage of total variation explained by the
regression model.

It can be calculated in many ways (always leading to the same result), but
here are three of them:

¥ (% —P)? _ total SSpredicted
T yn (Y, —Y)2  total SSobserved

R?

total SS error (residuals)

Re=1 3 total S observed
Z?:l(yl _Y) otal observe

R? = cor(observed, predicted)?
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Assessing how well the model fit the data — Goodness of fit metrics

> Im.res = Im(Y~X1+X2)

> summary(lm. res)

Call:
InCformula = Y ~ X1 + X2)

Residuals:
Min 1Q Median 3Q Max
-69.871 -25.949 -2.132 23.879 103.969

Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 44.243 8.966 4.935 3.63e-05 ***
X1 3.561 1.793 1.986 0.0572 .
x2 10.177 1.782 5.711 4.54e-06 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ 1

Residual standard error: 42.89 on
Multiple R-squared: .565, Adjusted
F-statistic: 17.54 on 2 and 27 DF, p-value: 1.316e-05
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What happens to the R? when non-relevant predictors are considered in the model?

Previous model with the two relevant predictors

) plus two irrelevant predictors X3 and X4:
True population model

) 302
.e., only t 1 it dict
(i.e., only two relevant predictors) 303 n- 30
304 X3-rnorm(n,1,4)
Y =42cm + 2.3X; + 11X, +e 305 Xd-rnorm(n.1.4)
306 Im.res = Im(Y-X1+X2+X3+X4)
307 summary(lm.res)
308

> Im.res = InCr-X14X24X34X8)
> sumary(Cln. res)

call
InCformila = Y ~ XL + X2 + X3 + X8)

Residuals:

fin vedian 3 Max
59.933 -28.631 -2.034 28.055 85.368
Coefficients:

Estinote Std. Error ¢ value Pr(>1t1)
(Intercept) 40.846  9.006 4.535 0.000124
X 3.

1755 2,051 0.050874 .
@ 9ls9 1759 5.452 1.160-05 +ov
4 1349 2,077 0.649 0.522086

Previous model just with A Lz a6 s

the two relevant predictors:
Signif. codes:

Maltiple R-square Adjusted R-squar 328 Witiple R-sauared: 0.6212, _ Adjusted R-sauared: 0.5606 |
I ; e

ST
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What happens to the R? when non-relevant predictors are considered in the model?

1

2 3 4 5 6 7 8 9 10

Number of non-relevant predictors

Simulation with 1000 samples (n=100) from model:
Y =42cm + 2.3X, + 11X, +e
adding from 1 to 10 non-relevant predictors

, i, (Y, —P)?  total SSpredicted
- Y. (Y, —Y)2 total SSobserved

As the number of predictors increase, it is more
likely that they will improve the model even by
pure chance (i.e., non-relevant predictors)

2025-03-03
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What happens to the R? when non-relevant predictors are considered in the model?

Simulation with 1000 samples (n=100) from model:
Y =42cm + 2.3X, + 11X, +e
adding from 1 to 10 non-relevant predictors

, i, (Y, —P)?  total SSpredicted
- Y. (Y, —Y)2 total SSobserved

As the number of predictors increase, it is more
likely that they will improve the model even by
pure chance (i.e., non-relevant predictors)

Number of ! it

5, Adjusted R-squared: 0.5328
aZ7 O, pevaTueT
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What happens to the R? when non-relevant predictors are considered in the model?

—————————
12 3 4 5 6 7 8 9 10
Number of non-relevant predictors

Simulation with 1000 samples (n=100) from model:

Y =42cm + 23X, + 11X, +e

adding from 1 to 10 non-relevant predictors

—> Population R2 “II“II“ R?

As the number of predictors increase, it is more
likely that they will improve the model even by
pure chance (i.e., non-relevant predictors).
Adjustments are necessary:

n—1

Ri=1-
n—-p-1

adj

1-RH)

note that accuracy is great but precision is reduced as the number of predictors increases
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A complete empirical example

2025-03-03
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Empirical example:
Understanding the drivers of pollution in US cities

17

Empirical example - What are the drivers of air pollution
(sulfur dioxide) in US cities?

SR eI
5% o w s an o om «  City: Cit

T W T + SO.: Sulfur dioxide content of air in
W% e wm m ww om micrograms per cubic meter.
- « Temp: Average annual temperature in

{; g{’; % % E; SE% ,'a:, degrees Fahrenheit.

s oy | wer v 1 wai [ s | * Manu: Number of manufacturing

B @ m um  we  4p 0 enterprises employing 20 or more
o w Y workers.
= « Popul: Population size in thousands

fo | ee | e e e | e from the 1970 census.

- - * Wind: Average annual wind speed in
Sooa mo e w o own o miles per hour.

T S N Y  Precip: Average annual precipitation in
B mo wm e % inches.

4 % 4 & a in &« Raindays: Average number of days with
ig 1\: ﬁ: ;E %: Ziz g precipitation per year.
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First step: Look at the raw data (distribution and pairwise correlations)

2025-03-03
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Second step: Run the model

> fit <- Im(S02 ~ temp + manu + popul + wind + precip + raindays ,

> summary(fit)

Call:

ImCformula = SO2 ~ temp + manu + popul + wind + precip + raindays,

data = data.pollution)

Residuals:
Min 1Q Median 3Q Max
-23.004 -8.542 -0.991 5.758 48.758

Coefficients:
Estimate Std. Error t value Pr(>It1)
(Intercept) 111.72848 47.31810  2.361 0.024087 *

temp -1.26794 0.62118 -2.041 0.049056 *
manu 0.06492 0.01575  4.122 0.000228 ***
popul -0.03928 0.01513 -2.595 0.013846 *
wind -3.18137 1.81502 -1.753 0.088650 .
precip 0.51236 0.36276  1.412 0.166918
raindays -0.05205 0.16201 -0.321 0.749972

Signif. codes: @ ‘***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 14.64 on 34 degrees of freedom

F-statistic: 11.48 on 6 and 34 DF, p-value: 5.419e-07

Multiple R-squared: 0.6695,  Adjusted R-squared: 0.6112

data=data.pollution)
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Third step: assess residual normality

Normal Q-Q

< -
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Theoretical Quantiles
Im(SO2 ~ . - city)

Looks suspicious
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Third step: assess residual normality

Normal 0.0

Theoretical Quanties.
Im(S02 - - city)

Looks suspicious

The Hop of normality is rejected

2025-03-03

data:

> shapiro.test(residuals(fit))

Shapiro-Wilk normality test

residuals(fit)

W = 0.92303, p-value = 0.008535

Fourth step: data transformation
o
100
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|
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quite asymmetric
Fourth step: data transformation
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Standardized residuals

Fourth step: data transformation — re-assess normality
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Normal Q-Q
ES
289
.
see
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Coad
o
o
s * The Ho of normality is NOT
- rejected after
T T T T T log-transformation of SO,
-2 -1 0 1 2
Theoretical Quantiles > shapiro.test(residuals(fit.1log))

Im(log(S02) ~ . - city)
Shapiro-Wilk normality test

@ data: residuals(fit.log)

W =_0.98799, p-value = 0.937
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Fifth step: assess homoscedasticity
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Fifth step: assess homoscedasticity
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> bptest(fit.log)

studentized Breusch-Pagan test

@ data: fit.log

BP = 6.2266, df = 6, p-value = 0.3983
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Sixth step: assess overall significance of the regression model

- Ho: The total amount of predicted variation in SO, is the
same amount as a regression model based on the mean
SOz (this is referred to the null model of a regression or
an intercept only model).

- Ha: The total amount of predicted variation in SO3 is
greater than the regression model based on the
average SOo.

2025-03-03
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Sixth step: assess overall significance of the regression model

H: The total amount of predicted variation in SO: is the same amount s a regression model based on the
mean SO: (this is referred to the null model of a regression o a intercept only model).

Ha: The total amount of predicted variation in SO: is greater than the regression model based on the

average SO:
> summary(fit.log)
Call:
ImCformula = 10g(S02) ~ . - city, data = data.pollution)

Residuals:
fin 1Q  Median 3 Max
-0.79548 -0.25538 -0.01968 0.28328 0.98029

Coefficients:
Estimate Std. Error t value Pr(>It1)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 0.0190138 -3.150 ©.00339 **
manu 0.0012639 0.0004820 2.622 0.01298 *
popul -0.0007077 0.0004632 -1.528 ©.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
precip 0.0173723 0.0111036 1.565 0.12695

raindays 0.0004347 0.0049591 ©0.088 0.93066

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 0.448 on 34 degrees of freedom
reject Hy |Mitiple R-suared: 0.6541,  Adjusted R-squared: 0.5931
F-statistic: 10.72 on 6 and 34 DF, p-value: 1.126e-06
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Sixth step: assess overall significance of the regression model

He: The total amount of predicted variation in SO: is the same amount s a regression model based on the
mean SO: (this is referred to the null model of a regression o a intercept only model).

He: The total amount of predicted variation in SOx is greater than the regression model based on the
average SO:.

Residual standard error: ©.448 on 34 degrees of freedom
Multiple R-squared: 0.6541, Adjusted R-squared: 0.5931
F-statistic: 10.72 on 6 and 34 DF, p-value: 1.126e-06

Degrees of freedom — numerator (model) = number of predictors (p = 6)
denominator (error or residual) =n (41) —p (6) -1 =34

One way of reporting:

A multiple linear regression model was fit to predict SO»
concentrations across major US cities as a function of
different factors. A significant regression was found (F34) =
10.72, P < 0.0001), with an adjusted R2of 0.593.

30
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Seventh step: assess predictor significance

For each predictor (test the partial coefficient):
- Ho: The partial contribution of g, is zero.

- Ha: The partial contribution of g; is different from zero.

Y = ﬁo + ﬁlxl + ﬁZXZ + ... +Bpo +e

,8 1 ﬁ 27 " ﬁp Partial regression coefficients (or partial slopes)

2025-03-03

Seventh step: assess predictor significance
For each predictor (test the partial coefficient):

Ho: The partial contribution of , is zero.
Ha: The partial contribution of p, is different from zero.
> summary(fit.log)
Coefficients:

Estimate Std. Error t value Pr(>Itl)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***
temp -0.0599017 0.0190138 -3.150 0.00339 **
manu 0012639 0.0004820 2.622 ©.01298 *
popul -0.0007077 0.0004632 -1.528 0.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
precip 0.0173723 0.0111036 1.565 0.12695
raindays 0.0004347 0.0049591 ©.088 0.93066
Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 ¢ ’ 1

Eighth step: contrast importance of predictors

Predictors are expressed in the ratio of the response unit / predictor unit;
as such we can’t compare their values directly.

For example, the partial slope of manufacturing is significant but its slope
is much smaller than the slope of precipitation which is not significant.

As such, we need to standardize the response and predictor values (mean
=0, standard deviation = 1). As such, they will all become dimensionless
(unit less) and vary in a common scale.

Coefficients:
Estimate Std. Error t value Pr(>l1tl)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 ©0.0190138 -3.150 0.00339 **
manu 0.0012639 0.0004820 2.622 ©.01298 *
popul -0.0007077 ©0.0004632 -1.528 0.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
precip 0.0173723 0.0111036 1.565 0.12695
0.0049591 0.088 0.93066

raindays 0.0004347

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 < ’ 1

33
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temp -0.0599017 ©.0190138 -3.150 0.08339 **
— | manu 0.0012639 ©.0004820 2.622 ©.01298 *

popul -0.0007077 ©.0004632 -1.528 ©.13580

wind -0.1697171 ©.0555563 -3.055 0.00436 **
— |precip 0.0173723 ©.0111036 1.565 ©.12695

—— | manu 1.014e+00

— | precip 2.912e-01

Eighth step: contrast importance of predictors

Coefficients: semi-partial regression coefficients
Estimate Std. Error t value Pr(>Itl)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

raindays 0.0004347 ©0.0049591 ©.088 0.93066

Signif. codes: @ ‘***’ @.001 ‘**> 0.01 ‘*> 0.05 ‘.’ 0.1 < > 1

Coefficients: semi-partlal i 9
Estimate Std. Error t value Pr(>1tl)
(Intercept) -1.958e-16 9.962e-02 0.000 1.00000
temp -6.165e-01 1.957e-01 -3.150 0.00339 **
3.868e-01 2.622 0.01298 *
popul -5.836e-01 3.820e-01 -1.528 0.13580
wind -3.452e-01 1.130e-01 -3.055 0.00436 **
1.86le-01 1.565 0.12695
raindays 1.641e-02 1.872e-01 ©.088 0.93066

Signif. codes: @ “***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 < ’ 1

2025-03-03
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General linear models (not Generalized linear model)

Linear Model Common nhame
Y=pn+X Simple linear regression
Y= pn+A; One-factorial (one-way) ANOVA

Y= pn+A; +A;, +A; XA, Two-factorial (two-way) ANOVA
Y= pu+A; +X(HA;1XX) Analysis of Covariance (ANCOVA)
Y= pu+X; +X; +X3 Multiple regression
Y=pu+A +g+A;xg Mixed model ANOVA
Y +Y, =p+A; +A, + A XA, Multivariate ANOVA (MANOVA)
Y (response) is a continuous variable
X (predictor) is a continuous variable

A represents categorical predictors (factors)
g represents groups of data (more on this later)

(+A;Xx X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)

35
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