How well does the model fit
the data?

Goodness of fit metrics



Y =42cm + 2.3X; + 11X, +e

The variance of residuals in relation to the variance of
predictors regulates how well the model fits the data
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Y =42cm + 2.3X; + 11X, +e
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observed

Y =42cm + 2.3X; + 11X, +e
e ———————————————————————————————

Same model, increase in error (residual variation)
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Y =42cm + 2.3X; + 11X, +e
— Ty

Same model, increase in error (residual variation)

Same model, but a decrease in total systematic variation captured by the model

150 - 150 - 150 -
@
® o
100 - 100 - 100 - A
O ® o o.
()
E o0
D 50 - 50 50 - ® °
(7))
e A o
o
0 0 0 &
@
®
-50_ -50“ : : _50_
T T T 1 ! T
100 150 0 50 100 50 0 50 100 150

@




Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated regression line
approximates the observed data points. It is often interpreted as the percentage of total variation

explained by the regression model.
Y =42cm + 2.3X; + 11X, +e
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Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated
regression line approximates the observed data points. It is often
interpreted as the percentage of total variation explained by the
regression model.

It can be calculated in many ways (always leading to the same result), but
here are three of them (no need to memorize them):

RZ — n(%;, —P)% total SSpredicted
Y™ (Y, —¥)2 total SS observed
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Assessing how well the model fit the data — Goodness of fit metrics

1) Coefficient of determination (R?) — a measure of how well the estimated
regression line approximates the observed data points. It is often

interpreted as the percentage of total variation explained by the
regression model.

It can be calculated in many ways (always leading to the same result), but
here are three of them:

RZ — n(%;, —P)% total SSpredicted
Y™ (Y, —¥)2 total SS observed

2 [ eiz total SS error (residuals)
Re=1- n nvial total SS observed
i=1(Yi o Y)

R? = cor(observed, predicted)?



Assessing how well the model fit the data — Goodness of fit metrics

> Im.res = Im(Y~X1+X2)

> summary(lm.res)

Call:
Im(formula = Y ~ X1 + X2)

Residuals:
Min 1Q Median 3Q Max
-69.871 -25.949 -2.132 23.879 103.969

Coefficients:

Estimate Std. Error t value Pr(Gltl)
(Intercept) 44.243 8.966 4.935 3.63e-05 ***
X1 3.561 1.793 1.986 0.0572 .
X2 10.177 1.782 5.711 4.54e-00 ***

Signif. codes: @ ‘***’ 9,001 ‘**’ 90.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 42 .89 on 27 degrees of freedom
Multiple R-squared: 0.565, Adjusted R-squared: 0.5328

F-statistic: 17.54 on 2 and 27 DF, p-value: 1.316e-05




What happens to the R2when non-relevant predictors are considered in the model?

Previous model with the two relevant predictors
plus two irrelevant predictors X3 and X4:

302

303 n = 30

304 X3=rnorm(n,1,4)

Y — 4zcm + 2. 3X1 + 11X2 + e 305 X4=r‘nor'm(n,1,4)

306 1Im.res = Im(Y~X1+X2+X3+X4)
307 summary(lm.res)

308

True population model
(i.e., only two relevant predictors)

> Im.res = Im(Y~X1+X2+X3+X4)
> summary(lm.res)

Call:
Im(formula = Y ~ X1 + X2 + X3 + X4)

Residuals:
Min 1Q Median 3Q Max
-59.933 -28.631 -2.034 28.055 85.368

Coefficients:
Estimate Std. Error t value Pr(>I1tl)
v (Intercept) 40.846 9.006 4.535 0.000124 ***
X1 3.600 1.755 2.051 0.050874 .
X2 9.592 1.759 5.452 1.16e-@5 ***
i i i X3 1.349 2.077 0.649 0.522086
PreVIOUS mOdel JUSt Wlth X4 3.164 2.047 1.545 0.134861

the two relevant predictors:
Signif. codes: @ ‘***’ 9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Multiple R-squared: 0.565, Adjusted R-squared: 0.5328 Multiple R-squared: 0.6212, Adjusted R-squared: 0.5606
~F-statistic: 1/7.54 on Z and Z7 DF, p-value: I.3loe-05 F-statistic: 10.25 on 4 and 25 DF, p-value: #.708e-05




What happens to the R2when non-relevant predictors are considered in the model?
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Simulation with 1000 samples (n=100) from model:
Y =42cm + 2.3X; + 11X, +e

adding from 1 to 10 non-relevant predictors

R2 — (Y — ?)2 _ total SS predicted

noy - Y)2 ~ total SS observed

As the number of predictors increase, it is more
likely that they will improve the model even by
pure chance (i.e., non-relevant predictors)
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What happens to the R2when non-relevant predictors are considered in the model?
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As the number of predictors increase, it is more
likely that they will improve the model even by
pure chance (i.e., non-relevant predictors).
Adjustments are necessary:

note that accuracy is great but precision is reduced as the number of predictors increases



A complete empirical example




Empirical example:
Understanding the drivers of pollution in US cities




Empirical example - What are the drivers of air pollution
(sulfur dioxide) in US cities?

A B C D E F G H
city S02 temp manu popul wind precip raindays
Albany 46 47.6 44 116 88 33.36 135
Albuquerque 11 56.8 46 244 89 7.77 58
Atlanta 24 61.5 368 497 9.1 48.34 115 H . H
Baltimore 47 55 625 905 9.6 41.31 111 ° Clty . Clty
Buffalo 11 47.1 391 463 12.4 36.11 166 . . . .
Charleston | 31 552 3s " 65 | 4075 | 18 * SO,: Sulfur dioxide content of air in
Chicago 110 50.6 3344 3369 10.4 34.44 122 . .
Cincinnati 23 54 462 453 7.1 39.04 132 mICFOg ramS per CUbIC mete r.
Cleveland 65 49.7 1007 751 10.9 34.99 155

Columbus 26 515 266 540 8.6 37.01 134 ° Temp: Average annual temperature in

Dallas 9 66.2 641 844 10.9 35.94 78

Denver 17 519 as4 515 9 12.95 8 deg rees Fahrenheit.

Des Moines 17 49 104 201 11.2 30.85 103

Detroit 35 49.9 1064 1513 101 30.96 129 e Manu: Number Of manufacturing

Hartford 56 49.1 412 158 9 43.37 127

ndamapols |28 | 323 | set | 746 | sy | ssr | i enterprises employing 20 or more
ansasay |14 | sas [ am | s | |5 [ workers.

Tounile 0T w56 T i T ses | a3 | esn | 3 « Popul: Population size in thousands
a0 | s | s | am | s | s | s from the 1970 census.

mnaapots || a5 | e | s | s06 | et | v « Wind: Average annual wind speed in

Nashville 18 59.4 275 448 79 46 118

New Orleans 9 68.3 204 361 84 56.77 113 mlles per hOUr.
Norfolk 31 59.3 96 308 10.6 44.68 116 . . . . .
omaha 14 s1s 1 a7 105 318 98 * Precip: Average annual precipitation in
Philadelphia 69 54.6 1692 1950 9.6 39.93 115 ]
Phoenix 10 703 213 582 6 7.05 36 |nCheS_

Pittsburgh 61 50.4 347 520 9.4 36.22 147

Podence | o4 | So | s | wo [ 06 | a7 [ us « Raindays: Average number of days with

Richmond 26 57.8 197 299 7.6 42.59 115

Salt Lake City 28 51 137 176 8.7 15.17 89 TaY 1
San Francisco 12 56.7 453 716 8.7 20.66 67 preCIPItatlon per year'
Seattle 29 51.1 379 531 9.4 38.79 164
[ ]
[ )
[ ]



First step: Look at the raw data (distribution and pairwise correlations)
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Second step: Run the model

> fit <- 1m(S02 ~ temp + manu + popul + wind + precip + raindays , data=data.pollution)
> summary(fit)

Call:
Im(formula = SO02 ~ temp + manu + popul + wind + precip + raindays,
data = data.pollution)

Residuals:
Min 1Q Median 3Q Max
-23.004 -8.542 -0.991 5.758 48.758

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) 111.72848 47.31810 2.361 0.024087 *

temp -1.26794 0.62118 -2.041 0.049056 *
manu 0.06492 0.01575 4.122 0.000228 ***
popul -0.03928 0.01513 -2.595 0.013846 *
wind -3.18137 1.81502 -1.753 0.088650 .
precip 0.51236 0.36276 1.412 0.166918
raindays -0.05205 0.16201 -0.321 0.749972

Signif. codes: @ ‘***’ @.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 14.64 on 34 degrees of freedom
Multiple R-squared: 0.6695, Adjusted R-squared: 0.6112
F-statistic: 11.48 on 6 and 34 DF, p-value: 5.419e-07




Standardized residuals

Third step: assess residual normality

Normal Q-Q
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Im(SO2 ~ . - city)

— Looks suspicious



Standardized residuals

Third step: assess residual normality

Normal Q-Q

~ Looks suspicious

Theoretical Quantiles
Im(SO2 ~ . - city)

The H, of normality is rejected

> shapiro.test(residuals(fit))
Shapiro-Wilk normality test

data: residuals(fit)

W =0.92303, p-value = 0.008535
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Fourth step: data transformation

quite asymmetric
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Fourth step: data transformation

quite asymmetric
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Standardized residuals

Fourth step: data transformation — re-assess normality

Normal Q-Q

33e

The H, of normality is NOT
rejected after

Theoretical Quantiles
Im(log(SO2) ~ . - city)

Y

| log-transformation of SO,
2

> shapiro.test(residuals(fit.log))

Shapiro-Wilk normality test

data: residuals(fit.log)
W = 0.98799, p-value = 0.937




J|Standardized residuals|
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Fifth step

. assess homoscedasticity
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J|Standardized residuals|
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Fifth step

. assess homoscedasticity

5e

__— Looks suspicious

The H, of
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predicted

Y

r n heteroscedasticity is
45 50 NOT rejected

> bptest(fit.log)

studentized Breusch-Pagan test

data: fit.log
BP = 6.2266, df = 6, p-value = 0.3983




Sixth step: assess overall significance of the regression model

Hy: The total amount of predicted variation in SO, is the
same amount as a regression model based on the mean
SO, (this is referred to the null model of a regression or
an intercept only model).

H,: The total amount of predicted variation in SO, is
greater than the regression model based on the

average SO..



Sixth step: assess overall significance of the regression model

Ho: The total amount of predicted variation in SO, is the same amount as a regression model based on the
mean SO, (this is referred to the null model of a regression or a intercept only model).

Ha: The total amount of predicted variation in SO, is greater than the regression model based on the

average SO..

reject Hy

> summary(fit.log)

Call:
Im(formula = 1og(S02) ~ . - city, data = data.pollution)
Residuals:

Min 1Q  Median 3Q Max

-0.79548 -0.25538 -0.01968 0.28328 ©.98029

Coefficients:
Estimate Std. Error t value Pr(GItl)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 0.0190138 -3.150 0.00339 **
manu 0.0012639 0.0004820 2.622 ©.01298 *
popul -0.0007077 ©.0004632 -1.528 ©.13580
wind -0.1697171 0.0555563 -3.055 0.00436 **
precip 0.0173723 0.0111036 1.565 0.12695
raindays 0.0004347 0.0049591 0.088 0.93066

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.448 on 34 degrees of freedom
Multiple R-squared: 0.6541, Adjusted R-squared: 0.5931
F-statistic: 10.72 on 6 and 34 DF, p-value: 1.126e-06




Sixth step: assess overall significance of the regression model

Ho: The total amount of predicted variation in SO, is the same amount as a regression model based on the
mean SO, (this is referred to the null model of a regression or a intercept only model).

Ha: The total amount of predicted variation in SO, is greater than the regression model based on the
average SO..

Residual standard error: 0.448 on 34 degrees of freedom
Multiple R-squared: 0.6541, Adjusted R-squared: 0.5931
F-statistic: 10.72 on 6 and 34 DF, p-value: 1.126e-06

Degrees of freedom — numerator (model) = number of predictors (p = 6)
denominator (error or residual) =n (41) —p (6) —1 =34

One way of reporting:

A multiple linear regression model was fit to predict SO,
concentrations across major US cities as a function of
different factors. A significant regression was found (F g 34) =
10.72, P < 0.0001), with an adjusted R2 of 0.593.




Seventh step: assess predictor significance

For each predictor (test the partial coefficient):
- Hg: The partial contribution of g, is zero.

- Ha: The partial contribution of 8, is different from zero.

Y= fo+ 11Xy + X, +..+6,X, +e

ﬁ 1, ﬁ 27 ") ﬁp Partial regression coefficients (or partial slopes)



Seventh step: assess predictor significance

For each predictor (test the partial coefficient):

Hy: The partial contribution of S, is zero.

H,: The partial contribution of g, is different from zero.

> summary(fit.log)

Coefficients:

(Intercept) 7.2532456
temp -0.0599017
manu 0.0012639
popul -0.0007077
wind -0.1697171
precip 0.0173723

raindays 0.0004347

Signif. codes: @ ‘***°

1
0
0
0
0
0
0

0

Estimate Std. Error t value Pr(>Iltl)

.4483086 5.008 1.08e-05 ***
.0190138 -3.150 0.00339 **
.0004820 2.622 ©0.01298 *
.0004632 -1.528 ©.13580
.0555563 -3.055 0.00436 **
.0111036 1.565 0.12695
.0049591 0.088 0.93066

.001 ‘**’ 9.01 ‘*> 0.05 ‘.’ 0.1 * 1




Eighth step: contrast importance of predictors

Predictors are expressed in the ratio of the response unit / predictor unit;
as such we can’t compare their values directly.

For example, the partial slope of manufacturing is significant but its slope
is much smaller than the slope of precipitation which is not significant.

As such, we need to standardize the response and predictor values (mean
= 0, standard deviation = 1). As such, they will all become dimensionless
(unit less) and vary in a common scale.

Coefficients:
Estimate Std. Error t value Pr(Gltl)
(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 ©0.0190138 -3.150 0.00339 **
manu 0.0012639 0.0004820 2.622 0.01298 *
popul -0.0007077 ©.0004632 -1.528 0.13580
wind -0.1697171 @.0555563 -3.055 0.004360 **
precip 0.0173723 ©.0111036 1.565 0.12695
raindays 0.0004347 ©.0049591 ©.088 0.930006

Signif. codes: @ ‘***’ 0.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1




Eighth step: contrast importance of predictors

Coefficients: semi-partial regression coefficients
Estimate Std. Error t value Pr(>Itl)

(Intercept) 7.2532456 1.4483686 5.008 1.68e-05 ***

temp -0.0599017 0.0190138 -3.150 0.00339 **

manu 0.0012639 0.0004820 2.622 0.01298 *

popul -0.0007077 0.0004632 -1.528 ©.13580

wind -0.1697171 0.0555563 -3.055 0.00436 **

precip 0.0173723 ©0.0111036 1.565 0.12695

raindays 0.0004347 ©0.0049591 0.088 0.93066

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Coefficients: semi-partial standardized regression coefficients

Estimate Std. Error t value Pr(Gltl)
(Intercept) -1.958e-16 9.962e-02 0.000 1.00000
temp -6.165e-01 1.957e-01 -3.150 0.00339 **
manu 1.014e+00 3.868e-01 2.622 0.01298 *
popul -5.836e-01 3.820e-01 -1.528 0.13580
wind -3.452e-01 1.130e-01 -3.055 0.00436 **
precip 2.912e-01 1.86le-01 1.565 0.12695
raindays 1.641e-02 1.872e-01 0.088 ©.93066

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ .05 ‘.’ 0.1 ¢’ 1




=

General linear models (not Generalized linear model)

Linear Model Common name
Y= u+X Simple linear regression
Y= pu+A, One-factorial (one-way) ANOVA

Y=p+A; +A, +A XA, Two-factorial (two-way) ANOVA
Y=p+A; +X(+A;XX) Analysis of Covariance (ANCOVA)
Y= p+X; +X, + X3 Multiple regression
Y=p+A; +g+A;Xg Mixed model ANOVA
Y1 +Y,=u+A; + A, + A; XA, Multivariate ANOVA (MANOVA)
Y (response) is a continuous variable
X (predictor) is a continuous variable

A represents categorical predictors (factors)
g represents groups of data (more on this later)

(+A; X X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A; + A, + etc (and their interactions)



