
How well does the model fit 
the data?

Goodness of fit metrics



The variance of residuals in relation to the variance of 
predictors regulates how well the model fits the data
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Same model, increase in error (residual variation)
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𝑌 = 42cm + 2.3𝑋! + 11𝑋" + e
Same model, increase in error (residual variation)

Same model, but a decrease in total systematic variation captured by the model
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1) Coefficient of determination (R2) – a measure of how well the estimated regression line 
approximates the observed data points.  It is often interpreted as the percentage of total variation 
explained by the regression model.

R2 = 0.99 R2 = 0.97 R2 = 0.57
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1) Coefficient of determination (R2) – a measure of how well the estimated 
regression line approximates the observed data points.  It is often 
interpreted as the percentage of total variation explained by the 
regression model.

It can be calculated in many ways (always leading to the same result), but 
here are three of them (no need to memorize them):

𝑅" =
∑#$!% ( -𝑌# − 0-𝑌)"

∑#$!
% (𝑌# − 0𝑌)"

=
𝑡𝑜𝑡𝑎𝑙 𝑆𝑆 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑡𝑜𝑡𝑎𝑙 𝑆𝑆 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
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Previous model with the two relevant predictors 
plus two irrelevant predictors X3 and X4:

𝑌 = 42cm + 𝟐. 𝟑X" + 𝟏𝟏X! + e

Previous model just with 
the two relevant predictors:

True population model
(i.e., only two relevant predictors)

What happens to the R2 when non-relevant predictors are considered in the model?



Number of non-relevant predictors

R2

Simulation with 1000 samples (n=100) from model:

𝑌 = 42cm + 2.3𝑋" + 11𝑋! + e

adding from 1 to 10 non-relevant predictors

As the number of predictors increase, it is more
likely that they will improve the model even by

pure chance (i.e., non-relevant predictors)
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Number of non-relevant predictors

Simulation with 1000 samples (n=100) from model:

𝑌 = 42cm + 2.3𝑋" + 11𝑋! + e
adding from 1 to 10 non-relevant predictors

As the number of predictors increase, it is more
likely that they will improve the model even by

pure chance (i.e., non-relevant predictors). 
Adjustments are necessary:

𝑅"#$! = 1 −
𝑛 − 1

𝑛 − 𝑝 − 1
(1 − 𝑅!)

Population R2

note that accuracy is great but precision is reduced as the number of predictors increases

𝑅!"#$
R2

What happens to the R2 when non-relevant predictors are considered in the model?



A complete empirical example
wake up

@cjlortie



Empirical example:
Understanding the drivers of pollution in US cities



Empirical example - What are the drivers of air pollution 
(sulfur dioxide) in US cities?

…
n=41

• City: City
• SO2: Sulfur dioxide content of air in 

micrograms per cubic meter.
• Temp: Average annual temperature in 

degrees Fahrenheit.
• Manu: Number of manufacturing 

enterprises employing 20 or more 
workers.

• Popul: Population size in thousands 
from the 1970 census.

• Wind: Average annual wind speed in 
miles per hour.

• Precip: Average annual precipitation in 
inches.

• Raindays: Average number of days with 
precipitation per year.



First step: Look at the raw data (distribution and pairwise correlations)



Second step: Run the model



Third step: assess residual normality

Looks suspicious



Third step: assess residual normality

Looks suspicious

The H0 of normality is rejected



Fourth step: data transformation

SO2

quite asymmetric



SO2

quite asymmetric more symmetric

log(SO2)

Fourth step: data transformation



Fourth step: data transformation – re-assess normality

The H0 of normality is NOT 
rejected after

log-transformation of SO2



Fifth step: assess homoscedasticity

predicted



Fifth step: assess homoscedasticity

predicted

Looks suspicious

The H0 of 
heteroscedasticity is 

NOT rejected



Sixth step: assess overall significance of the regression model

- H0: The total amount of predicted variation in SO2 is the 
same amount as a regression model based on the mean 
SO2 (this is referred to the null model of a regression or 
an intercept only model).

- HA: The total amount of predicted variation in SO2 is 
greater than the regression model based on the 
average SO2.



- H0: The total amount of predicted variation in SO2 is the same amount as a regression model based on the 
mean SO2 (this is referred to the null model of a regression or a intercept only model).

- HA: The total amount of predicted variation in SO2 is greater than the regression model based on the 
average SO2.

reject H0

Sixth step: assess overall significance of the regression model



- H0: The total amount of predicted variation in SO2 is the same amount as a regression model based on the 
mean SO2 (this is referred to the null model of a regression or a intercept only model).

- HA: The total amount of predicted variation in SO2 is greater than the regression model based on the 
average SO2.

One way of reporting:

A multiple linear regression model was fit to predict SO2 
concentrations across major US cities as a function of 
different factors.  A significant regression was found (F(6,34) = 
10.72, P < 0.0001), with an adjusted R2 of 0.593.

Degrees of freedom – numerator (model) = number of predictors (p = 6)
denominator (error or residual) = n (41) – p (6) – 1 = 34

Sixth step: assess overall significance of the regression model



Seventh step: assess predictor significance

For each predictor (test the partial coefficient):

- H0: The partial contribution of 𝛽% is zero.

- HA: The partial contribution of 𝛽% is different from zero.

Y = 𝛽! + 𝛽"X" + 𝛽#X# + … +𝛽$X$ + e 

𝛽,, 𝛽-, … , 𝛽. Partial regression coefficients (or partial slopes)



Seventh step: assess predictor significance

For each predictor (test the partial coefficient):

     H0: The partial contribution of 𝛽! is zero.

     HA: The partial contribution of 𝛽! is different from zero.



Eighth step: contrast importance of predictors

Predictors are expressed in the ratio of the response unit / predictor unit; 
as such we can’t compare their values directly.  

For example, the partial slope of manufacturing is significant but its slope 
is much smaller than the slope of precipitation which is not significant.  

As such, we need to standardize the response and predictor values (mean 
= 0, standard deviation = 1).  As such, they will all become dimensionless 
(unit less) and vary in a common scale. 



semi-partial regression coefficients

semi-partial standardized regression coefficients

Eighth step: contrast importance of predictors



General linear models (not Generalized linear model)

Y (response) is a continuous variable
X (predictor) is a continuous variable
A represents categorical predictors (factors)
g represents groups of data (more on this later)
(+A%× X) - step 1 on an ANCOVA, but not in the final analysis
Multiple factors A% + A$ + etc (and their interactions) 

Linear Model Common name
Y = µ + X Simple linear regression
Y = µ + A% One-factorial (one-way) ANOVA

Y = µ + A% + A$ + A%×A$ Two-factorial (two-way) ANOVA
Y = µ + A% + X (+A%× X) Analysis of Covariance (ANCOVA)
Y = µ + X% + X$ + X& Multiple regression
Y = µ + A% + g + A%× g Mixed model ANOVA

Y% + Y$ = µ + A% + A$ + A%×A$ Multivariate ANOVA (MANOVA)


