Induced correlation structure in

random intercept and slope model
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Mixed models can get very technical

Intraclass correlation and effective sample size

Simple situation: Y; = (Y, in)s

Var[Yy;] = 0®, Cov[Yy;, Y] = po®
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RECAP: Zuur et al. (2007) used marine benthic data from nine inter-tidal areas along the Dutch coast
collected by the RIKZ institute (summer of 2002)

In each intertidal zone (zone where ocean meets land; denoted by ‘beach’), five samples were taken, and
the macro-fauna and abiotic variables were measured.

The FINAL goal is to model how species richness change as a function of NAP (Normal Amsterdam Level
the height of a sampling station compared to mean tidal level) and Exposure — a nominal index for the

entire beach (high/low) composed of the following elements: wave action, length of the surf zone, slope,
grain size, and the depth of the anaerobic layer.

R,:j = bo + blxNAPl-]- + bZXExposurej + ei]'

Each site for each beach

v
One value per beach
has a NAP value

e ~ N0, 0?)
i = sites;
j = beach

Zuur AF, leno EN, Smith GM (2007)
Analysing Ecological Data. Springer.
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As we will see, once we consider the hierarchical nature
of data, different models can be set and made compete to describe
the same set of data

Rij = bo + blfoIPi]- + bZXExposure]- + eij
}

Each site for each beach One value per beach
has a NAP value '

4 categorical predictor

Fixed Continuous predictor (ANOVA)
versus (regression)
Mixed effect \ /
models
ANCOVA

You may not be able to see it right now, but there are 10 or more possible
linear models (covered in the tutorial) for these data; and one of them will
best describe the data (i.e., best at predicting Richness)




Let’s concentrate on NAP for now particularly because it changes from
beach to beach whereas Exposure does not (i.e., NAP may have a
hierarchical dependence and exposure not)

R,:j = bo + blfolPij + bZXExposuTej + ei]'
4

Each site for each beach One value per beach
has a NAP value

Rij = bo + blxNAP,:j + €ij _
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Regression lines (models) of Richness on NAP:
they change from beach to beach (as we saw in the last lecture)

Rij = bo + blxNAPij + €ij
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Interpretation of fixed
versus mixed effect model

~

|01 ~A
2.1} e Fixed effect model
F] - (results are LESS likely to
= apply to predict other

* species)

Temperature

## MODEL INFO:
## Observations: 100

## Dependent Variable: abundance
## Type: OLS Linear regression
#

## MODEL FIT:

## F(1,98) = 15.13, p = 0.00

# Rz = 0.13

## Adj. R = 0.12 <fem

#

## Standard errors: OLS

## (Intercept) -0.08 0.18 a8 0.63
## scale(tenperature) m=) 0.69 0.18  3.89 0.00

o
o
## Continuous predictors are mean-centered and scaled by 1 s.d.




4 i Interpretation of fixed
22 L versus mixed effect model
8 Species
go A )
5, =h Mixed effect model
i:; A \ g (results are MORE likely to
S . apply to predict other

e species)

6 -3 0 3
Temperature

n.mod. intercept <- lmer(abundance ~ temperature + (1|species),data=data.Sinpson)
sumn(1n.mod. intercept, scale = TRUE

44 MODEL INFO:
## Observations: 100

## Dependent Variable: abundance

4 Type: Mixed effects linear regression

p
2 WODEL FIT:

4 AIC = 34374, BIC = 354.16

#4# Pscudo-R® (fixed effects) = 0.30
## Psoudo-Rr (total) = 0.95 <m

## FIXED EFFECTS:
w

## (Intercept) .08 1.88 01 377 0.97
4 tenperature mmmp -2.84 0.34  -8.22 97.68 0.00
s

s
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RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary;
1S THIS A GOOD MODEL for these data?

NAP is the fixed predictor of interest.

(1 | factor_Beach) is the random effect term, where the 1 denotes this is a random-
intercept model and the term on the right of | is a factor to be used as the random
effect. The factor here is beach, i.e., we are nesting sites within beaches to form the
random effect.

RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary;
1S THIS A GOOD MODEL for these data?

ndom eff

Random effect
components: effect
due to variation in
Intercepts among
beaches and residuals
of the random
component.

This mixed model have two sets of residuals (random and fixed). The parameters
(variance) in these two sets are called hyperparameters (i.e., set by by the way that the
study was designed and not likely generalizable by the model to other similar systems).




RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary;
1S THIS A GOOD MODEL for these data?

Fixed effect components:
global (across all data)
intercept and slope.

This part is more likely to
be generalized to other
systems as the design
component (random
effects) were used to
estimate the fixed effect.
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RANDOM INTERCEPT MODEL: assumes a common slope and allow intercept to vary;
1S THIS A GOOD MODEL for these data?

Vari
ept) 7
Residual 9.111 3.018
Number of obs: 45, groups: factor_Beach,

imate Std. Error 1 Pr(>1t1)
8 0.000104 ***
85 5.34e-06 ***

The intraclass correlation (ICC or Rho) here describes how strongly
variation in predicted values within the same beach resemble each other.

ICC =7.507 / (7.507 + 9.111) = 0.45 (which is pretty high)

11

The RANDOM INTERCEPT MODEL

The intraclass correlation (ICC or Rho) here describes how strongly variation in
predicted values within the same beach resemble each other

(note how predicted values are more similar within than among beaches).

The intraclass correlation:
0.45 (which is pretty high)

Richness

Regression line
considering all data
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RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

NAP is the fixed predictor of interest.

(1 + NAP | factor_Beach) is the random effect term, where the 1 denotes that we
should consider variation in intercepts and also variation in slopes of NAP among
beaches, i.e., NAP | factor_Beach, i.e., we are nesting sites within beaches to form
the random effect.
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RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

Random effect
components: effect due to
variation in Intercepts
among beaches, variation
in slopes among beaches
and residuals of the
random component.

Corr = correlation between
slopes and intercepts of
the separate models.
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RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

Fixed effect
components: global
(across all data)
intercept and slope.
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RANDOM INTERCEPT AND SLOPE MODEL: intercepts and slopes are allowed to vary
IS THIS A GOOD MODEL for these data?

ual
er of obs: 45, groups:

The intraclass correlation (ICC or Rho) here describes how strongly
variation in predicted values within the same beach resemble each other.

ICC = (10.949+2.502) / (10.949+2.502+7.174) = 0.65

(even higher than the previous random intercept model)

2023-03-23
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RANDOM INTERCEPT AND SLOPE MODEL

The intraclass correlation (ICC or Rho) here describes how strongly variation in
predicted values within the same beach resemble each other

(note how predicted values are more similar within than among beaches).

The intraclass correlation:
0.65 (which is pretty high)

Richness

— Regression line considering all
data versus different models
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Which model to retain? The RANDOM INTERCEPT OR the RANDOM INTERCEPT
AND SLOPE MODEL?

AIC is a widely used metric of goodness of fit and smaller AIC
values indicate the model with the best fit.

AIC = 2k + n Log(RSS/n)

k = number of parameters in the model (intercept, slopes)
n = number of observations

RSS = Residual Sum-of-square

18



Next — “Go big or go home™:
Going complex!

2023-03-23
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How do “competing” models compare with one
another? Which model best fit the data?

Decision-
@ Data e -ﬂ w—)  making E

Figure source: https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wics.1607
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Let’s now consider different models, make them compete and
select the one that best describe the same set of data (i.e., predict
Richness).

Rij = bo + blxNAPij + el-]-

MODEL 1: No interaction or main effect of exposure, i.e., just NAP
under a random intercept model (as seen earlier):

21



Competing models

R;j = by + b, XExposure; + e;;

MODEL 2: No interaction or main effect of NAP, i.e., just EXPOSURE
under a random intercept model:

2023-03-23
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Competing models
Rij = bg + bl XNAP” + bz XEXpOSU,T'ej + eij
MODEL 3: Main effects (NAP and EXPOSURE) but no interaction
under a random intercept model.
23
Competing models
R;j = by + by XNAP;; + b, XExposure;
by X(NAP;jxXExposure;) + e;;
MODEL 4: Main effects (NAP and EXPOSURE) and their interaction
under a random intercept model.
24



Competing models
Rij = bO + el-]-

MODEL 5: Model with a fixed intercept and only random effects
(i.e., the "simplest” model)

Random effects:

Group: Name Variance Std.Dev.
factor_Beach (Intercept) 8

Residual 15.51

Number of obs: 45, groups: factor_B

Fixed effects:
stimate Std. Error df t value Pr
(Intercept) 5.689 1.158 9.000 4.912 @
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Competing models

R = by + blxNAPl-]- + b, XExposure;
by X(NAP;jXExposure;) + e;;

26

NOTES:

1) We only considered the intercept only model. We could have
considered for each model the intercept and slope model
(Tutorial).

2) We could have also considered all the fixed effect only:
Intercept only
NAP only
Exposure only
NAP + Exposure
NAP x Exposure (main effects + interaction).

3) And once all models are built, compare them using AIC.

27
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The best model (amongst the ones we compared in this lecture; but
more models in the tutorial)!

R = by + blxNAPL-]- + b, XExposure;
by X(NAP;jXExposure;) + e;;

Random effects:

G Name Variance Std.Dev
factor_Beach (Intercept) 2.208 1.486
Residual 210 5

Number of obs: 45, groups: factor_Beach, 9

Fixed effects:
timate Std. Error df t value
14.1320

2.0252
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Assumptions: Normality (after square root transformation of

Richness)
Normal Q-Q Plot
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Assumptions: residual homoscedasticity (residuals against
predicted values)
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Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 8 .3 0.252
36
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Assumptions: Recently shown that mixed-effects models are
robust against normality and heteroscedastic assumptions

Methods in Ecology and Evolution [ s

SOCIETY

RESEARCH ARTICLE = & OpenAccess @ (®

Robustness of linear mixed-effects models to violations of
distributional assumptions

Holger Schielzeth &, Niels J. Dingemanse, Shinichi Nakagawa, David F. Westneat, Hassen Allegue,

Céline Teplitsky, Denis Réale, Ned A. Dochtermann, LaszI6 Zsolt Garamszegi, Yimen G. Araya-Ajoy
... See fewer authors A
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