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What are decision trees?
Carl Kingsford & Steven L Salzberg

Decision trees have been applied to problems such as assigning protein function and predicting splice sites. How do 
these classifiers work, what types of problems can they solve and what are their advantages over alternatives?

Many scientific problems entail labeling 
data items with one of a given, finite set 

of classes based on features of the data items. 
For example, oncologists classify tumors as 
different known cancer types using biopsies, 
patient records and other assays. Decision 
trees, such as C4.5 (ref. 1), CART2 and newer 
variants, are classifiers that predict class labels 
for data items. Decision trees are at their heart 
a fairly simple type of classifier, and this is one 
of their advantages.

Decision trees are constructed by analyzing 
a set of training examples for which the class 
labels are known. They are then applied to 
classify previously unseen examples. If trained 
on high-quality data, decision trees can make 
very accurate predictions3.

Classifying with decision trees
A decision tree classifies data items (Fig. 1a) 
by posing a series of questions about the fea-
tures associated with the items. Each question 
is contained in a node, and every internal node 
points to one child node for each possible 
answer to its question. The questions thereby 
form a hierarchy, encoded as a tree. In the sim-
plest form (Fig. 1b), we ask yes-or-no ques-
tions, and each internal node has a ‘yes’ child 
and a ‘no’ child. An item is sorted into a class 
by following the path from the topmost node, 
the root, to a node without children, a leaf, 
according to the answers that apply to the item 
under consideration. An item is assigned to the 
class that has been associated with the leaf it 
reaches. In some variations, each leaf contains 

a probability distribution over the classes that 
estimates the conditional probability that an 
item reaching the leaf belongs to a given class. 
Nonetheless, estimation of unbiased prob-
abilities can be difficult4.

Questions in the tree can be arbitrarily com-
plicated, as long as the answers can be com-
puted efficiently. A question’s answers can be 
values from a small set, such as {A,C,G,T}. In 
this case, a node has one child for each possible 
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Figure 1  A hypothetical example of how a decision tree might predict protein-protein interactions. 
(a) Each data item is a gene pair associated with a variety of features. Some features are real-valued 
numbers (such as the chromosomal distance between the genes or the correlation coefficient of their 
expression profiles under a set of conditions). Other features are categorical (such as whether the 
proteins co-localize or are annotated with the same function). Only a few training examples are shown. 
(b) A hypothetical decision tree in which each node contains a yes/no question asking about a single 
feature of the data items. An example arrives at a leaf according to the answers to the questions. 
Pie charts indicate the percentage of interactors (green) and noninteractors (red) from the training 
examples that reach each leaf. New examples are predicted to interact if they reach a predominately 
green leaf or to not interact if they reach a predominately red leaf. In practice, random forests have 
been used to predict protein-protein interactions15.
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Reading

“Intelligence is 10 million rules” 
(Doug Lenat)….but Rules are meant to be 

generalizable 

1

Learning from the data

Pattern recognition
2

Unlabeled 
data

Unsupervised 
Learning 
Algorithm

Prediction based 
on finding patterns 

in the data

e.g., Finding number of
groups in data and 

ways to classify (predict)
observations based on
their characteristics 

(height/weight)
Group 3Group 2

Group 1

Learning from the data 
Machine learning algorithms - Two main types
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Learning from the data 
Machine learning algorithms - Two main types
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Labeled data Supervised Learning 
Algorithm

Prediction based 
on knowing the label

Label = gender

Predicting gender
on the basis of 

Height and Weight 

Learning from the data 
Machine learning algorithms - Two main types
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CART: Classification and Regression Trees –
a powerful (machine learning) yet simple analytical 

tool for multivariate pattern description

(Leo Breiman and colleagues 1984)

“Decision tree learning is among the most popular machine 
learning techniques used for ecological modelling. Decision trees 
can be used to predict the value of one or several (dependent) 
variables. “ Jopp et al. (2011) 

7

“Decision trees are hierarchical structures, where each internal node
contains a test on an attribute, each branch corresponding to an
outcome of the test, and each leaf node giving a prediction for the
value of the class variable.” (Jopp et al. 2011)

Source 
http://mines.humanoriented.com/classes/2010/fall/csci568/portfolio_exports/sdaug
herty/decisiontree.html

1/31/13 Classification And Regression Trees : A Practical Guide for Describing a Dataset (1)

4/27file:///Users/leopekelis/Desktop/13_datafest_cart/13_datafest_cart_talk.html#(1)

What is a (binary) Decision Tree?

Tree anatomy

8

Learning from the data – Classification Trees

Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party

primary (as of April 16), by Amanada Cox for the New York Times.

3

Deal with complex data but easy to convey results

9
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Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party

primary (as of April 16), by Amanada Cox for the New York Times.
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Learning from the data – ClassificationTrees
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Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party
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Learning from the data – ClassificationTrees
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Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party

primary (as of April 16), by Amanada Cox for the New York Times.
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Learning from the data – ClassificationTrees
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BIODIVERSITY
RESEARCH

Predicting introduction, establishment and
potential impacts of smallmouth bass
Sapna Sharma1*, Leif-Matthias Herborg2,3 and Thomas W. Therriault2

INTRODUCTION

Spread of non-indigenous species is a major cause of global

biodiversity loss in a wide range of habitats including

freshwater ecosystems (Sala et al., 2000). In North America,

freshwater biodiversity is under threat from numerous non-

indigenous species with well-documented ecological and

economic impacts such as the zebra mussel (Ricciardi &

1Department of Ecology and Evolutionary

Biology, University of Toronto, Toronto, ON,

Canada M5S 3G5, 2Pacific Biological Station,

Fisheries and Oceans Canada, Nanaimo, BC,

Canada V9T 697, 3Fisheries Science Section,

Ministry of Environment BC, Vic., Canada

V8W 9M1

*Correspondence: Sapna Sharma, Département
de Sciences Biologiques, Université de
Montréal, Montreal, QC, Canada H3C 3J7.
E-mail: sapna.sharma@umontreal.ca

ABSTRACT

Aim The introduction of non-indigenous species has resulted in wide-ranging

ecological and economic impacts. Predictive modelling of the introduction and

establishment of non-indigenous species is imperative to identify areas at high
risk of invasion to effectively manage non-indigenous species and conserve native

populations. Smallmouth bass (Micropterus dolomieu), a warm water fish species

native to central North America has negatively impacted native fish communities,
including cyprinids and salmonid populations, as a result of intentional

introductions. We predicted the introduction risk; species establishment based

on habitat suitability; identified lakes at high risk of invasion; and finally assessed
the consequential impacts on native salmon, trout and cyprinid populations.

Location Ontario and British Columbia, Canada.

Methods Classification tree and logistic regression models were developed and
validated to predict the introduction and establishment of smallmouth bass for

thousands of lakes.

Results Densely human populated areas and larger lake surface areas successfully

identify lakes associated with the introduction of smallmouth bass (introduction
model) in British Columbia. Climate, lake morphology and water chemistry

variables were the driving environmental parameters to define suitable

smallmouth bass habitat (establishment model). A combination of the
introduction and establishment model identified 138 lakes that are currently at

risk in British Columbia to the introduction and establishment of smallmouth

bass. Of these 138 high-risk lakes, 95% of them contain at least one species of
salmon, trout or cyprinid, thereby increasing the potential impact of an invasion

by smallmouth bass.

Main conclusions Our framework can be applied to other terrestrial and aquatic

species to obtain a better understanding of the potential risk posed by a non-

indigenous species to an ecosystem. Furthermore, our methodology can be used
to focus management efforts on areas at higher risk (e.g. number of potential

releases, more favourable habitats) to control future introductions of non-
indigenous species, thereby conserving native populations.

Keywords
Biological invasions, classification tree, cyprinids, invasive species, logistic
regression, salmonids.
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Columbia based on the classification tree analysis (Fig. 1).

Evaluation of the independent validation dataset showed that

overall classification success was 93.5%, with 83.1% sensitivity

and 100% specificity. Extrapolation of the classification tree

model for British Columbia identified 727 lakes, concentrated

on Vancouver Island, the lower Fraser, and the Thompson and

Columbia watersheds that were at high risk of smallmouth bass

introduction (Fig. 2).

Species establishment model

Climatic, physical habitat and water chemistry variables were

important predictors of smallmouth bass occurrence based on

stepwise multiple logistic regression analyses (see Appendix S1

in Supporting Information). Overall classification success as

evaluated on the independent, validation dataset was c. 84.5 %,

with 90.2% sensitivity and 61.3% specificity for smallmouth

bass. Applying the predictive models to the independent

British Columbia species occurrence dataset, 75.7% (28 of 37)

of species presence was correctly predicted. Extrapolation of

the models to lakes in British Columbia revealed suitable

habitat for the occurrence of smallmouth bass in 1052 lakes in

most central and southern watersheds in British Columbia and

unsuitable habitat for the occurrence of smallmouth bass in

northern British Columbia watersheds (Fig. 3).

Introduction and establishment model

We identified 138 lakes that are currently suitable for the

introduction and establishment of smallmouth bass (Fig. 4,

Appendix S2) in British Columbia. The combined introduc-

tion and establishment model correctly predicted smallmouth

bass occurrence in 26 of 37 (70.3%) British Columbia lakes

suggesting these lakes are at high risk of invasion. Furthermore,

there are a high number of vulnerable lakes on Vancouver

Island, with another cluster in the lower Fraser River drainage,

and some lakes in the upper Fraser, the Thompson and

Columbia River drainages.

Impacts on native fishes

There are 138 lakes that are currently suitable for the

introduction and establishment of smallmouth bass in British

Columbia. Twenty of the 138 high risk lakes (14.1%) contain at

least one salmon species, while 122 of the 138 lakes (88.4%)

contain at least one species of trout and 29 lakes (21.0%)

contain at least one cyprinid species (Table 1, Appendix S2).

Figure 1 Summary of classification tree analysis predicting
smallmouth bass occurrence in British Columbia based on lake
morphology, distance to road and human population census data.

Figure 2 Predicted introduction of
smallmouth bass in British Columbia
based on the species introduction model.
Watersheds are highlighted for the Fraser,
the Thompson and the Columbia.

S. Sharma et al.
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Probabilities of presence are 
calculated by the classification
tree, but then transformed into
1 (e.g., >0.50) or absence 
(e.g., <=0.50)

Classification trees model categories, 
including 1s and 0s (male/female, 

presence/absence, non-
infected/recovery/infected)

Non-native species
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Regression trees model quantitative variables (e.g., species abundances)

(Breiman et al., 1984), which minimized the complexity of

the tree while maintaining performance (akin to model par-

simony). Cross-validation was repeated 500 times for succes-

sive and independent divisions of the sampling sites into ten

test groups.

Transforming biological datasets

Taxa that occurred in only one sample were removed from

the dataset. The resulting database included 234 taxa, repre-

senting 11 different phyla (Table 1). Invertebrates and verte-

brates were represented by 162 and 72 taxa, respectively

(110 and 60 identified to the species level). Biomass data

were fourth-root transformed (Clarke & Green, 1988) prior

to the analyses to reduce the contribution of abundant spe-

cies to the assessment of site similarity. To circumvent the

problem associated with the use of Euclidean distances on

zero-inflated distribution matrices, data were Hellinger-

transformed (Legendre & Gallagher, 2001) prior to MRT

analysis.

Generating biological matrices

To compare the effect of taxonomic group on the ecologi-

cal mapping, six biological matrices were constructed

(Table 1): Arthropoda, Echinodermata, Mollusca, All Inver-

tebrates, Vertebrata and All Taxa. The effect of taxonomic

levels was assessed exclusively on the vertebrate dataset,

which had the highest taxonomic resolution (species level

for 60 of 72 taxa). From the detailed ‘Species level’ matrix

(561 sites 9 60 species), four additional matrices were cre-

ated by aggregating data at coarser taxonomic levels: genus

(561 sites 9 48 genera), family (561 sites 9 20 families),

order (561 sites 9 9 orders) and class (561 sites 9 3

classes).

Comparing ecological maps

Comparing ecological maps generated from different datasets

required the selection of a specific dataset to be used as a

reference in pairwise comparisons. In the case of comparison

Env3

Node

Leaves: groups of sites characterized by 
dis!nct assemblages of taxa

Sets of rules on
environmental
variables 
defining four
types of habitat#1 #2

#3 #4

Env1≤ x1

Env1≤ x2

Env1> x1

Env1> x2
Env2
in (a,c)

Env2 in 
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variables)
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Figure 2 General framework used to delineate ecological units based on a simplified example of a multivariate regression tree (MRT) with
two of three available environmental variables selected as split criteria by the algorithm. Quantitative variable Env1 with values x1 and x2
acting as thresholds and qualitative variable Env2 based on five states. Four leaves, representing four distinct assemblages of taxa, are defined
by a set of rules based on environmental variables, which is then used within a geographic information system to delineate ecological units.
Each ecological unit belongs to one of the four types of habitat designated by the number of the corresponding leaf in the MRT.
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Delineating marine ecological units: a
novel approach for deciding which
taxonomic group to use and which
taxonomic resolution to choose
Anne Fontaine1,2*, Rodolphe Devillers3, Pedro R. Peres-Neto4 and

Ladd E. Johnson1

1Department of Biology, Universit!e Laval,

Qu!ebec, QC, Canada, 2AgroParisTech,

F-75005 Paris, France, 3Department of

Geography, Memorial University of

Newfoundland, St John’s NL, Canada,
4Canada Research Chair in Spatial

Modelling and Biodiversity, Department of

Biological Sciences, Universit!e du Qu!ebec "a

Montr!eal, Qu!ebec, QC, Canada

*Correspondence: Anne Fontaine, Department
of Biology, Universit!e Laval, Canada.
E-mail: fontaine.anne@gmail.com

ABSTRACT

Aim Ecological maps are increasingly used to support marine management and

conservation. However, the biological datasets used to produce these maps are
typically limited to taxonomic groups identified to the specific taxonomic levels

available. Ecological units should, however, reflect the broader marine ecosys-

tem, independent of the datasets used. This study assessed the influence of tax-
onomic groups and taxonomic resolution on the process of ecological

mapping.

Location Estuary and Gulf of St Lawrence (EGSL), Canada.

Methods A dataset of more than 200 taxa of benthic macrofauna was used to
create a set of biological matrices corresponding to different taxonomic groups

(i.e. vertebrates, invertebrates, arthropods, echinoderms, molluscs, all taxa) and

different taxonomic levels from species to class. Multivariate regression trees
(MRTs) were used to identify environmental drivers of taxa distribution and to

create ecological maps. Similarity between maps was assessed using pairwise

comparisons. First, the relationships between the two classification legends were
assessed using association plots on the partitions in the corresponding trees.

Then, the spatial agreement of ecological units believed to represent the same

habitat types was quantified and mapped.

Results The comparison across different taxonomic groups showed a substan-

tial level of similarity between ecological maps, indicating that ecological units
defined for a specific taxonomic group can be considered to some extent as

representative of the entire benthic macrofauna. Moreover, little information

was lost when working at the family rather than species level, and common
patterns of community distribution could still be distinguished at the class

level.

Main conclusions Using a novel spatially explicit approach for comparing eco-

logical maps, this study demonstrates that datasets limited by taxonomic

breadth or resolution can perform nearly as well as more extensive datasets.
These simplifications should improve our ability to manage marine ecosystems.

Keywords
benthic communities, distribution patterns, ecological mapping, Gulf of St.

Lawrence, map comparison, surrogacy methods.

DOI: 10.1111/ddi.12361
ª 2015 John Wiley & Sons Ltd http://wileyonlinelibrary.com/journal/ddi 1167
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Classification versus Regression Trees
(CART)

- Classification (sometimes referred as to 
decision trees) trees model dependent 
variables that have a finite number of 
categories (unordered values) - This 
lecture. 

- Regression trees model dependent 
variables that are continuous.  
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The classification tree algorithm
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Den Boer et al. 2009

Articles

www.thelancet.com/oncology   Vol 10   February 2009  125

A subtype of childhood acute lymphoblastic leukaemia with 
poor treatment outcome: a genome-wide classifi cation study
Monique L Den Boer*, Marjon van Slegtenhorst*, Renée X De Menezes, Meyling H Cheok, Jessica G C A M Buijs-Gladdines, Susan T C J M Peters, 
Laura J C M Van Zutven, H Berna Beverloo, Peter J Van der Spek, Gaby Escherich†, Martin A Horstmann†, Gritta E Janka-Schaub†, 
Willem A Kamps‡, William E Evans, Rob Pieters‡

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in 
children. 25% of precursor B-ALL cases are genetically unclassifi ed and have intermediate prognosis. We aimed to 
use a genome-wide study to improve prognostic classifi cation of ALL in children.

Methods We constructed a classifi er based on gene expression in 190 children with newly diagnosed ALL (German 
Cooperative ALL [COALL] discovery cohort) by use of double-loop cross-validation and validated this in an 
independent cohort of 107 newly diagnosed patients (Dutch Childhood Oncology Group [DCOG] independent 
validation cohort). Hierarchical cluster analysis with classifying gene-probe sets revealed a new ALL subtype, the 
underlying genetic abnormalities of which were characterised by comparative genomic hybridisation-arrays and 
molecular cytogenetics.

Findings Our classifi er predicted ALL subtype with a median accuracy of 90·0% (IQR 88·3–91·7) in the discovery 
cohort and correctly identifi ed 94 of 107 patients (accuracy 87·9%) in the independent validation cohort. Without our 
classifi er, 44 children in the COALL cohort and 33 children in the DCOG cohort would have been classifi ed as B-other. 
However, hierarchical clustering showed that many of these genetically unclassifi ed cases clustered with BCR–ABL1-
positive cases: 30 (19%) of 154 children with precursor B-ALL in the COALL cohort and 14 (15%) of 92 children with 
precursor B-ALL in the DCOG cohort had this BCR–ABL1-like disease. In the COALL cohort, these patients had 
unfavourable outcome (5-year disease-free survival 59·5%, 95% CI 37·1–81·9) compared with patients with other 
precursor B-ALL (84·4%, 76·8–92·1%; p=0·012), a prognosis similar to that of patients with BCR–ABL1-positive ALL 
(51·9%, 23·1–80·6%). In the DCOG cohort, the prognosis of BCR–ABL1-like disease (57·1%, 31·2–83·1%) was worse 
than that of other precursor B-ALL (79·2%, 70·2–88·3%; p=0.026), and similar to that of BCR–ABL1-positive ALL 
(32·5%, 2·3–62·7%). 36 (82%) of the patients with BCR–ABL1-like disease had deletions in genes involved in B-cell 
development, including IKZF1, TCF3, EBF1, PAX5, and VPREB1; only nine (36%) of 25 patients with B-other ALL had 
deletions in these genes (p=0·0002). Compared with other precursor B-ALL cells, BCR–ABL1-like cells were 73 times 
more resistant to L-asparaginase (p=0·001) and 1·6 times more resistant to daunorubicin (p=0·017), but toxicity of 
prednisolone and vincristine did not diff er.

Interpretation New treatment strategies are needed to improve outcome for this newly identifi ed high-risk subtype 
of ALL.

Funding Dutch Cancer Society, Sophia Foundation for Medical Research, Paediatric Oncology Foundation Rotterdam, 
Centre of Medical Systems Biology of the Netherlands Genomics Initiative/Netherlands Organisation for Scientifi c 
Research, American National Institute of Health, American National Cancer Institute, and American Lebanese Syrian 
Associated Charities.

Introduction
Several subgroups of childhood acute lymphoblastic 
leukaemia (ALL) have unfavourable prognosis: T-lineage 
ALL (about 15% of all cases) and the precursor B-lineage 
subtypes with chromosomal translocations creating 
MLL-rearrangements or the BCR–ABL1 gene fusion, 
each found in less than 5% of cases.1–3 Prognostically 
favourable pre cursor B-subtypes are TEL–AML1 
(ETV6–RUNX1)-positive ALL (20–25% of cases), 
hyperdiploid ALL (>50 chromosomes; about 25% of 
cases), and TCF3 (E2A)-rearranged ALL (often 
E2A–PBX1-positive; about 5% of cases). About 25% of 
patients have genetically unclassifi ed disease (B-other);2–4 

relapses are common in these patients, indicating the 
need for new biological insights and treatment options 
for ALL.5

Genome-wide analyses that quantify gene expression 
(mRNA) in cells has provided new insights into genetic 
subtypes of ALL and the biological basis of drug 
resistance.6,7 In two studies, patients with newly diagnosed 
paediatric ALL could be assigned to lineage and genetic 
subtypes by use of gene-expression signatures with an 
accuracy of more than 95%.8,9 Once these fi ndings are 
validated in independent cohorts of patients, they will 
provide new approaches to the classifi cation of ALL and 
guide treatment decisions.
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Background - In childhood acute lymphoblastic leukemia (ALL) genetic 
subtypes are recognized that determine the risk-group for further treatment. 
However, 25% of precursor B-cell ALL (most common type of ALL) are 
currently genetically unclassified and have an intermediate prognosis. The 
present study used genome-wide strategies to reveal new biological insights 
and advance the prognostic classification of childhood ALL.

The expression of 22283 genes across 190 patients were considered
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Bo (B-other are about 25% of 
patients and remains unclassified)

Several subgroups of 
childhood acute 
lymphoblastic leukaemia 
(ALL) have unfavourable 
prognosis

Can we improve prognosis based on gene 
expression?

The expression of 22283 genes across 190 patients 
were considered to build the model (calibration); 107 
independent patients were predicted by the model 
(validation).  The model was 87.7% accurate!
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A subtype of childhood acute lymphoblastic leukaemia with 
poor treatment outcome: a genome-wide classifi cation study
Monique L Den Boer*, Marjon van Slegtenhorst*, Renée X De Menezes, Meyling H Cheok, Jessica G C A M Buijs-Gladdines, Susan T C J M Peters, 
Laura J C M Van Zutven, H Berna Beverloo, Peter J Van der Spek, Gaby Escherich†, Martin A Horstmann†, Gritta E Janka-Schaub†, 
Willem A Kamps‡, William E Evans, Rob Pieters‡

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in 
children. 25% of precursor B-ALL cases are genetically unclassifi ed and have intermediate prognosis. We aimed to 
use a genome-wide study to improve prognostic classifi cation of ALL in children.

Methods We constructed a classifi er based on gene expression in 190 children with newly diagnosed ALL (German 
Cooperative ALL [COALL] discovery cohort) by use of double-loop cross-validation and validated this in an 
independent cohort of 107 newly diagnosed patients (Dutch Childhood Oncology Group [DCOG] independent 
validation cohort). Hierarchical cluster analysis with classifying gene-probe sets revealed a new ALL subtype, the 
underlying genetic abnormalities of which were characterised by comparative genomic hybridisation-arrays and 
molecular cytogenetics.

Findings Our classifi er predicted ALL subtype with a median accuracy of 90·0% (IQR 88·3–91·7) in the discovery 
cohort and correctly identifi ed 94 of 107 patients (accuracy 87·9%) in the independent validation cohort. Without our 
classifi er, 44 children in the COALL cohort and 33 children in the DCOG cohort would have been classifi ed as B-other. 
However, hierarchical clustering showed that many of these genetically unclassifi ed cases clustered with BCR–ABL1-
positive cases: 30 (19%) of 154 children with precursor B-ALL in the COALL cohort and 14 (15%) of 92 children with 
precursor B-ALL in the DCOG cohort had this BCR–ABL1-like disease. In the COALL cohort, these patients had 
unfavourable outcome (5-year disease-free survival 59·5%, 95% CI 37·1–81·9) compared with patients with other 
precursor B-ALL (84·4%, 76·8–92·1%; p=0·012), a prognosis similar to that of patients with BCR–ABL1-positive ALL 
(51·9%, 23·1–80·6%). In the DCOG cohort, the prognosis of BCR–ABL1-like disease (57·1%, 31·2–83·1%) was worse 
than that of other precursor B-ALL (79·2%, 70·2–88·3%; p=0.026), and similar to that of BCR–ABL1-positive ALL 
(32·5%, 2·3–62·7%). 36 (82%) of the patients with BCR–ABL1-like disease had deletions in genes involved in B-cell 
development, including IKZF1, TCF3, EBF1, PAX5, and VPREB1; only nine (36%) of 25 patients with B-other ALL had 
deletions in these genes (p=0·0002). Compared with other precursor B-ALL cells, BCR–ABL1-like cells were 73 times 
more resistant to L-asparaginase (p=0·001) and 1·6 times more resistant to daunorubicin (p=0·017), but toxicity of 
prednisolone and vincristine did not diff er.

Interpretation New treatment strategies are needed to improve outcome for this newly identifi ed high-risk subtype 
of ALL.
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Introduction
Several subgroups of childhood acute lymphoblastic 
leukaemia (ALL) have unfavourable prognosis: T-lineage 
ALL (about 15% of all cases) and the precursor B-lineage 
subtypes with chromosomal translocations creating 
MLL-rearrangements or the BCR–ABL1 gene fusion, 
each found in less than 5% of cases.1–3 Prognostically 
favourable pre cursor B-subtypes are TEL–AML1 
(ETV6–RUNX1)-positive ALL (20–25% of cases), 
hyperdiploid ALL (>50 chromosomes; about 25% of 
cases), and TCF3 (E2A)-rearranged ALL (often 
E2A–PBX1-positive; about 5% of cases). About 25% of 
patients have genetically unclassifi ed disease (B-other);2–4 

relapses are common in these patients, indicating the 
need for new biological insights and treatment options 
for ALL.5

Genome-wide analyses that quantify gene expression 
(mRNA) in cells has provided new insights into genetic 
subtypes of ALL and the biological basis of drug 
resistance.6,7 In two studies, patients with newly diagnosed 
paediatric ALL could be assigned to lineage and genetic 
subtypes by use of gene-expression signatures with an 
accuracy of more than 95%.8,9 Once these fi ndings are 
validated in independent cohorts of patients, they will 
provide new approaches to the classifi cation of ALL and 
guide treatment decisions.
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New patients can have their B-ALL types 
classified according to this model
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Growing a tree

- There are many ways of building CARTs and many 
complex and advanced ways of doing it. 

- Search and establishing hierarchy among variables 
Partition values of a variable: X<=c and X>c for ”all” 
possible c values.  Compare fit using (for example) 
pseudo R2 (correlation between predicted and 
observed).

- Order of variables are important and may influence 
the tree – bagging & random forests deal with this 
issue via building multiple trees (bootstrap) and 
selecting trees that maximize R2 or average trees.
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More complex models for building trees
bagging: bootstrapping objects but keeping all predictors

Model for determining factors that influenced house purchasing

Build separate trees for each subsample (bootstrap) of houses. For each house, make a
separate prediction for each tree (buy/not buy). Then make a decision for that house
based on the majority rule (if the majority of trees let you the decision to buy that house),
then buy it). This is called majority rule. In regression trees (continuous responses), we
take the average of the predicted value for any observation of interest.

Data subsample 1 Data subsample 2…………. Data subsample 1000

31

More complex models for building trees
Random forest: bootstrapping predictors

32

- Presenting a complex model as a tree that is 
easy to interpret is the key why CART became 
such a popular method.

- “There is no need to understand statistics to fit 
and interpret CARTs”…but one should 
understand the basis to feel comfortable with 
the method and outputs.

- It treats data without a mechanism (as in OLS 
regressions, GLMs, etc); the thinking is in the 
algorithm and not about the mechanism that 
generated the response variable.

Classification and Regression trees
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