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What is principal component analysis?

Markus Ringnérl
Principal component analysis is often incorporated into

genome-wide expression studies, but what is it and how can it be
used to explore high-dimensional data?

PCA as a tool to Quantify and Visualise

Multivariate Analysis

Multiple Regression/ two way-
ANOVA / mixed models /machine
learning algorithms

Ordination methods

What is the difference between these two pairwise

correlation matrices?

X1 Xz X3 X4 X5
%1 41,00 0.80 0.90 078 0.87
X2 | 0.80 1.00 0.76 0.87 0.78
% | 0.90 0.76 1.00 0.78 0.89
X:| 0.78 0.87 078 1.00 0.95
x| 0.87 0.78 0.89 0.95 1.00

X1 Xz X3 Xa Xs
X 1.00 0.87 0.96 0.04 0.05
X [0.87 1.00 0.95 0.03 0.07
X310.96 0.95 1.00 0.04 0.05
X | 0.04 0.03 0.04 1.00 0.84
s | 0.05 0.07 0.05 0.84 1.00
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X1

X2
X3
Xa
Xs

What is the difference between these two pairwise

correlation matrices?
X1 Xz X3 Xs Xs
1.00 0.80 0.90 0.78 0.87
0.80 1.00 0.76 0.87 0.78 One
0.90 0.76 1.00 0.78 0.89 . .
0.78 0.87 0.78 1.00 0.95 dimension
0.87 0.78 0.89 0.95 1.00
X1 Xz X3 X4 XS
1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07 Two
0.96 0.95 1.00 0.04 0.05 . .
0.04 0.03 0.04 1.00 0.84 dimensions
0.05 0.07 0.05 0.84 1.00

Ordination analyses

- Uncover, organize and summarize the main
patterns of variation in a set of variables measured
over multiple observations.

- Patterns of variation are structured in a reduced
space with smaller number number of dimensions.

- Reduction is possible because often variables are
associated (e.g., correlated). Dimensions represent
combinations (e.g., linear combinations of
variables).

Ordination analyses

A procedure for adapting a multidimensional
swarm of data points in such a way that when it is
projected onto a reduced number of dimensions any
intrinsic pattern will become apparent.

Adapted from Connie Clark
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Ordination analyses — uncover and organize
data; a quick example:

Species
ste B1 DAHEG C
41T 01 00 0 0 1
110001 00 00
710000 1 1 1 0
8|01 00 1 0 1 0
600 1 00 1 1 0
s{oo0 1 00 1 01
100 1 000 0 0 0
2|1 00 1 00 00
9|0 1 00 1 0 0 o0
3 {1 00 1 00 01
7
Ordination analyses — uncover and organize
data; a quick example:
Species Species
ste B1 DAHEGC sis A B CDE G H I
41T 01 00 0 0 1 1[N0 0 0 0 0 0 0
110001 00 00 2 {1 N0 0 0 0 0 0
71000 0 1 1 1 0 311 N0 0 0 0 0
8|01 00 1 0 1 0 4 JONI 1 N0 0 0 0
6l0 0 1 00 1 10| soONg 1 N0 0o
51001 00 1 0 1[— 6o 0 ONI I INO 0
1001 0000 0 0 700 0 0 ONJ 1 DN
2|1 001 00 00 g {0 0 0 0 oNg 1 1
9|0 1 00 1 0 0 o0 9 {0 0 0 0 0 ONJZ !
3 {1 00 1 00 01 000 0 0 0 0 ONJ
8
Ordination methods

- Principal Component Analysis (PCA)

- Correspondence Analysis (CA)

- Principal Coordinate Analysis (PCoA)

- Discriminant Function Analysis (DFA)

- Principal Curve Analysis

- Etc, etc, etc...

Principal components analysis (PCA) is perhaps the most

common technique used to summarize patterns among

variables in multivariate datasets.
9
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PRINCIPAL o Principal Component
" Analysis in Meteorology
COMPONENTANALIS!S COMPONENTS and Oceanography
ANALYSIS (Developments in
Atmospheric Science)

GEORGE 1 ouNTEMAN

@ suct uvesiy paren

PRINCIPAL
COMPONENT
YS|

Principal
Component Analysis
Generalized
Principal
Component
Analysis

10

Some treat Principal Component Analysis (PCA) as
an unsupervised learning method
(an exploratory technique such as k-means)

Springer Textsin Statisties

Gareth James
Tlenge of Unsupervised Learning
10.2 Principal Components Analysis

10.2.1 What Are Princij

10.2.2 Another Interpreta
More on PCA
Other Uses for Principal Components
ing Methods . . . . ... ...

Daniela Witten
Trevor Hastie
Robert Tibshirani

Somponents?
tion of Principal Components

2 Hierarchical Clustering
10.3.3 Practical Issues in Clustering

with Applications in R

11

Supervised versus unsupervised learning techniques

- Techniques for unsupervised learning are fast growing in a
number of fields, particularly biology.

- A cancer researcher might assay gene expression levels in 100
patients with breast cancer. They might then look for subgroups
among the breast cancer samples, or among the genes, in order
to obtain a better understanding of the disease.

- A search engine might choose what search results to display to
a particular individual based on the click histories of other
individuals with similar search patterns. These statistical
learning tasks, and many more, can be performed via
unsupervised learning techniques.

Adapted from James et al. 2013

12
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Supervised versus unsupervised learning techniques

In contrast, unsupervised learning is often much more
challenging. The exercise tends to be more subjective, and there is
no simple goal for the analysis, such as prediction of a response.

Unsupervised learning is often performed as part of an
exploratory data analysis.

Hard to assess the results obtained given that there is no
universally accepted mechanism for performing cross-validation
or validating results on an independent data set; there is no way
to check how the models does because we don’t know the true
answer—the problem is unsupervised.

Adapted from James et al. 2013

13

Examples of Principal Component Analysis

14

Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leukaemiawith > @
poor treatment outcome: a genome-wide classification study

Monique . Den Boer*, Marjon tenhorst”, De Menezes, Meyling H Cheok, Jessica GC I SusanT C M Peters,
Laura) CMVan Zutven, Peter] Van der Spek, i stmannt, Gitta Janka-Schaub,
Willem A Kamps#, Willam £ Evans,Rob Picters¢

Summary
Background Genetic subtypes of acute lymphoblastic leukaemia (ALL) are used to determine risk and treatment in
children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed to py
use a genome-wide study to improve prognostic classification of ALL in children.

ar
Dol01016/51470

Quantification and Visualisation

15
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Principal components analysis (PCA) - example 1

A subtype of childhood acute lymphoblastic leuk jawith > @ %
poor treatment outcome: a genome-wide classification study

Summary

Background Genetic subtypes of acute lymphoblastic leukaemya (AL are used to determine rsk and treatment

children. 25% of precursor B-ALL cases are genetically unclassified and have intermediate prognosis. We aimed t
Lin chid

Data matrix: 190 observations by 22283 columns

Gene expression (22283 genes)

Gene expression
(190 patients)

16

Principal components analysis (PCA) - example 1

PCA; Den Boer (2009); 190 samples * 22283 genes

Each letter is a patient.
Labels stand for
different lymphoblastic
leukaemia (ALL) types.

Data matrix: 190

observations by 22283
o B columns.

17

Principal components analysis (PCA) - example 2

PRINCIPAL
COMPONENT

PCA - A Powerful Method
for Analyze Ecological Niches

Franc Janzekovi¢ and Tone Novak

University of Maribor, Faculty of Natural Sciences and Mathematics,
Department of Biology, Maribor

Slovenia

18

4/5/23



Principal components analysis (PCA) - example 2

2.1 Environmental niche of three hymenopteran and two spider species

Between 1977 and 2004, 63 caves and artificial tunnels were ecologically investigated in
Slovenia; the three most abundant Hymenoptera species found in these studies have been
ecologically evaluated (details in Novak et al. 2010a). In the caves, many environmental data
were collected, as follows. The following abbreviations of the environmental variables are
used: Dist-E = distance from entrance; Dist-S = distance from surface; Illum = illumination;
PCS = passage cross-section; Tair =air temperature; RH = relative air humidity; Tgr = ground
temperature; HY = substrate moisture. The hymenopteran spatial niche breadth was originally
represented by nine variables.

Data matrix: 63 observations (caves) by 9 columns

Environmental variables (9)

63 caves

PCA - A Powerful Method
for Analyze Ecological Niches

19

Principal components analysis (PCA) - example 2
(pairwise correlation among environmental variables)

T [ 23 a5 6 7[5 [o
TAir] 100
temperature| -
2arcsin| oo
relative| 015 | 100
lative | o133 | -

air humidity

3Ground| 094 | 018 | 1.00
temperature | <0.001 | 0,079 [ —

S osss | 059 | 037 | 100

T:wi‘:“: <0.001 | <0.001 | <0.001 | —

s Anflow| 048 | 036 [ 043 | 055 | 10

3 <0.001 | <0001 | <0001 | <0001 |

oomnee ooy | one | 0 | om0 | oos | 100
om| 01 | 0153 | <0001 | 0312 | 0712 |

entrance

7Distance| o5 | 024 | 004 | 046 | 011 | 067

from| 537 | 0.017 | 0683 | <0001 | 0275 | <0001
surface

SPassage| 035 | 017 | 025 | 039 | -040 | 011 | 005 | 100
cross-section | <0001 | 0089 | 0025 | <0001 | <0001 | 0274 | 066 | —

9log| 045 | 018 | 046 | 004 | 007 | -0821 | 0679 | 037 | 100
illumination | <0.001 | 0.077 | <0001 | 0.690 | 0.494 | <0001 | <0.001 | <0001 | —

Table 1. P ient among. bl ficant
correlations in bold. (Upper row r, lower row p) PCA - A Powerful Method
for Analyze Ecological Niches

20

Principal components analysis (PCA) - example 2
(niche differences — dots represent different caves ellipsoids are
confidence intervals for where species is found)

4
Each dot
3 A. armatorius ¥ . | represents
E. longicornis
acave
2

PC 2 (29.5%)
o

D. quadripunctorius .

PC 1 (37.6%)

Fig. 5. Ordination of the nine environmental variables in 1st and 2nd PC axes. Ellipses (95%
confidence) represent spatial niches in the three hymenopteran species.

4/5/23
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head length (mm)

Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal

variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data

© female birds @ male birds

% 28 3 36

0 a2
skull size (mm)

Source http: ides/dimension-reduction-1.html#9

22

Principal Component Analysis (PCA): A geometric
interpretation

PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.

Original data Standardization and PCA fitting
o fomale bicds @ male birds
40
60
. T 20
€ s ]
3 8
5 §
3 B
g s £ .20
s .
40
2 o w2 a3 40 20 00 2 40
skull size (mm) skull size (scaled)
Source https:, i i duction-1.html#9
Principal Component Analysis (PCA): A geometric
interpretation
PCA finds the coordinate system (called principal components) that best represents the internal
variability in the data, essentially re-projecting the data on these coordinate system. As such, PCA
represents associations among variables (gene, environmental variables) and data points are re-
projected so that the correlations among variables is maximized.
Original data Standardization and PCA fitting Rotation
o fomale bicds @ male birds
40
60
. T 20
€ s ]
3 8
5 s §oo
5 §
3 B
g s £ .20
s .
40 80 25 00 25 50
26 2 3 32 34 36 -4.0 2.0 0.0 2 4.0 PC1
skull size (mm) skull size (scaled)
PCA aligns their axes with directions of maximum variation in the data
Source https:, i i duction-1.html#9

24
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Principal Component Analysis (PCA): A geometric
interpretation

- PCA constructs a new coordinate system (new
variables, PCs) which are linear combinations of
the original data and which are defined to align
the samples along their major axes of variation
(assuming linearity).

- Thus, PCA determines the coordinate system that
best represents the internal variability in the data,
essentially re-projecting the data.

25

The association among variables need to
be measured by either (in most cases):

Correlation Matrix (for variables that have
different units or scales, e.g., ph, temperature).

Covariance Matrix (variables have the same
units, e.g., body length & body width in cm).

Raw data when variables are in the same units
(more difficult to interpret) and calculations

differ (very rare to find applications in the
literature); rarely used.

26
Correlation versus covariance
T X=X =Y
cov,, = Ttk =Dk =)
n—1
X=0&Y =0 -5y =5,&sy, =5y
cov,
COR,, = X
SxSy
X=0&Y =0 ~5,=1&s,=1
27
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Correlation or

Original data s | covariance matrix

/

eigenvectors

The “mathematics” of
Principal Component Scores of
Analysis (PCA) observations

28

The mathematics of Principal Component
Analysis (PCA):

Eigen-analysis is a mathematical operation on a
square symmetric matrix (e.g., pairwise correlation
matrix, pairwise covariance matrix).

A square matrix has the same number of rows as
columns.

A symmetric matrix is the same if you switch rows
and columns.

29

square and symmetric matrix

(e.g., pairwise correlation matrix)

X1

X2 | 0.80 1.00 0.76 0.87 0.78
X3 | 0.90 0.76 1.00 0.78 0.89

xs| 0.87 0.78 0.89 0.95 1.00

30

4/5/23
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The important components of Principal
Component Analysis (pun intended)

31

Principal component analysis presents three
important structures:

1 - Eigenvalues: represent the amount of
variation in the original data summarized by
each principal component. The first principal
component
amount, PC-2 presents the second largest
amount, and so on.

(PC-1) presents the largest

32
Eigenvalues
X X X5 X Xs
X1 1.00 0.80 0.90 0.78 0.87
X, | 0.80 1.00 0.76 0.87 0.78 “
X3 | 0.90 0.76 1.00 0.78 0.89 one
X, | 0.78 0.87 0.78 1.00 0.95 1 1 ”
Xs 0.87 0.78 0.89 0.95 1.00 dlmenS|on
Eigenvalues:
PC eigenvalues %
1 4.354 0.871
| “Lower”
2 0.326 0.065 di ionalit
3 0.225 0.045 bnnensp&:: ! }tl
. 0.003 0.019 ecause i ep a
5 0.002 0.000 large proportion of
the variation in the
sum 5.000 1.000 data in the first PC.
33

4/5/23
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Plot of eigenvalue contributions

80
1

Percent total variance
40

PC eigenvalues %
1 4.354 0.871
2 0.326 0.065
3 0.225 0.045
4 0.093 0.019
5 0.002 0.000
sum 5.000 1.000

N s

34
Eigenvalues
1.00 0.87 0.96 0.04 0.05
0.87 1.00 0.95 0.03 0.07 «u.
0.96 0.95 1.00 0.04 0.05 tWO
0.04 0.03 0.04 1.00 0.84 1 H 7
0.05 0.07 0.05 0.84 1.00 dlmenS|onS
Eigenvalues:
PC _ eigenvalues %
1 2.867 0.573
2 1.827 0365] “Higher” dimensionality
3 0.167 0033  because two components
4 0.124 0.025  are needed to summarize
5 0.015 0.003 variation.
sum 5.000 1.000
35
Plot of eigenvalues
3 - PC eigenvalues %
1 2.867 0.573
< | 2 1.827 0.365
g 3 0.167 0.033
L 4 0124  0.025
g 5 0.015 0.003
L.
sum 5.000 1.000
o —
Component
36

4/5/23
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Principal component analysis presents three
important structures:

2 - Eigenvectors: Each principal component is

a linear function with coefficients for each
variable.

- Eigenvectors contain these coefficients. High
values, positive or negative, represents high

association with the component.

37

X,
X3
Xs
Xs

X

X,

X3

X,

Correlation matrix

Xs

1.00
0.80
0.90
0.78
0.87

0.80
1.00
0.76
0.87
0.78

0.90
0.76
1.00
0.78
0.89

0.78
0.87
0.78
1.00
0.95

0.87
0.78
0.89
0.95
1.00

Associated eigenvectors

2

PC
3

4

5

a A W N =

0.447
0.432
0.445
0.450
0.462

-0.436
0.533
-0.534
0.489
-0.039

0.330
0.644
0.035
-0.413
-0.552

-0.687 0.170

0.181

-0.288

0.692 0.192
-0.063 0.619

-0.109

-0.684

“

one
dimension”

38

Eigenvectors can be seen as regression coefficients, where
the component is the dependent variable. A “one
dimension” matrix has only one interpretable principal
component.

PC-1=0.447X,+0.432X,+0.445X3+0.450X,+0.462X5

Unlike the numbers after =, this is not a subtraction but a
hyphen stating that this is the first and second Principal Components (PC).

PC
3

4

5

a B W N =

0.447
0.432
0.445
0.450
0.462

6
-0.533
0.534
-0.489
039

0.330
644

0.03
413

-0.552

-0.687
0.1

-0.0
-0.109

0,

-0.288
.692 0.192
0.619

-07

4

39
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Eigenvectors (simulated data with 1 dimension): only first axis
(PC-1) should be interpreted

PC axis
variable 1
E 1 0.447
% 2 0.432
3 | 0445
4 0.450
5 0.462
Component 1 varince: 85.258%, p=0.01
40
Correlation matrix
X, X, X X, Xs
Xt 00 0.87 0.96 0.04 0.05 “two
% lo.87 1.00 0.95 0.03 0.07 . . ”
X; |0.96 0.95 1.00 0.04 0.05 dlmenSIOnS
X, [0.04 003 0.04 1.00 0.84
% |0.05 0.07 0.05 084 1.00
Associated eigenvectors (only interpret the first two components (PC)
PC
var 1 2 3 4 5
1 10.569 [|-0.064 49 -0.642 0.
2 [0.567 |[-0.060 | -0.298\_0.661 .386 )
3 |0.585 |-0.067 | 0.061 -08{0 -0.806|
4 10.072( 0.704 | 0.654" 0.273™\0.039
5 [0.085 || 0.702 | 07650 -0.277 -0.0
o |
41

=0.01

Component 2 variance: 36.974%, p:

Eigenvectors (simulated data with 2 dimensions): only first two
axis (PC-1 & PC-2) should be interpreted
PC axis

var 1 2

1 10.569 -0.064
2 |0.567 -0.060
3 |0.585 -0.067
4 10.072 0.704
5 |0.085 0.702

Component 1 variance: 57.703%, p=0.01

42

4/5/23
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Principal component analysis presents three
important structures:

3 — Multivariate scores: Since each component is a linear
function of the variables, when multiplying the
standardized variables (in the case of correlation matrices)
by the eigenvector structure, a matrix containing the
position of each observation in each principal component
is produced.

The plot of these scores in the first few dimensions,
represents the main patterns of variation among the
original observations (more in the empirical example).

PC-1=0.569X,+0.567X,+0.585X5+0.072X,+0.085Xs
PC-2=-0.064X,-0.060X,-0.067X5+0.704%,+0.702Xs

LR

43

PCA Scores: one versus two dimensions

H

10 DetsSExPoston Dt

44

Correlation or

Original data | ey | covariance matrix

Ple=

eigenvectors

The “mathematics” of
Principal Component Scores of
Analysis (PCA) observations

45
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Next lecture: How many PCA dimensions?
Inferential frameworks for determining number
of axes to interpret and the significance of each
variable on each axis (lots of work on this area)._

1%") determine how many axes to interpret (i.e.,
how many PCs capture correlated variation in the
data?).

ciance () oinmcre COMPUTATIONAL
" @ STATISTICS
&DATA ANALYSIS

ELSEVIER  Computational Statistics & Data Analysis 49 (2005) 974997 _—
www.elsevier.com/locate/csda

How many principal components? stopping rules for
determining the number of non-trivial axes revisited

Pedro R. Peres-Neto*, Donald A. Jackson, Keith M. Somers

46

Inferential frameworks for determining number
of axes to interpret and the significance of each
variable on each axis are usually nor performed.

2°4) for each significant axis, determine which
variable is significant on each of them.

Ecology, 84(9), 2003, pp. 2347-2363
© 2003 by the Ecological Society of America

GIVING MEANINGFUL INTERPRETATION TO ORDINATION AXES:
ASSESSING LOADING SIGNIFICANCE IN
PRINCIPAL COMPONENT ANALYSIS

PEDRO R. PERES-NETO,' DONALD A. JACKSON, AND KEITH M. SOMERS

47

Principal component analysis: a complete example

53 sites

28 sites

48

4/5/23
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What is the correlation structure and differences

among streams in terms of their environmental

features?

Depth

Depth variation
Current velocity
Current variation

Substrate variation (variance in composition)
Stream width variation (irregularity)

Area

Altitude

Substrate composition: Boulder, rubble, gravel and sand

 Ecatmmresperorc—

Patterns in the co-occurrence of fish species in streams: the role
of site suitability, morphology and phylogeny versus species
interactions

49

Correlation matrix

-0.07 0.06 -0.33 -0.02 0.12 -0.02 0.05
031 0.07 0.07 -0.35 -042 0.84
-0.08 0.02 0.19 -0.13 -0.13

-0.07 0.06 -0.44 -0.33 0.71
0.06 0.31 -0.81 0.33 0.36
-0.33 0.07 -0.08 0.09 0.00
-0.02 0.07 0.02 0.06 -0.22 0.14

0.01
0.86
-0.17
0.7
0.20
0.1
0.05
-0.25

50

Percentage of explained variances

Eigenvalue contribution — the

traditional scree plot -

Scree plot

for the entire data.

Dimensions

How much variation (sd and
correlation) each PC summarizes

4/5/23
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PC-1

Eigenvector structure (2 first dimensions)

PC-2

depth 0.098416371
DepthVar -0.383072589
velocity 0.145820452
VelVar  -0.409585483
boulder -0.363399847
rublle -0.204526467

gravel 0.007091107
sand 0.426264131
altitude -0.421467330
area 0.229031867

irreg -0.165951470
Sedivar -0.203159109

-0.
-0.
-0.
-0.
-0.

(SIS

-0.
-0.
-0.

SIS

55557259
26772556
22434910
15169873
20189977
.50098773
08935752
09866678
23396335
02477526
09149688
.41607768

52

Eigenvector plot :

Inferential Results

Component 2 variance: 14.078%, p=0.01

Component 1 variance: 30.87%, p=0.01

53

Eigenvector plot :

Inferential Results

depth 0.098416371 -0.55557259
DepthVar -0.383072589 -0.26772556
velocity 0.145820452 -0.22434910
VelVar  -0.409585483 -0.15169873
boulder -0.363399847 -0.20189977
rublle  -0.204526467 0.50098773
gravel  0.007091107 0.08935752

sand 0.426264131 -0.09866678
altitude -0.421467330 -0.23396335
area 0.229031867 -0.02477526

irreg  -0.165951470 0.09149688
SediVar -0.203159109 0.41607768

Component 2 variance: 14.078%, p=0.01

Component 1 variance: 30.87%, p=0.01

Eigenvector coefficients for
each variable are plotted
and presented as arrows
(i.e., correlation of each
variable with each principal
component).

54

4/5/23
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Component 2 variance: 14.078%, p?

Eigenvector plot:

=0.01

Bootstrap Ratios Component: 1

Inferential Results

Bootstrap Ratios Component: 2

Gomponent 1 variance: 30.67%, p=0.01 Significant variable contributions are

determined if the eigenvector coefficient
for the variables are beyond the confidence
interval.

55

003, pp. 23472363
cological Sciety of America

GIVING MEANINGFUL INTERPRETATION TO ORDINATION AXES:
ASSESSING LOADING SIGNIFICANCE IN
PRINCIPAL COMPONENT ANALYSIS

PEDRO R. PERES-NETO,' DONALD A. JACKSON, AND KEITH M. SOMERS

Bootstrap Ratios Component: 1 Bootstrap Ratios Component: 2

Significant variable contributions are
determined if the eigenvector coefficient
for the variables are beyond the confidence
interval.

56

Dim2 (14.1%)

Variables - PCA

1.0-

eigenvector
structure — much

better plot

contrib

Dim1 (30.9%)

57
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Dim2 (14.1%)

Individuals - PCA

0
Dim1 (30.9%)

PC (multivariate) scores

58

Dim2 (14.1%)

PCA - Biplot . .
. biplot — Scores and eigenvectors
M9
Mo
MA26 N33 M45
M11 e, ¢
2- bl >4 M M = river Macacu sites
MA2 M371e &—M52 M53 p3g o
SediVag MA24 M15¢” o143 MA = river Macaé sites
.
MA16 M18) M34
. ' -
& MA14 N ez
M30,
y MAS g \wMizB "',\A'MMM- e
4 W2 4
1 ey (){rwm« Ma1 M27

*MA12

MATVelVaL a1z

i
LCI
1
e 1 o\
MA13 % MAS [
. A21 ¢ 1 M
. 1 depth
MA18 H
e
3= MA2
'Z 0

Dim1 (30.9%)

4/5/23
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Dim2 (14.1%)

Individuals - PCA

Using K-means to
establish number of

MA26
i groups and then
. identify them
15N vas the PCA plot
/r\m V?”BAM}/I My3 P
i M3 AM16
Mso M30AM18 w1
ha :Mlzs“ M31
* ‘Msimi0
|

Dim1 (30.9%)

Groups

M23

60
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Mapping the environment of

|”

our planet —a very “smal

example

61

Long [ avg_prec ave T eVl
705 55344 8349 22167 21958
695 55340 6895 218 8235
685 55344 5023 29 5%9.458
615 55344 3 2231 58
665 55344 3894 170167 43825
705 54.046 an 22167 21958
695 54,046 3637 215 82350
685 54.046 2006 29 s%9.458
675 54,046 2869 2233 a8
75 52788 14971 w167 57181
75 52788 523 41533 778905
715 52.788 %4 315 867833
705 52788 1847 25167 742786
695 52.788 2120 158833 697.405
75 51564 108.16 w167 562875
75 51564 343 415333 761104
715 51564 1504 15 655229
705 51564 1315 25167 2688
695 51564 1556 158833 07313
75 50373 2693 512833 540292
75 50373 10813 353333 562875
75 50373 143 206333 761108
715 50373 1361 75 655229
705 50373 17 207833 2688
695 50373 1393 198,167 07313
685 50373 1674 134333 448188
75 4921 2275 512833 547,905
75 4921 11005 353333 497929
75 4921 3953 206333 5891

s 4921 1623 75 582929

g At range At avgtemp | seastemp | seas_prec
370806 260 38501 1397282505  258.8423462
472,088 270 263 156611433 282420105
3821 1258 3839 1668809319 316756958
wsn 107 44807 225015504 323.7763%7
176.965 33 45776 234793033 3009299011
174.06 763 54352 164560728 3151140137
186.163 786 572 179129 3316278076
83903 2 56596 2050442696 3545487122
2782 24 5308 2289826965  380.9208679
w777 159 54122 1140344238 291.5087524
267,908 1% 5138 1044744396 3410378723
21099 &1 57626 1478347588 3748889771
8188 355 6686 205412063  392.699097
69,190 263 65235 2369093513 386.2383728
70814 a7 40757 1140344238 291.5087524
605,359 2000 6611 1046744396 3410378723
416289 861 57116 1478347588 3748889771
27,667 am 66142 205412063  392.6990967
161634 367 69428 2369093513 386.2383728
a1 264 60755 1220302963 2786205139
127.405 3005 29841 1635677052 3144966031
568.539 1756 61505 2555801201 4188746643
500653 1080 65597 2675120128 4768366882
310328 75 74516 2204994202 5034150391
.07 sa9 83211 201946204 5148027954
%374 163 87676 220623931 502.4994507
344 1567 65613 BEZG0BE35 2754307251
1054.021 3035 36699 1214703465 3200220692
931375 1961 4BOIS 2098670387  388.942594
768218 1007 6156 2747363091 4505921631

14909 geographic cells (110Km by 110Km)
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Latitude (Lat) and Longitude (Long) at the
centre of geographic cell.

Average precipitation (last 40 years;
avg_prec)

Average actual evapotranspiration (avg_ET,
a proxy of productivity)

Average vegetation index (avg_VI)

Mean altitude (avg_Alt)

Maximum altitude minus minimum
altitude (altitudinal range; range_Alt)
Average temperature (avg_temp)
Seasonal temperature (annual range in
temperature; seas_temp)

Seasonal precipitation (annual range in
precipitation; seas_prec)
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Eigenvalue
contribution —
the traditional
scree plot

3

Percentage of explained variances

Dimensions
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