Pedro Peres-Neto, PhD

One thing that many find challenging when they start writing is building a
good narrative structure. But exercising building narratives (in my opinion)
is a big component in how researchers practice creativity & intuition.
Bottom line, Al language models won’t exercise for you

) Federico Riva

| truly believe that integrating ChatGPT in manuscript writing is a major
mistake for science. Writing clearly requires clear ideas, and letting an
algorithm fill the spaces based on what other people have written
before us is the quickest way to stagnate in normal science.

Show this thread




The role of normality in biology - We often work with continuous
variables that are assumed to be “normally” distributed
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Why is it important to make assumptions about the
statistical populations of interest?

Confidence intervals and statistical hypothesis testing are frameworks
based on sampling theory.

Here, sampling theory relates to repeated sample to model (derive)
the expectations (probabilities of sample values) under sampling
variation for statistical populations.

Repeated sample is used to derive the sampling distribution used in
confidence intervals and statistical hypothesis testing (lecture 3).

BUT: Repeated sampling is only possible making certain assumptions
about the statistical population.



Why sampling properties of estimators are important?

The mean of all possible sample means (i.e., sampling
distribution) ALWAYS equals the population mean regardless of
the original distribution of the population. As such, the sample
mean is an unbiased (“honest”) estimator of the true population;

l.e., in average the arithmetic mean equals the true population
mean value (parameter).



PROPERTY OF THE MEAN AS AN ESTIMATOR: The mean of all possible sample means

(i.e., sampling distribution) ALWAYS equals the population mean regardless of the original
distribution of the population — the case of a tiny uniform distribution

1,2,3,4,5; population mean=3.0

All possible 15 samples (with replacement) and their means for n=2:

(1,1)=1.0 (1,2)=1.5 (2,3)=2.5 (3,4)=3.5 (4,5)=4.5
(2,2)=2.0 (1,3)=2.0 (2,4)=3.0 (3,5)=4.0

(3,3)=3.0 (1,4)=2.5 (2,5)=3.5

(4,4)=4.0 (1,5)=3.0

(5’5) =50 Notice that permutations, i.e., (1,2) = (2,1) are not shown but should be considered

The mean of all sample means is always equal to the population mean

(1.0 +2.0+3.0+4.0+ 5.0+ 1.5+2.0 + 2.5+ 3.0
+25+3.0+354+35+4.0+45)/15=3.0 ...

6 sample means smaller than the true population value [in red]

frequency

6 sample means greater than the true population value [in green]

3 sample means equal to the true population value [in black]

Values



Why sampling properties of estimators are important?

Even though the mean of all possible variances is equal to the
variance of normally distributed populations (and also for many non-
normally distributed populations, i.e., robust against normality), the
sampling properties of confidence intervals and statistical
hypothesis testing may not hold when populations are not normally
distributed.

For instance, a 95% confidence interval may end up being in reality
smaller (e.g., 93%) or larger (e.g., 97%) if the population is quite
different from normal. And statistical hypothesis testing may have
type | errors that are not equal to alpha (as is the case normally or
closely to normally distributed populations).

We covered these issues in BIOL322 and will revisit them later on in
the course in respect to advanced methods.



Why sampling properties of estimators are important?

Again, the sample variance is often a robust estimator for the
true population variance for non-normally distributed
populations. In other words, the mean of all sample standard
variance will be often very close to the true population
variance for non-normally distributed populations.

However, given that we don’t know when this is the case,

commonly, statistical procedures based on the standard
deviation (e.g., t-test, ANOVA, regression) “assume”
normality.

Normality is needed to make sure that estimates (from

samples; e.g., t value, F value) can be properly contrasted
with the sampling distribution that was assumed to be true
(theoretical) and that P-values are then properly estimated.



Despite these very detailed characteristics, how
common is the normal distribution in nature?

“Normality is a myth: there never has, and never will be, a
normal distribution.” Roy C. Geary (1896 - 1983).

The normal distribution is a model that needed to be
used to build sampling distributions.

One way to be normal, but infinite ways to be any other
type of distribution; that said, the normal distribution
approximates many biological distributions!

And remember that sample means and variances (key
statistical estimators) are robust against normality so it
works well for populations that are slightly “non-normal”
(i.e., approximately normal).



Why is the mean an unbiased estimator?

Because the mean of all possible possible sample means equals

the population mean (parameter) only when the population is
normally distributed.

Because the mean of all possible possible sample means equals
the population mean (parameter) regardless whether the
population is normally distributed or not.

Because the mean of all possible possible sample means does
not equal the population mean (parameter).



Why is the mean always an unbiased
estimator?

Because the mean of all possible possible sample means equals
the population mean (parameter) only when the population is
normally distributed.

Because the mean of all possible possible sample means equals
the population mean (parameter) regardless whether the
population is normally distributed or not.

Because the mean of all possible possible sample means does
not equal the population mean (parameter).



Why is the variance not always an unbiased
estimator?

Because the variance of all possible possible sample variance
equals the population variance (parameter) when the population
is normally distributed.

We can’t guarantee this property for highly non-normal
distributions.



The road of statistics: avoid bias when
estimating population parameters
from sample values - the role of
degrees of freedom!

 /
AVOID BIAS |
NEXT EXIT &N




The importance of corrections for creating unbiased sample estimators for any

statistic of interest [the case of degrees of freedom].

Why is the sample standard deviation calculated by dividing the sum of
the squared deviations from the mean divided by n— 1 and not n?

?zl(yi T Y)Z
n—1

?zl(yi T Y)Z
n




Let’s use a computational approach to understand the
performance of these two estimators for the population variance:

i below is the population mean
(often unknown)

‘norm(n ,mean

(x,mu) {sum((x-mu)

(X-mean(Xx))
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The mean of s? for the estimator
based on the population mean u
divided by n was unbiased (i.e.,
pretty much the population ¢?2;
would had been exactly % =100
with infinite sampling); whereas
the estimator based on the sample
Y divided by n was biased.
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Note the asymmetry of the

sampling distribution of variances; hence the
median is not exactly equal to the mean.

But the variance is unbiased

when based on u but biased when based on Y.
Remember: unbiased expectations are based on
means and not medians.
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But in most (if not all) cases one doesn’t know the parameter
value u (true population mean).

2 1(Y — W)? é .
o = Tl oy > ‘




There is a correction factor for the sample bias Iin
s called Bessel’s correction (but seems that Gauss
1823 Came Up Wlth |t firSt;https://mathworld.wolfram.com/BesseIsCorrection.htmI)
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Let’s use a computational approach to verify the quality of
the three estimators (i.e., sample based):

o=10 -~ 04=100

samples ~eplicate( . rnorm(n ,mean

var.based.popMean (X,mu) 1sum((x-mu)

var.based.n (x)1sum((x-mean(x))

2 (G —w? o YR - Y)? D XN AR Ok

n n—1 n
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Note though that:
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is slightly more
precise then:
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BUT WHY??7%

Why is the sample standard deviation calculated by dividing
the sum of the squared deviations from the mean divided by
n—1 and not n?

_ 7i’l=1(Yi o 7)2 _ ?:1(Yi — 7)2
s = 3 s =
v N \ n

é But why? %’




Obviously, you don’t need to know the “math” but good to know

that someone did it for us!

Proof of Bessel's Correction

Bessel's correction is the division of the sample variance by N — 1 rather than N. | walk
the reader through a quick proof that this correction results in an unbiased estimator of
the population variance.

PUBLISHED
11 January 2019

Consider N i.i.d. random variables, x1,x;, ..., X, and a sample mean X. When computing the
sample variance sz, students are told to divide by N — 1 rather than N:

1<
2 _ =2
§° = N1 z:()c,l xX)°.

n=1
When first learning about this fact, | was shown computer simulations but no mathematical proof of
why this must hold. The goal of this post is to provide a quick proof of why this correction makes
sense.
The proof outline is straightforward: we need to show that the estimator in Equation 1 below is
biased, and that we can correct this bias by dividing by N — 1 rather than N. For an estimator to be
unbiased, the expectation of that estimator must equal the population parameter. In our case, if the
sample variance is 5% and the population variance is 62, we want

5

E[s*] = o

Let's begin.

Proof

Let’s prove that the following estimator for the population variance is biased:

N
$ = % Zlm - ()

n=
First, let's take the expectation of this estimator and manipulate it:
N N

B[ Y- 97] = [ D6t - 20,5+ )]

n=1 n=1

1Y 1 & 13,
=[E[N2x;72xﬁ2x,,+ﬁz l
1 1 n=1

n= n=

1%

nz[% ﬁ:x%} - E[2?] +E[?]

1 n;l
= [E[N ;xﬂ - [E[iz]
L E[2] - [
Note that step % holds because
N
Zx,, = NX.
n=1

while step T holds because the data are i.i.d., i.e.

I 2el] =il

Now note that since x,, is an i.i.d. random variable, any of the x, € {x;,x2,... x5} has the same
variance. Furthermore, recall that for any random variable Y,

Var(Y) = E[Y?] - E[Y]? =  E[Y?]= Var(Y) + E[Y]%.
So we can write
E[x3] = Var(x,) + Elx,]?
- 0_2 +”2

E[#] = Var(®) + ELZ]
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Step x holds because
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Finally, let's put everything together:
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What we have shown is that our estimator is off by a constant, (1 — Ni) = (NT71) . If we want an

unbiased estimator, we should multiply both sides of Equation 3 by the inverse of the constant:
N
N 1
[E[—sz]:[E[— X, —iz]:o‘z.
(N -1 ) N-1 HZI( " )

And this new estimator is exactly what we wanted to prove. Bessel’s correction results in an

unbiased estimator for the population variance.

Source: http://gregorygundersen.com/blog/2019/01/11/bessel/






Spider density (numbers/m?)

Spider density (numbers/m?)

A “one-slide” discussion on experimental
® versus observational studies

® Experimental study

Lizard density (hnumbers/m?)

® o Observational study

Lizard density (numbers/m?)



COMPARING THE MEANS OF THREE OR MORE
GROUPS (often called treatments in experiments)

A REALLY QUICK REVIEW OF THE
ANALYSIS OF VARIANCE (ANOVA)
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THE ANALYSIS OF VARIANCE (ANOVA) for
comparing multiple sample means (groups)

The problem about “The knees who say night”

By Whitlock and Schluter (2009)

OR

“Bright light behind the knees is just bright light behind the knees”

http://www.genomenewsnetwork.org/articles/08 02/bright knees.shtml

Extraocular Circadian Phototransduction
in Humans

Scott S. Campbell* and Patricia J. Murphy

Physiological and behavioral rhythms are governed by an endogenous circadian clock.
The response of the human circadian clock to extraocular light exposure was monitored
by measurement of body temperature and melatonin concentrations throughout
the circadian cycle before and after light pulses presented to the popliteal region (behind
the knee). A systematic relation was found between the timing of the light pulse and the
magnitude and direction of phase shifts, resulting in the generation of a phase response
curve. These findings challenge the belief that mammals are incapable of extraretinal
circadian phototransduction and have implications for the development of more effective
treatments for sleep and circadian rhythm disorders.

SCIENCE e VOL. 279 ¢ 16 JANUARY 1998

Data challenged as subjects were exposed to light while knees being illuminated


http://www.genomenewsnetwork.org/articles/08_02/bright_knees.shtml

Our core body temperature is around 37°C but it fluctuates by about 1°C

or so throughout the night.

The drop in temperature starts about two hours before you go to
sleep, coinciding with the release of the sleep hormone melatonin.

Extraocular Circadian Phototransduction
in Humans

Scott S. Campbell* and Patricia J. Murphy

Example of a delay in circadian phase in response to a 3-
hour bright light presentation to the popliteal region. Light
was presented on one occasion between 0100 and 0400
on night 2 in the laboratory (black bar) while the participant
(a 29-year-old male) remained awake and seated in a dimly
lit room (ambient illumination <20 lux).

The circadian phase was determined by fitting a
complex cosine curve (dotted line

Body temperature (°C)

Body temperature (°C)

37.4_A Regular sleep
of one participant
37.2 45,
37.0 -
36.8 -
36.6 -
36'4 T I I I I 1
1800 2100 2400 0300, 0600 0900 1200
| I
37.8 - B
“In Delayed sleep of the
il same participant
_— [Lr\% induced by light.
37.2 1
7.0 9 !
36.8 "\ [u’_'H
366 T T T T - T L
1800 2100 2400 0300 0600 0900 1200
Time of day
|

Phase delay = 3.06 hours

The resulting phase delay was 3.06 hours



THE ANALYSIS OF VARIANCE (ANOVA)
for comparing multiple sample means (groups or treatments)
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Shift in circadian rhythm (h)
O

Delay in melatonin production
measured days after treatment
O

O

-3

1 1 |
control eves knee

Strip chart Light treatment (3 hours long)

Whitlock & Schluter, The Analysis of Biological Data, 3e © 2020 W. H. Freeman and Company

SCIENCE VOL 297 26 JULY 2002

Absence of Circadian Phase
Resetting in Response to Bright
Light Behind the Knees

Kenneth P. Wright Jr.* and Charles A. Czeisler

New study challenged the original
study (Wright & Czeiler 2002):
subjects were exposed to light while
knees being illuminated by original
study.

22 people randomly assigned to one
of the three light treatments.

Do these means come from the
same statistical population, i.e., do
these samples only differ from each
other due to sampling variation?



THE ANALYSIS OF VARIANCE (ANOVA)
for comparing multiple sample means (groups or treatments)

H,: The samples come from statistical populations with the
same mean, i.€., Heontrol = Mknee = Meyes-

H,: At least two samples come from different statistical
populations with different means. -

o
00O
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Shift in circadian rhythm (h)

N
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control knee eyes

Light treatment



THE ANALYSIS OF VARIANCE (ANOVA)
for comparing multiple sample means (groups or treatments)

Hy: The samples come from statistical populations with the same
mean, i.e., Meontrol = Mknee = Meyes-

H,: At least two samples come from different statistical
populations with different means.

Which is to say:

H,: Differences in means among groups are due to sampling
error from the same population.

H,: Differences in means among groups are NOT due to
sampling error from the same population.

Remember: Sampling error is due to sampling variation, i.e., samples that come from
the same statistical population may differ in their means just due to chance alone.



We need a test statistic that is sensitive to mean variation across multiple groups
(or treatments): The F statistic does that by considering the ratio of two variances
(variance components):

Means among groups are much bigger in A than B;
residuals variation is similar in A than B. Notice the differences in their Y-

scales (the mean differences among groups is huge in A).

Fictional response values

14078.0 4741
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Note that scales (Y-axis) are different
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HETEROSCEDASTICITY reduces the F-ratio ability to
differentiate among differences in means among groups

Means among groups are somewhat similar in A than B,;
A is homoscedastic B heteroscedastic

o o_1a0780 o o 122750 _
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Fictional treatments Fictional treatments

Note that scales (Y-axis) are now equal



Verbal representation of equations

Let’s talk ANOVA “jargon”

variance among group means (due to “treatment”)

F=

variance within groups (caller error or residual variation
not explained by the mean within groups)

Group Mean Square MSgroups

F= =

Error Mean Square MS,, o




The F statistic measures the variance among groups
but accounting for the variance within groups

The F statistic in the ANOVA
Group Mean ~ Meanofeach . context is so important that is
Square group more than worth knowing
MS groups ¢ /! how it works!

(b=between or among) Z n (XZ _X)2
i
i=1

) Degrees of freedom of MS
S g— ] —

groups

MS

(w=within groups)

errors

Error Mean
Square



The F statistic measures the variance among groups
but accounting for the variance within groups

The F statistic in the ANOVA
Group Mean ~ Meanofeach . context is so important that is
Square group more than worth knowing
M Sgroups / how it works!

(b=between or among) Z n. (X X)

S2 o | _—— Degrees of freedom of MS,,
F p— _b p—
2 g Variance of each group

N 2
w Z(n —1)s: 4 Big “N”; sum of al
) : l sample sizes
errors across groups

(w=within groups) Number of groups
Error Mean E '(Il _1) - = (N- g)/[:

egrees of freedom of MS
Square i—=1

MS

groups

~ Sample size of each group



A small example: worth doing it “by hand”!

Let’s suppose two groups for simplicity!

group 1

12 3 % .8

il =30
312 —

group 2

values

10 11 12 13

14

iz =120
s;=2.5

14
12
10

o N A~ OO @
I
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group

: +
O
O
O
O
O
O
O
O
I I
1 2



g,:12345 X, =3.0 X,=12.0

;1011121314 2 2
52 s, =25 §5,=25
[T EEEE e e e e mmmEmEmmmmmmmmmm—m—m—m— e oy’
| |
= :
! X =(1+2+3+4+5+10+11+12+13+14)/10=7.5 !
i MS, oups= variance among group means (due to “treatment”) i
| |
: = (5x(3.0 - 7.5)2 + 5x(12.0 - 7.5)2)/(2-1) = ;
| |
: 2025/(2-1) = 202.5 Mean of each group Total mean!
[ "'Sr'-ﬂﬂ--
| |
df(MSgroups) = 8 - 1 I~ T =
R SR LS 1> n (X —X)? |
) =1=1 : IVlsgroups
s - !
F = —g :"_;_g ------ Variance of each group
202. 5 SW z(ni —I)Si2 4 Big “N”; sum of all
F — =? ? ? o sample sizes
? ? ? across groups

g 7
Y (n,-1) - = (N-g)
i=1



8:12345
g,:101112 13 14

Mean of each group Total mean!
g \_ -
ZHZ.(X X)
2
P o i o=
F — —12) :IE g Vanance of each group |
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w : z(n —1)S Big “N”; sum of aIII _ .
: sample sizes : X . 3 0 X . 12 O
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MS,,.or = Variance within groups (residuals)

MSE, = (1-3.0)2+(2-3.0)2 +(3-3.0)2 +(4-3.0)2 +(5-3.0)2 = 10

MSE,= (10-12.0)2 +(11-12.0)2 +(12-12.0)2 +(13-12.0)2 +(14-12.0)2 = 10
| MSgor = (MSE; + MSE,)/(N-g)=(10+10) / (10-2) = 20/8 = 2.5

df(MS,,,.,) =N-g=10—2 =8



§= (142+3+4+5+10+11+12+13+14)/10=7.5
MS groups=
= (5x(3.0 - 7.5)? + 5x(12.0 - 7.5)?)/(2-1) =
202.5/(2-1) = 202.5
df(MSgroups) = - 1 = 2-1

MS,,.or = vVariance within groups (residuals

MSE, = (1-3.0)2+(2-3.0)2 +(3-3.0)2 +(4-3.0)2 +(5*3.0)2 = 10

MSE,= (10-12.0)2 +(11-12.0)2 +(12-12.0)2 +(13-12.0)>(14-12.0)2 = 10
MS,..or = (MSE, + MSE,)/(N-g)=(10+10) / (10-2) = 20/8 = 2.5

df(MS,,o) =N-g=10—2 =8







LET’s go back to the “The knees who say night

A B data in a csv file
treatment shift
control 0.53
control 0.36 O
control 0.2 O
control -0.37 O O
control -0.6 — O
< 0- O
control -0.64 ~
control -0.68 E O} O
control -1.27 =
knee 0.73 < @ N @
knee 0.31 _E 1 - O
knee 0.03 s O
knee -0.29 2 8
knee -0.56 g O }
knee -0.96 é
knee -1.61 £ -2 O
eyes -0.78 «
eyes -0.86
eyes -1.35
eyes -1.48 O
€yes ~1.52 ’ control knee eyles
€yes -2.04 Light treatment

eyes -2.83



Shift in circadian rhythm (h)
! o

|
N
1

“The knees who say night”

0]6]e)
O

o{ Statistical Conclusion?

@ O

8 H,: The samples come from the same
. 8} population.
0 H,: At least two samples come from
different populations.

O

control knee eyes
Light treatment




“The knees who say night”

ANOVA Table — reporting quality

Source of Sum of Mean F P
variation squares df square
Between 7.224 2 3.612 7.289 0.00447

Within 9.415 19 0.496




Remembering the role of degrees of freedom

Source of Sum of Mean F P
variation squares df square

Between 7.224 2 3.612 7.289 0.00447
Within 9.415 19 0.496

N

Remember that the calculations
of sum of squares involve
subtractions from means so
that they would be biased if not
divided by adjustments
(degrees of freedom) to
produce mean square
deviations.



“The knees who say night”

ANOVA Table

Source of Sum of Mean F P

variation squares df square

Between  7.224 2 3.612 7.289|  0.00447

Within 9.415 19 0.496
H,: The samples come from l
the same population.
H,: At least two samples Reject H,
come from different

How does the ANOVA

populations. S
significance test work?



How can we conceptualize the construction of the F distribution?

The statistical “machinery”:

1) Assume that H, is true (i.e., samples come from the same population;
l.e., population having the same mean and same variance).

2) Sample from the population the appropriate number of groups
(samples) respecting the sample size of each group.

3) Repeat step 2 a large (or infinite) number of times and each time
calculate the F statistic.



The F (sampling) distribution assuming that H is true

H,: Differences in means among groups are due to sampling error from
the same population.

1.0

s = = z
NI
S2 : g—l % ©
_ b _ > oS
» TTETR » £
v Y (0, =1)s? S 3 -
i=1 Q0
N s X
2.(n,~1) =
=l SHS T T T T

J{M hhmk (8,7,7) observations 0 1 2 3 4
‘ ‘ F values

s 1 i

Sample from the same ié ]2

(normally distributed) g J + :
population (i.e., assume & 14 . Control: 8 observations
that H, is true), s + Eyes: 7 observations
respecting the original z Knee: 7 observations
number of groups and 31 - l

control eyes knee

their sample sizes.
Light treatment



The F (sampling) distribution assuming that H is true

H,: Differences in means among groups are due to sampling error from

the same population.

i 1
0 5 15 20

Sample from the same
(normally distributed)
population (i.e., Hy is
true), respecting the

original number of groups

and their sample sizes.

»F:

fa|fa
B SN (S )

N
U

3 0,(X -X)?
i=1

g—1

i(ni _I)Siz
i=1

g(n,. 1) ’

2

1.5 |+

1

0.5

Different number of
groups and different
number of
observations per group
generate different
shapes for the F
distribution.

|
d1;1, d2=1 ——
d1=2,d2=1 ——
B d1=5, d2=2 ——
d1=10, d2=1
d1=100, d2=100




The F distribution assuming that H is true (i.e., the sampling
distribution of the test statistic F when H is true).

2.5 | |
d1=1, d2=1 ——
d1=2, d2=1 ——
2 d1=5, d2=2 —— |
d1=10, d2=1 —
151 d1=100, d2=100 i Mean of each group Total mean!
\ 7
1 a

df,

g —_ —
Y n (X:—X)’
0.5 — i=1

2
0 : Sb
0 1 2 3 4 5 F= Ty = 2 Variance of each group
S
W Z(n —I)S.2 4 Big “N”; sum of all
i1 ! ! sample sizes
across groups
The numerator degrees of freedom is d 7
based on the number of groups (g-1) Z(n,- —1) - = (N-g)
and the denominator degrees of i=1
freedom depends on the total

number of observations (N-g)

df,



Degrees of Observed P-value
freedom F-value
(observed test
statistic)

H,: The samples come from statistical
populations with the same mean, i.e.,

Mcontrol = Mknee = Meyes-

H,: At least two samples come from
different statistical populations with
different means.

The probability of rejection of H, (P-value) is estimated
as the number of F-values in the null distribution equal
or greater than the observed F-value (i.e., one tailed-
test).

1.0

00 02 04 06 038

ANOVA s a

one-sided
(one-tail) test
by design
Ha
Ho
99.553% 0.44/7%

[ I
0 2



THE ANALYSIS OF VARIANCE (ANOVA)
for comparing multiple sample means (groups or treatments)

H,: The samples come from statistical populations with the
Sdime mean, i.e., Heontrol = Hknee = p‘eyeS'

H,: At least two samples come from different statistical
populations with different means.

O
O
Q O
=X o Statistical conclusion: Light
s 5} 8} treatment influences shifts in
5 ° circadian rhythm.
§ © ) 8{
<, . Research conclusion: Light
’ treatment influences shifts in
5 0 circadian rhythm.

con'trol kn'ee ey'es
Light treatment



ANOVA

Assumptions are the same as for the independent two sample t-test:

- Each of the observations is a random sample from its population
(whether they are the same or different populations).

- The variable (e.g., shift in circadian rhythm) is normally distributed
in each (treatment) population. More on that in another lecture.

- The variances are equal among all populations from which the
treatments were sampled (otherwise the F values change in ways
that may not measure difference among means). More on that in
another lecture.



“The knees who say night”

HO: Mcontrol = Mknee = Meyes
H,: at least one population mean ([) is different from

another population mean or other population means.

Conclusion?
Significant, but how?

How do we know which group means differ from one another?

Why not simply not contrast all pairs of means using a two-sample mean
t-test?
Control vs. knee; control vs. eyes; knee vs. eyes?

More later in the course!






Analysis of Variance
(more than one factor)
Multifactorial - ANOVA

Part | - Introduction



Some types of ANOVA designs:

Single-factor ANOVA (Intro stats)
Factorial designs (crossed) — today
Mixed models



Research question (my own fictional example; real
examples will be seen in the next lecture and tutorials):

Do exercise and diet affect weight loss?
How would you set a study to test this

question?

Why fictional? The context of the problem itself seems to be
easier to understand than more “biological” applications!



Study - Individuals are followed regarding their weight loss
after 1 month of exercise (or not) and diet (or not).

Factorial ANOVA - always involves one continuous
variable (i.e., response variable = weight loss) and two or
more categorical (factors) variables (exercise and diet).

Factors: exercise and diet (two-factorial).

In this example, exercise and diet are factors
with two levels or groups (Yes/No).

Response variable: weight loss.



Data structure in a csv file

A B C
Diet Exercise = WeightlLoss
yes yes 5.8
. yes yes 53
Dlet. yeS nO yes yes 5.7
l l l l yes yes 6.1
yes yes 5.1
Exercise: Y N Y N no yes 6.2
- o no yes 5.4
no yes 6.3
replicates no yes 4.5
(5 individuals) no yes 4.2
yes no 6.9
L I . yes no 8.1
yes no 8.2
yes no 8.8
Weight loss: start weight - yes no 8.6
end weight (in pounds) no no 7.1
no no 8.1
no no 7.6
no no 7.4

no no 7.8



Main effects

Interaction

Do exercise and diet affect weight loss?

Let’s elaborate on this question further:

« Are the differences in weight loss only due to exercise

- alone?

* Are the differences in weight loss only due to diet alone?

« Does the effect of diet on weight loss depend on
exercise? In other words, are the differences in weight
loss attributable to some combinations of exercise and
diet? (e.g., the biggest weight loss compared to any other
combination of diet and exercise was observed when
individuals both dieted and exercised).




Treatments

Main effects:
Diet - two treatments (yes/no).
Exercise - two treatments (yes/no).

Possible sources of statistical interactions:

Combination of diet and exercise treatments - four pairwise
combinations of means:

No exercise but diet.
Exercise but no diet.
No exercise and no diet.

Exercise and diet.

1
2
3

)
)
)
4)



Does diet alone (main effect) affect weight loss? Statistically, does 6.9
significantly differ from 6.5 (i.e., beyond what is expected under sampling
variation from the same population)?

Diet

Yes

No

Exercise
Yes No
6.9 5.8
8.1 5.3
8.2 5.7
8.8 6.1
8.6 5.1
7.1 6.2
8.1 54
7.6 6.3
7.4 4.5
7.8 4.2
7.9 5.5
\ ' )

Exercise independent of diet

6.9

6.5

Diet independent of
exercise



Does exercise alone (main effect) affect weight loss? Statistically, does 7.9
significantly differ from 5.5 (i.e., beyond what is expected under sampling
variation from the same population)?

Diet

Yes

No

l

Exercise
Yes No
6.9 5.8
8.1 5.3
8.2 5.7
8.8 6.1
8.6 5.1
7.1 6.2
8.1 5.4
7.6 6.3
7.4 4.5
7.8 4.2
7.9 5.5

J

I

Exercise independent of diet

6.9

6.5

S—

Diet independent of
exercise



Are the differences in weight loss attributable to some particular combination(s) of
exercise and diet? (i.e., is there an interaction between exercise and diet that affects

weight loss?)

Diet

Yes

Per combination means

No

Per combination means

(Exercise independent of diet)

Exercise
Yes No
6.9 5.8
8.1 5.3
8.2 5.7
8.8 6.1
8.6 5.1
3.1 5.6
7.1 6.2
8.1 54
7.6 6.3
7.4 4.5
7.8 4.2
7.6 5.3
‘ 7.9 5.5
|

Column means

6.9

6.5

Row means

| (Dietindependent of
exercise)




Are the differences in weight loss attributable to some particular combination(s) of
exercise and diet? (i.e., is there an interaction between exercise and diet that affects

weight loss?)

Exercise
Yes No
Diet 6.9 5.8
V24 V24 . . ?
more” efficient: Ves 6.9
\ ion here.

Per combination mean

8.1 5.4
No 7.6 6.3
7.4

7.8
Per combination means 7.6

7.9 :

\ )

Column means
(Exercise independent of diet)

6.5

Row means

| (Dietindependent of
exercise)

"less” efficient?



Stating the 3 possible sets of statistical hypotheses
In a two-factorial design:

Does dieting affect weight loss? DIET (main effect 1)

Hy: There is no difference between diet
treatments in mean weight loss (in the
population).

H,: There is a difference between diet
treatments in mean weight loss (in the
population).



Stating the 3 possible sets of statistical hypotheses
In a two-factorial design:

Does exercising affect weight loss? EXERCISE (main effect 2)

Hy: There is no difference between exercise
treatments in mean weight loss (in the
population).

Ha: There is a difference between exercise
treatments in mean weight loss (in the
population).



Stating the 3 possible sets of statistical hypotheses
In a two-factorial design:

Are the differences in weight loss attributable to some
combinations of exercise and diet? (interaction effect)

Hy: The effect of diet on weight loss does not
depend on exercise in the population (or vice
versa).

Ha: The effect of diet on weight loss depends on
exercise in the population (or vice versa).



Type of effects In this study:

Fixed: The levels in a factor are specifically
chosen by the researcher (diet and exercise)

Note: The typical ANOVA design (simple or factorial) is
conducted assuming a fixed design (we will see other
designs later in the course).



ANOVA Table

Source of variation Df SS Mean SS F value Prob
Diet 1 0.800 0.800 1.8089 0.1974
Exercise 1 28.800 28.800 65.1215 <0.0000001
Diet x Exercise 1 0.072 0.072 0.1628 0.6919
residuals 16 7.076 0.442

Hy: There is no difference between diet treatments in mean weight loss.
Ha: There is a difference between diet treatments in mean weight loss.

Hy: There is no difference between exercise treatments in mean weight loss.
Ha: There is a difference between exercise treatments in mean weight

loss.

Hy: The effect of diet on weight loss does not depend on exercise (or vice

versa).
Ha: The effect of diet on weight loss depends on exercise (or vice versa).

Research conclusion: Only exercise affects weight loss!



ANOVA Table (R) versus publication quality

Response: POpA
Df Sum Sq Mean Sq F value Pr(>F)

Diet 1l 0.800 0.8000 1.8089 0.1974
Exercise 1 28.800 28.8000 65.1215 4.954e-Q7 ***
Diet:Exercise 1 0.072 0.0720 0.1628 0.6919
Residuals 16 7.076 0.4422
-
Source of variation Df SS Mean SS F value Prob
Diet 1 0.800 0.800 1.8089 0.1974
Exercise 1 28.800 28.800 65.1215 <0.0000001
Diet x Exercise 1 0.072 0.072 0.1628 0.6919
residuals 16 7.076 0.442

Conclusion: There is a difference between exercise treatments
iIn mean weight loss (in the population).



ANOVA Table (details on degrees of freedom)

Source of variation Df SS Mean SS F value Prob
Diet 1 0.800 0.800 1.8089 0.1974
Exercise 1 28.800 28.800 65.1215 <0.0000001
Diet x Exercise 1 0.072 0.072 0.1628 0.6919
residuals 16 7.076 0.442

df (diet) = number of levels (k) -1 =2-1 =1
df (exercise) = number of levels (m) -1=2-1 =1
df (Interaction) =(m-1).(k-1)=(2-1).(2-1) =1
df (residuals) =(N-m-k)=(20-2-2) =16

N = total number of observations across all factors and levels



Next lecture:
1) Real examples of two-way ANOVA designs.
2) Plotting and understanding significant interaction terms.

3) How to test for assumptions (one-way and multi-factorial
ANOVA).

4) ldentifying which pairs of means significantly differ to find
the meaningful interactions (e.g., mean of weight loss with
no exercise versus mean of weight loss with diet).



