Multifactorial – ANOVA (more than one factor)

Part II: main *versus* interaction effects, interaction plots and assessing assumptions

1

2

Treatments

Main effects:

Diet - two treatments (yes/no).

Exercise - two treatments (yes/no).

Interaction:

Combination of diet and exercise treatments - four combinations:

- 1) No exercise but diet.
- 2) Exercise but no diet.
- 3) No exercise and no diet.
- 4) Exercise and diet.

Stating the 3 possible sets of statistical hypotheses in a two-factorial design:

Does dieting affect weight loss? DIET (main effect 1)

 H_0 : There is no difference between diet treatments in mean weight loss (in the population).

H_A: There is a difference between diet treatments in mean weight loss (in the population).

4

Stating the 3 possible sets of statistical hypotheses in a two-factorial design:

Does *exercising* affect weight loss? EXERCISE (main effect 2)

H₀: There is no difference between exercise treatments in mean weight loss (in the population).

H_A: There is a difference between exercise treatments in mean weight loss (in the population).

5

Stating the 3 possible sets of statistical hypotheses in a two-factorial design:

Are the differences in weight loss attributable to some combinations of exercise and diet? (interaction effect)

H₀: The effect of diet on weight loss does not depend on exercise in the population (*or vice versa*).

H_A: The effect of diet on weight loss depends on exercise in the population (*or vice versa*).

Source of variation	Df	SS	Mean SS	F value	Prob
Diet	1	0.800	0.800	1.8089	0.1974
Exercise	1	28.800	28.800	65.1215	<0.000000
Diet x Exercise	1	0.072	0.072	0.1628	0.691
residuals	16	7.076	0.442		
Ha: There is a differ Ho: There is no differ Ha: There is a diffe Ioss.	ence betverence be	tween diet trea	atments in m se treatment cise treatme	ean weight s in mean v nts in mea	veight loss. n weight
Ha: There is no differ Ha: There is no differ Ha: There is a differ loss. Ho: The effect of dia versa).	erence betweerence bet	tween diet trea tween exerci etween exerci	atments in m se treatment cise treatment not depend	s in mean weight s in mean v nts in mea	veight loss. n weight (<i>or vice</i>
Ha: There is a differ Ha: There is a differ Ha: There is a differ loss. Ho: The effect of die versa). Ha: The effect of die	erence betweerence be erence be erence be erence be et on weig et on weig	tween diet trea tween exerci etween exerci ht loss does ght loss depe	not depend of	s in mean weight s in mean v nts in mean on exercise ise (<i>or vice</i>	veight loss. n weight (or vice versa).

11

There are five different possible outcomes from a two-way factorial ANOVA:

CASE 1: Only one main effect is significant (either DIET or EXERCISE).

CASE 2: The two main effects are significant (both DIET AND EXERCISE) but not the interaction.

CASE 3: Only the interaction is significant.

CASE 4: One or both main factors are significant and the interaction as well.

CASE 5: No factor or interaction are significant (no need to cover this one; at least not graphically).

anova(lm(WeightLoss∼Diet*Exercise)) Analysis of Variance Table	
Df Sum Sq Mean Sq F value	
Exercise 1 7.6282 7.6282 76.1416 1	
Diet:Exercise 1 0.0201 0.0201 0.2003 Residuals 16 1.6030 0.1002	

anova(lm(We Analysis of	ightLoss~Die Variance Ta			
	Df Sum Sq	Mean Sq	F value	
Exercise	1 0.000			

CASE 4: One or both main factors are significant and the interaction as well.

CASE 4.1: only interaction should be interpreted but not the main effect.

		ance Tab	le			
Response: Weightloss						

19

Multi-factorial ANOVA

Assumptions (the same as for the one-way ANOVA):

1) Each of the samples (observations within groups) is a random sample from its population (LATER IN THE COURSE).

2) The variable (e.g., weight loss) is normally distributed in each combination of treatment (e.g., no diet and exercise) population.

3) The variances are equal among all populations from which the treatments were sampled (otherwise the F values change in ways that may not measure difference among means).

26

Assessing the normality assumption

- ANOVAs are not very sensitive to lack of normality (i.e., they are robust against normality).
- Simulation studies, using a variety of non-normal distributions, have shown that the false positive rates (Type I error rates) in ANOVA are not strongly affected by the violation of the normality assumption (Harwell et al. 1992, Lix et al. 1996).

Test	Advantages	Disadvantages
Chi-Square test	 appropriate for any level of measurment ties may be problematic 	 grouping of observations required (<u>frequencies</u> per group must be > 5) unsuitable for small samples statistic based on squares
Kolmogorov- Smirnov test	 suitable for small samples ties are no problem omnibus test 	 no <u>categorial data</u> low power if prerequisites are not met
Lilliefors test	higher power than KS test	no categorial data
Anderson-Darling test	 high power when testing for normal distribution more precise than KS test (especially in the outer parts of the distribution) 	 no categorial data statistic based on squares
Shapiro-Wilk test	 highest power among all tests for normality 	test for normality only computer required due to complicated procedure
Cramér-von-Mises test	higher power than KS test	 statistic based on squares no categorial data

n <- 100 Group1 <- rnorm(n,10,2) Group2 <- rnorm(n,20,2) Factor <- c(rep(1,n),rep(2,n))
<pre>> var(Group1) [1] 3.911981 > var(Group2) [1] 4.022584 The two samples come from populations with the same variances (they only vary in mean values).</pre>
Levene's Test for Homogeneity of Variance (center = median) Df F value Pr(>F) group 1 0.428 0.5137 Conclusion? 198

Assessing the equality of variance (homosce	edasticity) assumption
n <- 100 Group1 <- rnorm(n,10,2) Group2 <- rnorm(n,20,3) Factor <- c(rep(1,n),rep(2,n))	
<pre>> var(Group1) [1] 4.11724 > var(Group2) [1] 7.693817 The two samples come fr with different variances (in their means).</pre>	om populations and they also vary
<pre>> leveneTest(c(Group1,Group2) ~ as.facto Levene's Test for Homogeneity of Varianc Df F value Pr(>F) group 1 6.3814 0.01232 * 198</pre>	r(Factor)) e (center = median) <mark>Conclusion?</mark>

Let's contrast the Levene's and ANOVAs hypotheses					
Levene's:					
H_0 : The samples come from populations with the same variance. H_A : At least two samples come from populations with different variances.					
ANOVA:					
H_0 : The samples come from the same population. H_A : At least two samples come from different populations.					
- If they have the same variances and same means, then we can state under the null hypothesis that they come from the same population. Remember, we should test for differences in variance (Levene's) before conducting an ANOVA.					

A more complex (and real) biological data

Regional and strain-specific gene expression mapping

in the adult mouse brain 11038-11043 | PHAS | September 26, 2000 | vol. 97 | no. 20 Rickard Sandberg⁴¹, Rie Yasuda¹⁴, Daniel G. Pankratz^a, Todd A. Carter^a, Jo A. Del Rio⁵, Lisa Wodicka⁵, Mark Mayford⁴, David J. Lockhart⁵, and Carrolee Barlow⁴⁵

To determine the genetic causes and molecular mechanisms responsible for neurobehavioral differences in mice, we used highly parallel gene expression profiling to detect genes that are differentially expressed between the 1295vEv and C57BL/6 mouse strains at baseline and in response to seizure. In addition, we identified genes that are differentially expressed in specific brain regions. We found that approximately 1% of expressed genes are differentially expressed between strains in at least one region of the brain and that the gene expression response to seizure is significantly different between the two inbred strains. The results lead to the identification of differences in gene expression that may account for distinct phenotypes in inbred strains and the unique functions of specific brain regions.

Gene expression is standardized in relation to seizure versus base line

_							
	Case 1 - What are the significant effects? a gene for which only strain is significant (i.e., they differ in gene expression levels)						
9	gene aa119706.at - Only strain is significant (i.e., strains differ from one another in their mean gene expression levels, but these differences are independent of the brain region)						
Re	sponse: aa119706.at						
st	Df Sum Sq Mean Sq F value Pr(>F) rain 1 45850 45850 15.5796 0.001938 **						
br	ain.region 5 7434 1487 0.5052 0.767145						
st	rain:brain.region 5 2291 458 0.1557 0.974152						
Re	siduals 12 35315 2943						
Si	gnif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Case 2 a gene for v	: - V vhic	Vhat are h only t	the sigr he brain	nificant ef region is	fects? significant		
gene AA166452.at - Only brain region is significant (i.e., regions differ from one another in their mean gene expression levels. but these differences are independent of the strain)							
Response: AA166452.	at						
	Df	Sum Sq	Mean Sq	F value	Pr(>F)		
strain		176	176	0.0150	0.9046		
brain.region		1435582	287116	24.4269	6.67e-06 ***		
strain:brain.region		21824	4365	0.3713	0.8587		
Residuals	12	141049	11754				
Signif. codes: 0 '	***'	0.001	'**' 0.0	1'*'0.0	5'.'0.1''1		

Case 3 - What are the significant effects a gene for which only the interaction is signi	;? ficant						
gene aa051500.at - Only the interaction between brain regions and strain is significant (i.e., differences in mean gene expression levels of brain regions depend on strain, or vice-versa)							
Response: aa051500.at							
Df Sum Sq Mean Sq F value Pr	(>F)						
strain 1 852.0 852.04 2.4399 0.14	4256						
brain.region 5 2212.9 442.58 1.2674 0.33	9231						
strain:brain.region 5 9087.2 1817.44 5.2045 0.00	9038 **						
Residuals 12 4190.5 349.21							
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '	.'0.1''1						

Case 4 - What are the significant effects? a gene for which at least one main factor and the interaction is significant
gene AA107725.f.at - The mean gene expression levels in brain regions vary, and the mean differences depend on the strain
Response: AA107725.f.at
DE Sum Sa Maan Sa E yalua Da(SE)
Dr Sum Sq Mean Sq F Value Pr(>F)
strain 1 715.0 715.0 1.6751 0.2199350
strain 1 715.0 715.0 1.6751 0.2199350 brain.region 5 12941.7 2588.3 6.0635 0.0050251 **
strain 1 715.0 715.0 1.6751 0.2199350 brain.region 5 12941.7 2588.3 6.0635 0.0050251 ** strain:brain.region 5 19124.7 3824.9 8.9603 0.0009664 ***
strain 1 715.0 715.0 1.6751 0.2199350 brain.region 5 12941.7 2588.3 6.0635 0.0050251 ** strain:brain.region 5 19124.7 3824.9 8.9603 0.0009664 *** Residuals 12 5122.5 426.9
strain 1 715.0 715.0 1.6751 0.2199350 brain.region 5 12941.7 2588.3 6.0635 0.0050251 ** strain:brain.region 5 19124.7 3824.9 8.9603 0.0009664 *** Residuals 12 5122.5 426.9
b) Sum Sq Medir Sq F Value FF(SF) 1 715.0 715.0 1.6751 0.2199350 brain.region 5 12941.7 2588.3 6.0635 0.0050251 ** strain:brain.region 5 19124.7 3824.9 8.9603 0.0009664 *** Residuals 12 5122.5 426.9 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

A word on balanced designs

The ANOVAs performed here (and in tutorial 3) are based on equal number of observations per combination of groups.

In the fictional diet example, there are 5 individuals in each of the 4 combinations of diet (yes/no) and exercise (yes/no).

In the gene expression study, there are 2 individuals in each of the 12 combinations of strain (2 strains) and brain region (6 regions).

For balanced designs, we say that the design is fully orthogonal because there is no variation that is shared between factors (a concept we will see in a few lectures; under ANCOVA).

For fully orthogonal designs, we use what is called a Type I Sumof-Squares (Type I SS). When factors are not fully orthogonal, then we use the Type III SS (Sum-of-Squares). We will learn about Type III in the ANCOVA module).

56

