Multifactorial — ANOVA
(more than one factor)

Part Il: main versus interaction effects,
interaction plots and assessing
assumptions



Main effects

Interaction

Do exercise and sport affect weight loss?

Let’s elaborate on this question further:

Are the differences in weight loss only due to exercise
alone?
Are the differences in weight loss only due to diet alone?

Does the effect of diet on weight loss depend on
exercise? In other words, are the differences in weight
loss attributable to some particular combinations of
exercise and diet? (e.g., the biggest weight loss compared
to any other combination of diet and exercise was
observed when individuals both dieted and exercised).



Treatments

Main effects:

Diet - two treatments (yes/no).
Exercise - two treatments (yes/no).
Interaction:

Combination of diet and exercise treatments - four combinations:

1) No exercise but diet.

2) Exercise but no diet.

3) No exercise and no diet.
4) Exercise and diet.



Stating the 3 possible sets of statistical hypotheses
in a two-factorial design:

Does dieting affect weight loss? DIET (main effect 1)

Hy: There is no difference between diet treatments in
mean weight loss (in the population).

Ha: There is a difference between diet treatments in
mean weight loss (in the population).



Stating the 3 possible sets of statistical hypotheses
In a two-factorial design:

Does exercising affect weight loss? EXERCISE (main effect 2)

Hy: There is no difference between exercise
treatments in mean weight loss (in the population).

Ha.: There is a difference between exercise
treatments in mean weight loss (in the population).



Stating the 3 possible sets of statistical hypotheses
in a two-factorial design:

Are the differences in weight loss attributable to some
combinations of exercise and diet? (interaction effect)

Hy: The effect of diet on weight loss does not
depend on exercise in the population (or vice versa).

H,: The effect of diet on weight loss depends on
exercise in the population (or vice versa).



ANOVA Table

Source of variation Df SS Mean SS F value Prob
Diet 1 0.800 0.800 1.8089 0.1974
Exercise 1 28.800 28.800 65.1215 <0.0000001
Diet x Exercise 1 0.072 0.072 0.1628 0.6919
residuals 16 7.076 0.442

Hy: There is no difference between diet treatments in mean weight loss.
Ha: There is a difference between diet treatments in mean weight loss.

Hy: There is no difference between exercise treatments in mean weight loss.
Ha: There is a difference between exercise treatments in mean weight

loss.

Hy: The effect of diet on weight loss does not depend on exercise (or vice

versa).
Ha: The effect of diet on weight loss depends on exercise (or vice versa).

Conclusion: Only exercise affects weight loss!



Only exercise affects weight loss!
BUT HOW? Exercise increases weight loss (P<0.0000001)

Interaction plot & 95% confidence intervals
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Interaction plots are the best and most intuitive way to understand the outcomes
(results) of complex factorial studies. We will use statistical significance tests in a
later lecture to assess the significance of the patterns we detect visually.
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Only exercise affected weight loss!
BUT HOW? Exercise increased weight loss (P<0.0000001)

Understanding interaction plots
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NOTE: dots and dashed lines
are not used in interaction
plots; they are used here to
facilitate understanding.



Diet did not aftect weight loss! (P=0.1974), i.e., variation in mean
(likely) due to sampling variation

Understanding interaction plots
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There are five different possible outcomes
from a two-way factorial ANOVA:

CASE 1: Only one main effect is significant (either DIET \/
or EXERCISE).

CASE 2: The two main effects are significant (both DIET
AND EXERCISE) but not the interaction.

CASE 3: Only the interaction is significant.

CASE 4: One or both main factors are significant and the
Interaction as well.

CASE 5: No factor or interaction are significant (no need
to cover this one; at least not graphically).



CASE 2: the two main effects are significant (DIET AND
EXERCISE) but not the interaction.

Note that | kept the “fictional study”, but I've created
data for the different outcomes (cases).



CASE 2: The two main effects are significant (DIET AND
EXERCISE) but not the interaction.
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CASE 2: The two main effects are significant (DIET AND
EXERCISE) but not the interaction.
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CASE 3: Only the interaction is significant

Note that | kept the “fictional study”, but I've created
different data set for the different possible outcomes
(cases).



CASE 3: Only the interaction is significant, i.e., weight loss
depends on the combinations of the levels of the main effects;
greater when no diet and exercise OR when diet and no exercise.

5.5

~
o

Mean of no exercise

independent of diet
/ exercise

\ no

@ yes
Mean of exercise
independent of diet

Weight loss (pounds)
w
o

N
o

no yes
diet



CASE 3: Only the interaction is significant, i.e., weight loss
depends on the combinations of the levels of the main effects;
greater when no diet and exercise OR when diet and no exercise.
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CASE 4: One or both main factors are significant and the
interaction as well.

CASE 4.1: only interaction should be interpreted but not the
main effect.




Weight loss (pounds)

CASE 4: One or both main factors are significant and the
interaction as well. CASE 4.1: only interaction should be

interpreted but not the main effect.
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A main effect says that thereis a
difference in weight loss between
the exercise means, regardless of
diet.

This may be technically true but
only because of the big differences
at diet.

It is not true that weight loss differ
for the no diet case.

So, to say that there is weight loss
regardless of diet (main effect) is
not accurate!



CASE 4: One or both main factors are significant and the
interaction as well.

CASE 4.2: the interaction & main effect can be interpreted.




Weight loss (pounds)

CASE 4: One or both main factors are significant and the
interaction as well. CASE 4.2: the interaction & main effect can be

interpreted.
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A main effect says that thereis a
difference in weight loss between
the exercise means, regardless of
diet.

This is the case because the weight
loss when individuals exercised is
consistently greater than no
exercise regardless of the diet.

And, individuals that exercised and
dieted loss even more weight than
individuals than only dieted.



Growth (g)

Should we interpret only the interaction or also the differences in calcium
independent of temperature?

YES; one could interpret only the interaction because one level of calcium (high) is
greater in average than all other levels. In this case one could state that calcium can
affect growth independent of temperature; even given the fact the greatest growth is
at an intermediate temperature and at a high level of calcium.
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Should we interpret only the interaction or also the differences in temperature
independent of calcium?

NO; one should not interpret the interaction because no level of temperature is
greater or smaller in average regardless of calcium levels. In this case, one could
not state that temperature can affect growth independent of calcium.
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Multi-factorial ANOVA

Assumptions (the same as for the one-way ANOVA):

1) Each of the samples (observations within groups) is a
random sample from its population (LATER IN THE

COURSE).

2) The variable (e.g., weight loss) is normally distributed in
each combination of treatment (e.g., no diet and exercise)
population.

3) The variances are equal among all populations from
which the treatments were sampled (otherwise the F values
change in ways that may not measure difference among
means).



Assessing the normality assumption

- ANOVAs are not very sensitive to lack of normality
(i.e., they are robust against normality).

- Simulation studies, using a variety of non-normal
distributions, have shown that the false positive rates
(Type | error rates) in ANOVA are not strongly
affected by the violation of the normality assumption
(Harwell et al. 1992, Lix et al. 1996).



Assessing the normality assumption — some traditional tests

Advantages Disadvantages

Chi-Square test ¢ appropriate for any level of e grouping of observations required
measurment (frequencies per group must be > 5)
¢ ties may be problematic ¢ unsuitable for small samples

o statistic based on squares

Kolmogorov- ¢ suitable for small samples e no categorial data
Smirnov test ¢ ties are no problem ¢ low power if prerequisites are not met
e omnibus test

Lilliefors test ¢ higher power than KS test ¢ no categorial data
Anderson-Darling ¢ high power when testing for normal ¢ no categorial data
test distribution o statistic based on squares

e more precise than KS test (especially
in the outer parts of the distribution)

Shapiro-Wilk test ¢ highest power among all tests for o test for normality only
normality e computer required due to
complicated procedure
Cramér-von-Mises ¢ higher power than KS test o statistic based on squares
test e no categorial data

Source: http://www.statistics4u.info/fundstat_eng/cc_normality_test.html



Assessing the normality assumption:
The Quantile-Quantile normal plot (Q-Q normal plot)

The normal Q-Q plot is a graphical technique for
determining if multiple data sets come from populations
with a common distribution (here, if they all come from

normally distributed populations regardless of their means
and variances).

Normal Quanitiles
fix)

Tutorial 3: Factorial ANOVA

R —r

Normal QQ plot of > mple of 50
observations: _— Factorial Analysis of Variance




Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

In ANOVAs, it is not the response variable (Weight loss) as a
whole that is required to be normal, but rather the response
within groups.
Group 1 Group 2
Usual interpretation of the |
normality assumption in ANOVAs -
“Data have to be normal”
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n
Groupl rnorm(n, 10,

Group?2 rnorm(n, 20,
hist(c(Groupl,Group2),breaks

0O 2 4 6 8
I

Response variable not normal | | lT | I |
across groups, but normal 5 0 18 20 25
within groups (the correct

assumption).

Response variable
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

Group 1 Group 2 Normal Q-Q Plot
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

Normal Q-Q Plot
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal (Q-Q normal plot)

If there are too many groups
and too many factors (e.g.,
multi-factorial ANOVA), it
becomes impossible to
analyze all Q-Q plots for all
combinations of levels across
factors!

Ex. 2 factors with 3 levels for
factor 1 and 4 levels for factor
2 =12 groups!

Sample Quantiles

Sample Quantiles
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Normal Q-Q Plot
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Group 1
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal plot of residuals
(Q-Q normal residual plot)

ANOVA is a linear multiple regression model in which the
response variable is continuous, and predictors are categorical.

Y = Factor(G1,G2) + residuals

So, instead of plotting all groups, we assess the residuals across all groups,
i.e., variation not accounted by group mean differences.
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Assessing the normality assumption in linear models:
The Quantile-Quantile normal plot of residuals
(Q-Q normal residual plot)

You will practice the application of Q-Q normal residual plots for
two-factorials ANOVAs in tutorial 3.

Weight;,c = Diet + Exercise + Diet X Exercise + residuals

/

Normal Q-Q

Tutorial 3: Factorial ANOVA

Standardized residuals

Factorial Analysis of Variance

-3 -2 -1 0 1 2 3

Theoretical Quantiles
aov(c(Group1, Group2) ~ Factor)



Assessing the equality of variance (homoscedasticity) assumption

The two main assessments for testing the null
hypothesis that multiple samples come from
populations with equal variances are:

Levene’s test and Barlett test (more sensitive to non-
normality than Levene’s).

H,: The samples come from populations with the same
variance.

H,: At least two samples come from populations with
different variances.




Assessing the equality of variance (homoscedasticity) assumption

n
Groupl <- rnorm(n,

Group2 <- rnorm(n,
Factor <- c(rep(l,n

[1] 3.911981 The two samples come from populations
with the same variances (they only vary 1n
mean values).

[1] 4.022584

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 0.428 0.5137

198




Assessing the equality of variance (homoscedasticity) assumption

n
Groupl rnorm(n,

Group?Z rnorm(n,
Factor c(rep(i,n

The two samples come from populations
with different variances (and they also vary
in their means).

[1] 4.11724

[1] 7.693817

Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(F) :
group 1 6.3814 0.01232 *
198




Let’s contrast the Levene’s and ANOVAs hypotheses

Levene’s:

H,: The samples come from populations with the same

variance.
H,: At least two samples come from populations with

different variances.

ANOVA:

H,: The samples come from the same population.
H,: At least two samples come from different populations.

- If they have the same variances and same means, then we can
state under the null hypothesis that they come from the same
population. Remember, we should test for differences in variance
(Levene’s) before conducting an ANOVA.







A more complex (and real) biological data

Regional and strain-specific gene expression mapping
in the adUIt mouse braln 11038-11043 | PNAS | September 26,2000 | vol.97 | no. 20

Rickard Sandberg**, Rie Yasuda'™, Daniel G. Pankratz*, Todd A. Carter*, Jo A. Del Rio$, Lisa Wodicka$, Mark Mayford*,
David J. Lockhart$, and Carrolee Barlow*1

To determine the genetic causes and molecular mechanisms re-
sponsible for neurobehavioral differences in mice, we used highly
parallel gene expression profiling to detect genes that are differ-
entially expressed between the 129SvEv and C57BL/6 mouse
strains at baseline and in response to seizure. In addition, we
identified genes that are differentially expressed in specific brain
regions. We found that approximately 1% of expressed genes are
differentially expressed between strains in at least one region of
the brain and that the gene expression response to seizure is
significantly different between the two inbred strains. The results
lead to the identification of differences in gene expression that
may account for distinct phenotypes in inbred strains and the
unique functions of specific brain regions.

Gene expression is standardized in relation to seizure versus base line



Case 1 - What are the significant effects?
a gene for which only strain is significant (i.e., they differ in
gene expression levels)

gene aa119706.at - Only strain is significant (i.e., strains differ
from one another in their mean gene expression levels, but
these differences are independent of the brain region)

Response: aall9706.at

Df Sum Sq Mean Sq F value Pr(GF)
strain 1 45850 45850 15.5796 0.001938 **
brain.region 5 7434 1487 ©.5052 0.767145

strain:brain.region 5 2291 458 0.1557 0.974152
Residuals 12 35315 2943

Signif. codes: 0@ ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ ° 1
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Case 2 - What are the significant effects?
a gene for which only the brain region is significant

gene AA166452.at - Only brain region is significant (i.e.,
regions differ from one another in their mean gene expression
levels. but these differences are independent of the strain)

Response: AA166452.at

Df Sum Sqg Mean Sq F value Pr(>F)
strain 1 176 176 0.0150 0.9046
brain.region 5 1435582 287116 24.4269 6.67e-06 ***

strain:brain.region 5 21824 4365 ©0.3713 0.8587
Residuals 12 141049 11754

Signif. codes: @ ‘***’ 0,001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1
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Case 3 - What are the significant effects?
a gene for which only the interaction is significant

gene aa051500.at - Only the interaction between brain regions and
strain is significant (i.e., differences in mean gene expression levels of
brain regions depend on strain, or vice-versa)

Response: aa®51500.at

Df Sum Sq Mean Sq F value Pr(F)
strain 1 852.0 852.04 2.4399 0.144256
brain.region 5 2212.9 442.58 1.2674 0.339231

strain:brain.region 5 9087.2 1817.44 5.2045 0.009038 **
Residuals 12 4190.5 349.21

S1Lgni'Ecodes: RO XX SOt O0TR: == R 0019 = n 0% 05 Fr (] I ]
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Case 4 - What are the significant effects? a gene for which at
least one main factor and the interaction is significant

gene AA107725.f.at - The mean gene expression levels
in brain regions vary, and the mean differences depend
on the strain

Response: AA10Q7725.f.at

Df Sum Sq Mean Sq F value Pr(>F)
strain 1 715.0 715.0 1.6751 0.2199350
brain.region 5 12941.7 2588.3 6.0635 0.0050251 **
strain:brain.region 5 19124.7 3824.9 8.9603 0.0009664 ***
Residuals 12 5122.5 426.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1
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A word on balanced designs

The ANOVAs performed here (and in tutorial 3) are based on equal
number of observations per combination of groups.

In the fictional diet example, there are 5 individuals in each of the 4
combinations of diet (yes/no) and exercise (yes/no).

In the gene expression study, there are 2 individuals in each of the
12 combinations of strain (2 strains) and brain region (6 regions).

For balanced designs, we say that the design is fully orthogonal
because there is no variation that is shared between factors (a
concept we will see in a few lectures; under ANCOVA).

For fully orthogonal designs, we use what is called a Type | Sum-
of-Squares (Type | SS). When factors are not fully orthogonal, then
we use the Type lll SS (Sum-of-Squares). We will learn about
Type Il in the ANCOVA module).



Lecture 6: Which effects are significant?

which pairwise means to compare?
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