
Regarding the interaction, there 
are 3 groups of Calcium and 3 
groups of temperature (9 means). 
There are 36 possible pairwise 
tests to contrast Growth across 
levels (9 x 8/2 = 36).



Why should we not trust the results from multiple 
statistical tests? 

Why do we conduct ANOVAs and not 
simply test pairs of means?
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Guided discussion - t-distribution assuming H0 as true
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Regarding Calcium, there are 
3 possible pairwise tests 
contrast Growth across 
levels (3 x 2/2 = 3).

High – intermediate
High – low
Intermediate – low



Regarding Temperature, 
there are 3 possible pairwise 
tests contrast Growth across 
levels (3 x 2/2 = 3).

High - intermediate
High - low
Intermediate - low



Regarding the interaction, there 
are 3 groups of Calcium and 3 
groups of temperature (9 means). 
There are 36 possible pairwise 
tests to contrast Growth across 
levels (9 x 8/2 = 36).



There are 36 possible pairwise 
tests to contrast Growth across 
levels (9 x 8/2 = 36).

Int. T/High Ca

High T/High Ca
2.15g

Does the mean growth in 
intermediate T and high Ca differ 
significantly from the mean 
growth in high T and high Ca?
Difference = 2.15g.



There are 36 possible pairwise 
tests to contrast Growth across 
levels (9 x 8/2 = 36).

Does the mean growth in low T 
and low Ca differ significantly 
from the mean growth in low T 
and high Ca? Difference = 2.17g.



What happens when we conduct 
too many statistical tests?

A past classroom demonstration 
using a survey

 



1 2 3 4 5
X

1) Do you like soccer? X
2) Do you like playing video games? X
3) Do you like eating out?
4) Do you enjoy writting?
5) Do you like cats? X
6) Do you like to watch movies? X
7) Do you like to read novels?

Past classroom surveys:
Would you expect odd- and even day born individuals 

to differ in their preferences? 

21) Do you like science fiction? X
22) Do you like pizza? X
23) Do you like to listen to the radio? X
24) Do you like museums? X

…...

dislike Love it



class survey: 
24 questions

Really ????



Why when comparing multiple mean values, one should 
start with an ANOVA and not multiple t-test

Probability of committing 1 type I error (false positive) is the 
same for 1 or multiple tests (𝛼), but conducting 100 tests, 

there will be a chance of 5 being significant for an 𝛼 = 0.05



t standardized values 

t-distribution assuming H0 as true

pr
ob

ab
ilit

y 
de

ns
ity
!/2 !/2

-2.063899 2.063899

acceptance area

rejection
area

rejection
area

Probability of committing 1 type I error (false positive) is the 
same for 1 or multiple tests (𝛼), but conducting 100 tests, 

there will be a chance of 5 being significant for an 𝛼 = 0.05

Why when comparing multiple mean values, one should 
start with an ANOVA and not multiple t-test



Why when comparing multiple mean values, one should 
start with an ANOVA and not multiple t-test

Even though multiple ANOVAs will inflate the number of false 
positives (i.e., type I error), it still generates a much smaller 

number of tests than pairwise tests.



3 pairwise 
tests

3 pairwise 
tests

36 pairw
ise tests

ANOVA = 3 tests 
pairwise t-tests = 42 tests



wake up

@cjlortie



If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of at least 
one significant test by chance (i.e., null hypothesis is true) when one should not (i.e., 
false positive) out of 32 tests is:

1-(1-alpha)32= 1-(1-0.05)32 = 0.806  (80.6%) 

80.6% chance of finding at least 1 significant test when H0 is true!
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Number of statistical tests

1-(1-0.05)1=0.050 (5%) 
[1 test leads to the expected alpha (prob. of committing a type I error)

1-(1-0.05)100=0.9941 (99.4%) 

1-(1-0.05)32 = 0.806  (80.6%) 



Examples of really huge numbers of multiple tests
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observing this score under the null hypoth-
esis is 1/68 million, or 1.5 s 10–8 . This prob-
ability—the probability that a score at least 
as large as the observed score would occur in 
data drawn according to the null hypothesis—
is called the P-value.

Likewise, the P-value of a candidate CTCF 
binding site with a score of 17.0 is equal to 
the percentage of scores in the null distribu-
tion that are r17.0. Among the 68 million 
null scores shown in Figure 1c, 35 are r17.0, 
leading to a P-value of 5.5 s 10–7 (35/68 mil-
lion). The P-value associated with score x 
corresponds to the area under the null dis-
tribution to the right of x (Fig. 1d).

Shuffling the human genome and rescan-
ning with the CTCF motif is an example of 
an ‘empirical null model’. Such an approach 
can be inefficient because a large number 
of scores must be computed. In some cases, 
however, it is possible to analytically calculate 
the form of the null distribution and calcu-
late corresponding P-values (that is, by defin-
ing the null distribution with mathematical 
formulae rather than by estimating it from 
measured data). 

In the case of scanning for CTCF motif 
occurrences, an analytic null distribution 
(gray line in Fig. 1d) can be calculated using 
a dynamic programming algorithm, assum-
ing that the sequence being scanned is gener-
ated randomly with a specified frequency of 
each of the four nucleotides3. This distribu-
tion allows us to compute, for example, that 
the P-value associated with the top score in 
Figure 1b is 2.3 s 10–10 (compared to 1.5 s 
10–8 under the empirical null model). This 
P-value is more accurate and much cheaper 
to compute than the P-value estimated from 
the empirical null model.

In practice, determining whether an 
observed score is statistically significant 
requires comparing the corresponding sta-
tistical confidence measure (the P-value) to 

how they are computed and some guidelines 
for how to select an appropriate measure for 
a given experiment.

As a motivating example, suppose that you 
are studying CTCF, a highly conserved zinc-
finger DNA-binding protein that exhibits 
diverse regulatory functions and that may 
play a major role in the global organization 
of the chromatin architecture of the human 
genome1. To better understand this protein, 
you want to identify candidate CTCF bind-
ing sites in human chromosome 21. Using 
a previously published model of the CTCF 
binding motif (Fig. 1a)2, each 20 nucleotide 
(nt) sub-sequence of chromosome 21 can be 
scored for its similarity to the CTCF motif. 
Considering both DNA strands, there are 68 
million such subsequences. Figure 1b lists the 
top 20 scores from such a search.

Interpreting scores with the null 
hypothesis and the P-value
How biologically meaningful are these 
scores? One way to answer this question is to 
assess the probability that a particular score 
would occur by chance. This probability can 
be estimated by defining a ‘null hypothesis’ 
that represents, essentially, the scenario that 
we are not interested in (that is, the random 
occurrence of 20 nucleotides that match the 
CTCF binding site). 

The first step in defining the null hypothesis 
might be to shuffle the bases of chromosome 
21. After this shuffling procedure, high-
scoring occurrences of the CTCF motif will 
only appear because of random chance. Then, 
the shuffled chromosome can be rescanned 
with the same CTCF matrix. Performing this 
procedure results in the distribution of scores 
shown in Figure 1c.

Although it is not visible in Figure 1c, out of 
the 68 million 20-nt sequences in the shuffled 
chromosome, only one had a score r26.30. 
In statistics, we say that the probability of  

Imagine that you have just invested a sub-
stantial amount of time and money in a 

shotgun proteomics experiment designed 
to identify proteins involved in a particular 
biological process. The experiment success-
fully identifies most of the proteins that you 
already know to be involved in the process 
and implicates a few more. Each of these 
novel candidates will need to be verified with 
a follow-up assay. How do you decide how 
many candidates to pursue?

The answer lies in the tradeoff between 
the cost associated with a false positive ver-
sus the benefit of identifying a novel partici-
pant in the biological process that you are 
studying. False positives tend to be particu-
larly problematic in genomic or proteomic 
studies where many candidates must be sta-
tistically tested. 

Such studies may include identifying genes 
that are differentially expressed on the basis 
of microarray or RNA-Seq experiments, scan-
ning a genome for occurrences of candidate 
transcription factor binding sites, search-
ing a protein database for homologs of a 
query protein or evaluating the results of a 
genome-wide association study. In a nutshell, 
the property that makes these experiments so 
attractive—their massive scale—also creates 
many opportunities for spurious discoveries, 
which must be guarded against.

In assessing the cost-benefit tradeoff, it is 
helpful to associate with each discovery a sta-
tistical confidence measure. These measures 
may be stated in terms of P-values, false 
discovery rates or q-values. The goal of this 
article is to provide an intuitive understand-
ing of these confidence measures, a sense for 

How does multiple testing correction work?
William S Noble

When prioritizing hits from a high-throughput experiment, it is important to correct for random events that falsely 
appear significant. How is this done and what methods should be used?
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allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests. 
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observing this score under the null hypoth-
esis is 1/68 million, or 1.5 s 10–8 . This prob-
ability—the probability that a score at least 
as large as the observed score would occur in 
data drawn according to the null hypothesis—
is called the P-value.

Likewise, the P-value of a candidate CTCF 
binding site with a score of 17.0 is equal to 
the percentage of scores in the null distribu-
tion that are r17.0. Among the 68 million 
null scores shown in Figure 1c, 35 are r17.0, 
leading to a P-value of 5.5 s 10–7 (35/68 mil-
lion). The P-value associated with score x 
corresponds to the area under the null dis-
tribution to the right of x (Fig. 1d).

Shuffling the human genome and rescan-
ning with the CTCF motif is an example of 
an ‘empirical null model’. Such an approach 
can be inefficient because a large number 
of scores must be computed. In some cases, 
however, it is possible to analytically calculate 
the form of the null distribution and calcu-
late corresponding P-values (that is, by defin-
ing the null distribution with mathematical 
formulae rather than by estimating it from 
measured data). 

In the case of scanning for CTCF motif 
occurrences, an analytic null distribution 
(gray line in Fig. 1d) can be calculated using 
a dynamic programming algorithm, assum-
ing that the sequence being scanned is gener-
ated randomly with a specified frequency of 
each of the four nucleotides3. This distribu-
tion allows us to compute, for example, that 
the P-value associated with the top score in 
Figure 1b is 2.3 s 10–10 (compared to 1.5 s 
10–8 under the empirical null model). This 
P-value is more accurate and much cheaper 
to compute than the P-value estimated from 
the empirical null model.

In practice, determining whether an 
observed score is statistically significant 
requires comparing the corresponding sta-
tistical confidence measure (the P-value) to 

how they are computed and some guidelines 
for how to select an appropriate measure for 
a given experiment.

As a motivating example, suppose that you 
are studying CTCF, a highly conserved zinc-
finger DNA-binding protein that exhibits 
diverse regulatory functions and that may 
play a major role in the global organization 
of the chromatin architecture of the human 
genome1. To better understand this protein, 
you want to identify candidate CTCF bind-
ing sites in human chromosome 21. Using 
a previously published model of the CTCF 
binding motif (Fig. 1a)2, each 20 nucleotide 
(nt) sub-sequence of chromosome 21 can be 
scored for its similarity to the CTCF motif. 
Considering both DNA strands, there are 68 
million such subsequences. Figure 1b lists the 
top 20 scores from such a search.

Interpreting scores with the null 
hypothesis and the P-value
How biologically meaningful are these 
scores? One way to answer this question is to 
assess the probability that a particular score 
would occur by chance. This probability can 
be estimated by defining a ‘null hypothesis’ 
that represents, essentially, the scenario that 
we are not interested in (that is, the random 
occurrence of 20 nucleotides that match the 
CTCF binding site). 

The first step in defining the null hypothesis 
might be to shuffle the bases of chromosome 
21. After this shuffling procedure, high-
scoring occurrences of the CTCF motif will 
only appear because of random chance. Then, 
the shuffled chromosome can be rescanned 
with the same CTCF matrix. Performing this 
procedure results in the distribution of scores 
shown in Figure 1c.

Although it is not visible in Figure 1c, out of 
the 68 million 20-nt sequences in the shuffled 
chromosome, only one had a score r26.30. 
In statistics, we say that the probability of  

Imagine that you have just invested a sub-
stantial amount of time and money in a 

shotgun proteomics experiment designed 
to identify proteins involved in a particular 
biological process. The experiment success-
fully identifies most of the proteins that you 
already know to be involved in the process 
and implicates a few more. Each of these 
novel candidates will need to be verified with 
a follow-up assay. How do you decide how 
many candidates to pursue?

The answer lies in the tradeoff between 
the cost associated with a false positive ver-
sus the benefit of identifying a novel partici-
pant in the biological process that you are 
studying. False positives tend to be particu-
larly problematic in genomic or proteomic 
studies where many candidates must be sta-
tistically tested. 

Such studies may include identifying genes 
that are differentially expressed on the basis 
of microarray or RNA-Seq experiments, scan-
ning a genome for occurrences of candidate 
transcription factor binding sites, search-
ing a protein database for homologs of a 
query protein or evaluating the results of a 
genome-wide association study. In a nutshell, 
the property that makes these experiments so 
attractive—their massive scale—also creates 
many opportunities for spurious discoveries, 
which must be guarded against.

In assessing the cost-benefit tradeoff, it is 
helpful to associate with each discovery a sta-
tistical confidence measure. These measures 
may be stated in terms of P-values, false 
discovery rates or q-values. The goal of this 
article is to provide an intuitive understand-
ing of these confidence measures, a sense for 
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observing this score under the null hypoth-
esis is 1/68 million, or 1.5 s 10–8 . This prob-
ability—the probability that a score at least 
as large as the observed score would occur in 
data drawn according to the null hypothesis—
is called the P-value.

Likewise, the P-value of a candidate CTCF 
binding site with a score of 17.0 is equal to 
the percentage of scores in the null distribu-
tion that are r17.0. Among the 68 million 
null scores shown in Figure 1c, 35 are r17.0, 
leading to a P-value of 5.5 s 10–7 (35/68 mil-
lion). The P-value associated with score x 
corresponds to the area under the null dis-
tribution to the right of x (Fig. 1d).

Shuffling the human genome and rescan-
ning with the CTCF motif is an example of 
an ‘empirical null model’. Such an approach 
can be inefficient because a large number 
of scores must be computed. In some cases, 
however, it is possible to analytically calculate 
the form of the null distribution and calcu-
late corresponding P-values (that is, by defin-
ing the null distribution with mathematical 
formulae rather than by estimating it from 
measured data). 

In the case of scanning for CTCF motif 
occurrences, an analytic null distribution 
(gray line in Fig. 1d) can be calculated using 
a dynamic programming algorithm, assum-
ing that the sequence being scanned is gener-
ated randomly with a specified frequency of 
each of the four nucleotides3. This distribu-
tion allows us to compute, for example, that 
the P-value associated with the top score in 
Figure 1b is 2.3 s 10–10 (compared to 1.5 s 
10–8 under the empirical null model). This 
P-value is more accurate and much cheaper 
to compute than the P-value estimated from 
the empirical null model.

In practice, determining whether an 
observed score is statistically significant 
requires comparing the corresponding sta-
tistical confidence measure (the P-value) to 

how they are computed and some guidelines 
for how to select an appropriate measure for 
a given experiment.

As a motivating example, suppose that you 
are studying CTCF, a highly conserved zinc-
finger DNA-binding protein that exhibits 
diverse regulatory functions and that may 
play a major role in the global organization 
of the chromatin architecture of the human 
genome1. To better understand this protein, 
you want to identify candidate CTCF bind-
ing sites in human chromosome 21. Using 
a previously published model of the CTCF 
binding motif (Fig. 1a)2, each 20 nucleotide 
(nt) sub-sequence of chromosome 21 can be 
scored for its similarity to the CTCF motif. 
Considering both DNA strands, there are 68 
million such subsequences. Figure 1b lists the 
top 20 scores from such a search.

Interpreting scores with the null 
hypothesis and the P-value
How biologically meaningful are these 
scores? One way to answer this question is to 
assess the probability that a particular score 
would occur by chance. This probability can 
be estimated by defining a ‘null hypothesis’ 
that represents, essentially, the scenario that 
we are not interested in (that is, the random 
occurrence of 20 nucleotides that match the 
CTCF binding site). 

The first step in defining the null hypothesis 
might be to shuffle the bases of chromosome 
21. After this shuffling procedure, high-
scoring occurrences of the CTCF motif will 
only appear because of random chance. Then, 
the shuffled chromosome can be rescanned 
with the same CTCF matrix. Performing this 
procedure results in the distribution of scores 
shown in Figure 1c.

Although it is not visible in Figure 1c, out of 
the 68 million 20-nt sequences in the shuffled 
chromosome, only one had a score r26.30. 
In statistics, we say that the probability of  

Imagine that you have just invested a sub-
stantial amount of time and money in a 

shotgun proteomics experiment designed 
to identify proteins involved in a particular 
biological process. The experiment success-
fully identifies most of the proteins that you 
already know to be involved in the process 
and implicates a few more. Each of these 
novel candidates will need to be verified with 
a follow-up assay. How do you decide how 
many candidates to pursue?

The answer lies in the tradeoff between 
the cost associated with a false positive ver-
sus the benefit of identifying a novel partici-
pant in the biological process that you are 
studying. False positives tend to be particu-
larly problematic in genomic or proteomic 
studies where many candidates must be sta-
tistically tested. 

Such studies may include identifying genes 
that are differentially expressed on the basis 
of microarray or RNA-Seq experiments, scan-
ning a genome for occurrences of candidate 
transcription factor binding sites, search-
ing a protein database for homologs of a 
query protein or evaluating the results of a 
genome-wide association study. In a nutshell, 
the property that makes these experiments so 
attractive—their massive scale—also creates 
many opportunities for spurious discoveries, 
which must be guarded against.

In assessing the cost-benefit tradeoff, it is 
helpful to associate with each discovery a sta-
tistical confidence measure. These measures 
may be stated in terms of P-values, false 
discovery rates or q-values. The goal of this 
article is to provide an intuitive understand-
ing of these confidence measures, a sense for 
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Because the smallest observed P-value in 
Figure 1b is 2.3 s 10–10, no scores are deemed 
significant after correction.

The Bonferroni adjustment, when applied 
using a threshold of A to a collection of n scores, 
controls the ‘family-wise error rate’. That is, 
the adjustment ensures that for a given score 
threshold, one or more larger scores would be 
expected to be observed in the null distribution 
with a probability of A. Practically speaking, 
this means that, given a set of CTCF sites with 
a Bonferroni adjusted significance threshold 
of A = 0.01, we can be 99% sure that none of 
the scores would be observed by chance when 
drawn according to the null hypothesis.

In many multiple testing settings, minimizing 
the family-wise error rate is too strict. Rather 
than saying that we want to be 99% sure that 
none of the observed scores is drawn according 
to the null, it is frequently sufficient to identify 
a set of scores for which a specified percentage 
of scores are drawn according to the null. This 
is the basis of multiple testing correction using 
false discovery rate (FDR) estimation.

of a score of 17.0, even though it is associ-
ated with a seemingly small P-value of 5.5 s 
10–7 (the chance of obtaining such a P-value 
from null data is less than one in a million), 
scores of 17.0 or larger were in fact observed 
in a scan of the shuffled genome, owing to the 
large number of tests performed. We therefore 
need a ‘multiple testing correction’ procedure 
to adjust our statistical confidence measures 
based on the number of tests performed.

Correcting for multiple hypothesis tests
Perhaps the simplest and most widely used 
method of multiple testing correction is the 
Bonferroni adjustment. If a significance 
threshold of A is used, but n separate tests 
are performed, then the Bonferroni adjust-
ment deems a score significant only if the 
corresponding P-value is bA/n. In the CTCF 
example, we considered 68 million distinct 
20-mers as candidate CTCF sites, so achiev-
ing statistical significance at A = 0.01 accord-
ing to the Bonferroni criterion would require 
a P-value <0.01/(68 s 106) = 1.5 s 10–10. 

a confidence threshold A. For historical rea-
sons, many studies use thresholds of A = 0.01 
or A = 0.05, though there is nothing magical 
about these values. The choice of the signifi-
cance threshold depends on the costs associ-
ated with false positives and false negatives, 
and these costs may differ from one experi-
ment to the next.

Why P-values are problematic in a  
high-throughput experiment
Unfortunately, in the context of an experi-
ment that produces many scores, such as 
scanning a chromosome for CTCF binding 
sites, reporting a P-value is inappropriate. 
This is because the P-value is only statisti-
cally valid when a single score is computed. 
For instance, if a single 20-nt sequence had 
been tested as a match to the CTCF binding 
site, rather than scanning all of chromosome 
21, the P-value could be used directly as a 
statistical confidence measure.

In contrast, in the example above, 68 mil-
lion 20-nt sequences were tested. In the case 

Figure 1  Associating confidence measures with CTCF binding motifs scanned along human chromosome 21. (a) The binding preference of CTCF2 
represented as a sequence logo9, in which the height of each letter is proportional to the information content at that position. (b) The 20 top-scoring 
occurrences of the CTCF binding site in human chromosome 21. Coordinates of the starting position of each occurrence are given with respect to 
human genome assembly NCBI 36.1. (c) A histogram of scores produced by scanning a shuffled version of human chromosome 21 with the CTCF motif. 
(d) This panel zooms in on the right tail of the distribution shown in c. The blue histogram is the empirical null distribution of scores observed from 
scanning a shuffled chromosome. The gray line is the analytic distribution. The P-value associated with an observed score of 17.0 is equal to the area 
under the curve to the right of 17.0 (shaded pink). (e) The false discovery rate is estimated from the empirical null distribution for a score threshold 
of 17.0. There are 35 null scores >17.0 and 519 observed scores >17.0, leading to an estimate of 6.7%. This procedure assumes that the number of 
observed scores equals the number of null scores.
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Because the smallest observed P-value in 
Figure 1b is 2.3 s 10–10, no scores are deemed 
significant after correction.

The Bonferroni adjustment, when applied 
using a threshold of A to a collection of n scores, 
controls the ‘family-wise error rate’. That is, 
the adjustment ensures that for a given score 
threshold, one or more larger scores would be 
expected to be observed in the null distribution 
with a probability of A. Practically speaking, 
this means that, given a set of CTCF sites with 
a Bonferroni adjusted significance threshold 
of A = 0.01, we can be 99% sure that none of 
the scores would be observed by chance when 
drawn according to the null hypothesis.

In many multiple testing settings, minimizing 
the family-wise error rate is too strict. Rather 
than saying that we want to be 99% sure that 
none of the observed scores is drawn according 
to the null, it is frequently sufficient to identify 
a set of scores for which a specified percentage 
of scores are drawn according to the null. This 
is the basis of multiple testing correction using 
false discovery rate (FDR) estimation.

of a score of 17.0, even though it is associ-
ated with a seemingly small P-value of 5.5 s 
10–7 (the chance of obtaining such a P-value 
from null data is less than one in a million), 
scores of 17.0 or larger were in fact observed 
in a scan of the shuffled genome, owing to the 
large number of tests performed. We therefore 
need a ‘multiple testing correction’ procedure 
to adjust our statistical confidence measures 
based on the number of tests performed.

Correcting for multiple hypothesis tests
Perhaps the simplest and most widely used 
method of multiple testing correction is the 
Bonferroni adjustment. If a significance 
threshold of A is used, but n separate tests 
are performed, then the Bonferroni adjust-
ment deems a score significant only if the 
corresponding P-value is bA/n. In the CTCF 
example, we considered 68 million distinct 
20-mers as candidate CTCF sites, so achiev-
ing statistical significance at A = 0.01 accord-
ing to the Bonferroni criterion would require 
a P-value <0.01/(68 s 106) = 1.5 s 10–10. 

a confidence threshold A. For historical rea-
sons, many studies use thresholds of A = 0.01 
or A = 0.05, though there is nothing magical 
about these values. The choice of the signifi-
cance threshold depends on the costs associ-
ated with false positives and false negatives, 
and these costs may differ from one experi-
ment to the next.

Why P-values are problematic in a  
high-throughput experiment
Unfortunately, in the context of an experi-
ment that produces many scores, such as 
scanning a chromosome for CTCF binding 
sites, reporting a P-value is inappropriate. 
This is because the P-value is only statisti-
cally valid when a single score is computed. 
For instance, if a single 20-nt sequence had 
been tested as a match to the CTCF binding 
site, rather than scanning all of chromosome 
21, the P-value could be used directly as a 
statistical confidence measure.

In contrast, in the example above, 68 mil-
lion 20-nt sequences were tested. In the case 

Figure 1  Associating confidence measures with CTCF binding motifs scanned along human chromosome 21. (a) The binding preference of CTCF2 
represented as a sequence logo9, in which the height of each letter is proportional to the information content at that position. (b) The 20 top-scoring 
occurrences of the CTCF binding site in human chromosome 21. Coordinates of the starting position of each occurrence are given with respect to 
human genome assembly NCBI 36.1. (c) A histogram of scores produced by scanning a shuffled version of human chromosome 21 with the CTCF motif. 
(d) This panel zooms in on the right tail of the distribution shown in c. The blue histogram is the empirical null distribution of scores observed from 
scanning a shuffled chromosome. The gray line is the analytic distribution. The P-value associated with an observed score of 17.0 is equal to the area 
under the curve to the right of 17.0 (shaded pink). (e) The false discovery rate is estimated from the empirical null distribution for a score threshold 
of 17.0. There are 35 null scores >17.0 and 519 observed scores >17.0, leading to an estimate of 6.7%. This procedure assumes that the number of 
observed scores equals the number of null scores.
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68 million 
statistical tests



Compare 
signal 
changes 
using t-test 
(task versus 
no-task) 
across 
thousands of 
voxels (brain 
pixels in 3D)

Examples of really huge numbers of multiple tests



How to avoid inflated false positives (type I errors) due to multiple 
testing? Or the so-called family-wise error rate (FWER) 

There is a large number of specific (e.g., Tukey-test for comparing two 
the difference between two means) and general procedures; the latter 
applying to any statistical test as they are used to control for multiple 
tests by correcting P-values.

There are many commonly used procedures to correct for FWER; here 
we will review two (very commonly-used) general procedures:

1) Bonferroni correction (simplest): it controls the family Type I error.

2) False Discovery Rate (FDR; very much used these days): it controls the  
     false discovery rate.  



Bonferroni correction

Total number 
of tests

Instead of using the original pre-established (desired) α, use α adjusted by the number 
of test instead to assure a family-wise (type I) error rate (FWER).

Carlo Emilio Bonferroni developed the correction. but modern use credited to Olive Dunn

𝛼!"#$$%&&"#' = 𝛼/m=0.05/32= 0.0015625

1-(1-0.05)1=0.050 (5%)

1-(1-0.05/100)100=
0.049 (4.9%) 

1-(1-0.05/32)32 = 
0.048 (4.8%)



𝛼!"#$$%&&"#' = 𝛼/m=0.05/32= 0.0015625

1 − (1−𝛼!"#$$%&&"#')()= 1 − (1 − 0.0015625)()=
                                                  0.04880777 ~ 0.05
𝑃!"#$$%&&"#' = m x P

Bonferroni correction

If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of 
finding at least one significant test when you should not (i.e., false positive) out of 30 
tests (as in our class survey) is:  1-(0.95)30=1-(1-0.05)30=0.78 

78% chance of finding at least 1 significant test when Ho is true in 30 statistical tests!

Total number of tests

Instead of using the original pre-established (desired) α, use α adjusted instead to 
guarantee a family-wise (type I) error rate (FWER).

Original P value

Adjusted P value (adjusted P value that can be compared against any alpha)



This example - not so many pairwise tests, but still an issue

df F P
Between 202.5 1 202.5 81 0.0000185
Within 20 8 2.5
Total 222.5 9

Source	of	
variation

Sum	of	
squares

Mean	
square

Back to the problem about “The knees who say night”

Ho: μcontrol = μknee = μeyes
Ha: at least one μ is different 
from another u or other us; 
but which pairs? 

 

Xcontrol − Xknee

Xcontrol − Xeyes

Xknee − Xeyes

3 t-tests
necessary 



Bonferroni correction

 
PBonferroni = mP

3 x 0.0029
3 x 0.9418 = 2.8253
3 x 0.0044

unocorrected Bonferroni
comparison P	(t	test) P	(t	test)
control	vs	eyes 0.0029 0.0088
control	vs	knee 0.9418 1.0000
knee	vs	eyes 0.0044 0.0132

P-values greater than 1 are 
set to 1

Either contrast the original P-value with 𝛼/number of tests (e.g., 0.05/3)

OR

Adjust the P-value as below and contrast with the original 𝛼 (0.05)

Conclude based on these 
adjusted P-values

Adjusted 
𝛼	= 0.0166667



Bonferroni correction (common table presentation)

unocorrected Bonferroni
comparison P	(t	test) P	(t	test)
control	vs	eyes 0.0029 0.0088
control	vs	knee 0.9418 1.0000
knee	vs	eyes 0.0044 0.0132

The Tukey test or Tukey’s HSD 
(honest significant difference) usually 
taught in Intro stats 

1) is a solution to correct for 
comparing two-sample means only
(i.e., based on t-tests).

2) It works well for small number of 
pairwise comparisons but not large.



wake up

@cjlortie



False Discovery Rates - FDR (or false positive rate)
How much did you learn that was based on false positives?

The FDR philosophy: To be “precise”, you need to ESTIMATE 
how often you could be right when you declare a result to be 
significant (avoid false negatives) and ESTIMATE how often 
you could be wrong when you declare a result to be significant 
(avoid false positives).

Adjustments for multiple tests like the Bonferroni put too much 
emphasis on controlling for false positives (Type I error) BUT not 
false negatives (Type II error); thus, they reduce the “power of 
discovery”.



False Discovery Rates - FDR (or false positive rate)
How much did you learn that was false positive?

The are different types of FDR procedures and the one by Benjamini-
Hochberg is likely the most commonly used! To correct the P-values 
based on the BH-FDR procedure, the calculation is conditional on 
previous P-values.  R does it for you!!

Gather all tests that lead to a statistically significant result (i.e., all for 
which 𝑃 ≤ 𝛼). This subset is called “discoveries”.  The FDR estimates 
the probability that these discoveries are false positives (i.e., Type I 
error).  This improves statistical power as the entire sequence of P-
values (and not only individual ones as in the Bonferroni correction 
procedure) are considered in the adjustment.



Using false discovery rates for multiple comparisons
in ecology and evolution

Nathan Pike*

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Summary

1. Ecologists and evolutionary biologists often need to simultaneously evaluate the significance of
multiple related hypotheses. Multiple comparisons need to be corrected to avoid inappropriately
increasing the number of null hypotheses that are wrongly rejected. The traditional method of cor-

rection involves Bonferroni-type multiple comparison procedures which are highly conservative,
tending to increase the number of wrong rejections of true hypotheses as the number of hypotheses

being simultaneously tested increases.
2. Newer procedures which are based on False Discovery Rates and which do not suffer the same

loss of power as traditional methods are described. Algorithms and spreadsheet-based software
routines for three procedures which are especially useful in ecology and evolution are provided.

3. The strengths and potential pitfalls of FDR-based analysis and of presenting results as
FDR-adjusted P-values are discussed with reference to traditional methods such as the sequential

Bonferroni correction.
4. FDR-based multiple comparison procedures should be more widely adopted because they are
oftenmore appropriate than traditional methods for identifying truly significant results.

Key-words: Bonferroni, false discovery rate, family-wise error, hypothesis testing, multiple

comparisons, simultaneous inference, statistical significance

Introduction

Biologists routinely need to simultaneously evaluate the signifi-

cance of multiple hypotheses. This need has always existed for

experiments that are more complicated than a simple compari-

son between a control group and a single treatment group. As

large-scale factorial experiments have become more common

and developments in informatics have allowed us to use

increasingly vast amounts of data to address problems in ecol-

ogy and evolution, the need for effective multiple comparison

procedures has become more prevalent and the numbers of

hypotheses requiring simultaneous multiple comparison is lar-

ger than ever.

The problem with performing multiple simultaneous

hypothesis tests is that, as the number of hypotheses increases,

so too does the probability of wrongly rejecting a null hypothe-

sis because of random chance. The traditional solution which

was advocated by Fisher (1935) in his classic text is to reduce

the threshold P-value (which is usually called a) that is used
to determine what we call a significant difference. Of course,

if we were to leave a at the conventional level of 0Æ05 while

undertaking simultaneous statistical inference, one in every 20

null hypotheses would be wrongly rejected.

The most renowned method for reducing the threshold of

significance (which is named in honour of the probability theo-

rist Carlo Bonferroni) is an outcome of observing Boole’s

inequality: one simply divides a by the number of hypotheses

being simultaneously tested, m (Miller 1966). This approach

has been refined by a number of authors including Keuls

(1952), Scheffé (1953), Tukey (1953), Duncan (1955), Dunnett

(1955), Šidák (1967), Dunn (1974), Holm (1979), Simes (1986)

and Hochberg (1988). All of these procedures assume that the

*Correspondence author. Email: nathan.pike.1998@pem.cam.ac.uk
Correspondence site: http://www.respond2articles.com/MEE

Author & editor comment [added after online publication, 17
November 2010]
It has come to our attention that a recently accepted article in
Methods in Ecology and Evolution (Pike 2010) covers the same
topic as a previous article in the journal Oikos (Verhoeven et al.
2005, Oikos 108, 643–647).
Both articles explain and advocate the use of False Discovery
Rate corrections for an audience of ecologists and evolutionary
biologists. Both papers have similar goal, approach and form,
and there is overlap in their content. Unfortunately, Pike (2010)
did not cite the paper by Verhoeven et al. (2005), but this was a
genuine oversight.
Pike (2010) received a rigorous and independent review by two
established experts, overseen by the journal’s experienced editorial
team, none of whom were aware of the Oikos publication.
To remedy the oversight, we encourage readers to use and refer-
ence the 2005 Oikos paper as this has precedence in raising the
awareness of ecologists to the use of False Discovery Rates.
N. Pike, K. Verhoeven, L. McIntyre, K. Simonsen, T. Benton &
R. Freckleton

Methods in Ecology and Evolution 2011, 2, 278–282 doi: 10.1111/j.2041-210X.2010.00061.x

! 2010 The Author. Methods in Ecology and Evolution ! 2010 British Ecological Society

False Discovery Rates is widely used!



Let’s assume a hypothetical (fictional) example where we know the truth about which 
outcomes are significant and non-significant so that we can better understand the logic 
behind FDR. 

1000 tests

Real effect in
10% = 100 tests

No effect in
90% = 900 tests

Adapted from Colquhoun 2017

Truth (unknown)

False Discovery Rates 



1000 tests

Real effect in
10% = 100 tests

No effect in
90% = 900 tests

80% significant
(80 true positive)

20% non-significant
(20 false negative)

95% non-significant
(855 true negative)

5% significant
(45 false positive)

Adapted from Colquhoun 2017

𝛼=0.05

Statistical assessment
Again, 
hypothetical 
because
we don’t know 
true type II 
error
for the data

We always 
know
Type I error 
(i.e., α) 
because we
chose it. 

False Discovery Rates 

Truth (unknown)

Hypothetical (fictional) example where we know the truth 



1000 tests

Real effect in
10% = 100 tests

No effect in
90% = 900 tests

80% significant
(80 true positive)

20% non-significant
(20 false negative)

95% non-significant
(855 true negative)

5% significant
(45 false positive)

Correct discovery

Incorrect discovery
(type I error)

Remember - when you reject H0 you discover 
something new

FDR = 
45 / (45 + 80) = 

0.36 = 36%

Adapted from Colquhoun 2017

So, based on an 𝛼=0.05, one will be wrong 36% of the time when rejecting H0 (claiming 
discovery). So, the probability of true discovery is 64% (i.e., 100-36%; 36% being the False 
Discovery Rate).

𝛼=0.05

False Discovery Rates 

Statistical assessment

Truth (unknown)



80% significant
(80 true positive)

20% non-significant
(20 false negative)

95% non-significant
(855 true negative)

5% significant
(45 false positive)

Correct knowledge

Incorrect 
knowledge

(type I error)

𝛼=0.05

Based on an 𝛼=0.05, in this case, 
we will be wrong 36% of the time if 
we reject H0 (claiming discovery). 
So, the probability of true 
discovery (reject a false H0) is 64%.

The goal is to reduce the FDR to 
say 0.05 instead of keeping it at 
0.36! So that the true discovery is 
higher (0.95 = 95%)

How to estimate FDR based on real 
data where we don’t know the 
truth about false positives and 
negative as in this example?

False Discovery Rates 

FDR = 
45 / (45 + 80) = 

0.36 = 36%

Statistical assessment

Remember - when you reject H0 you discover 
something new



FDR then requires an estimate of the number of true positives! 

Required knowledge (Step 1): Understand that when samples or groups 
(e.g., control versus treatment) come from the same population (i.e., H0 is 
true), the frequency distribution of P-values is flat (uniform).  

Same populations 

How to estimate FDR based on real data where we don’t know the truth about false 
positives and negative as in this example?



FDR then requires an estimate of the number of true positives! 

P-values
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Required knowledge (Step 1): Understand that when samples or groups 
(e.g., control versus treatment) come from the same population (i.e., H0 is 
true), the frequency distribution of P-values is flat (uniform).  

Frequency distribution of 10,000 P-values 
generated by testing the difference between 
two samples (t-test) taken from the same 
population.



FDR then requires an estimate of the number of true positives! 

P-values
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Frequency distribution of 10,000 P-values 
generated by testing the difference between two 
samples (t-test) taken from the same population.

495 (~0.05)

503 (~0.05)
Each bin contains 
about 5% of P-
values 

Required knowledge (Step 1): Understand that when samples (e.g., 
control versus treatment) come from the same population (H0 is true), 
the frequency distribution of P-values is flat (uniform).  



P-values

Frequency distribution of infinite P-values 
generated by testing the difference between two 
samples (t-test) taken from the same population.

≤ 0.05

> 0.05
Each bin contains 
exactly 5% of P-
values 

Required knowledge (Step 1): Understand that when samples (e.g., 
control versus treatment) come from the same population (H0 is true), 
the frequency distribution of P-values is flat (uniform).  

FDR then requires an estimate of the number of true positives! 
Pr

op
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5%



Required knowledge (Step 2): Understand that when samples (e.g., 
control versus treatment) come from different populations (H0 is false), 
the frequency distribution of P-values is not flat (not uniform).  

FDR then requires an estimate of the number of true positives! 

different populations 



Required knowledge (Step 2): Understand that when samples (e.g., 
control versus treatment) come from different populations (H0 is false), 
the frequency distribution of P-values is not flat (not uniform).  

𝜇* = 10
𝜇+ = 11

P-values
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Frequency distribution of 10,000 P-values generated 
by testing the difference between two samples 
(t-test) taken from different populations.

FDR then requires an estimate of the number of true positives! 



Required knowledge (Step 3): Understand the concept of mixing the two types 
of distributions (i.e., H0 is true and H0 is unknown).  In reality most distributions 
of P-values are made of true significant and true non-significant differences.  

+
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FDR then requires an estimate of the number of true positives! 



Required knowledge (Step 4): Estimate (i.e., you could still be wrong after 
correction) fractions based on different potential successes (true rejections or 
true non-rejections) and different failures (false positives or false negatives).

P-values
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s Estimate of 
True Positives

FDR then requires an estimate of the number of true positives! 



P-values
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Estimate of number of tests
that are False Positives (550) 

Estimate of  number of tests 
that are True Positives

Required knowledge (Step 4): Estimate (i.e., you could still be wrong after correction) fractions 
based on different potential successes (true rejections or true non-rejections) and different failures 
(false positives or false negatives).

FDR then requires an estimate of the number of true positives! 

FDR = 550 ⁄ (4650+550) = 0.106 = 
10.6%

5200 p-values smaller than 0.05 

550

5200 – 550 = 4650

FDR = FP/(FP + TP)
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Estimate of 
True Positive FDR = FP ⁄ (TP + FP)

5% of the false positive are considered as significant;
FP is an estimate, so some could be actually TP.

FDR then requires an estimate of the number of true positives! 

FDR = 550 ⁄ (4650+550) = 0.106 = 
10.6%
How to reduce this FDR to a 
desired value, say 0.05? SOON



FP

TP FN

TN

Statistical 
power

Type I error
(false positives)

Type II error
(false negatives)

FDR = FP ⁄ (TP + FP)

FOR COMPLETION!!!!



Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:

0.91 0.11 0.71 0.31 0.51 0.41 0.61 0.21 0.81 0.01



0.91 0.11 0.71 0.31 0.51 0.41 0.61 0.21 0.81 0.01

0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Order P-values

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

Let’s see what happens if this small p-value (significant) when 
corrected by FDR.

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

0.91

Adjusted Probabilities

The largest probability is always the same

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

0.90 0.91

adjusted Probabilities

The next is the smallest between these two P-values: 

either 1) the previous adjusted p-value (0.91)

or 2) The current p-value (0.81) x (total P-values/p-value 
rank of current P-value) = 0.81 x (10/9) = 0.90

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

original Probabilities



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

0.89 0.90 0.91

The next is the smallest between these two P-values: 

either 1) the previous adjusted p-value (0.90)

or 2) The current p-value (0.71) x (total P-values/p-
value rank of current P-value) = 0.71 x (10/8) = 0.89

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

adjusted Probabilities

original Probabilities



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

0.10 0.55 0.70 0.77 0.82 0.85 0.87 0.89 0.90 0.91

AND SO, ON

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

adjusted Probabilities

original Probabilities



0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

0.10 0.55 0.70 0.77 0.82 0.85 0.87 0.89 0.90 0.91

The previously significant unadjusted p-value is no 
longer considered significant (i.e., we can assume that 
it was related to inflated type I errors (false positives) 
due to multiple testing).

Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

adjusted Probabilities

original Probabilities



Should we care about not committing any Type I 
error?

If we want to be protected against any FWER 
(family-wise error rate), then use Bonferroni like 
adjustments.

In many cases, we can let go on strict control over 
FWER, allow some false-positives to gain a lot of 
statistical power (then use FDR).  



Bonferroni versus FDR (quick contrast)

Bonferroni = 0
FDR = 0

Number of significant 
tests after adjustment

Bonferroni = 2
FDR = 1200

11000 p-values (tests)

11000 p-values (tests)
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METHODOLOGICAL STUDIES

Why We (Usually) Don’t Have to Worry
About Multiple Comparisons

Andrew Gelman
Columbia University, New York, New York, USA

Jennifer Hill
New York University, New York, New York, USA

Masanao Yajima
University of California, Los Angeles, Los Angeles, California, USA

Abstract: Applied researchers often find themselves making statistical inferences in settings that
would seem to require multiple comparisons adjustments. We challenge the Type I error paradigm
that underlies these corrections. Moreover we posit that the problem of multiple comparisons can
disappear entirely when viewed from a hierarchical Bayesian perspective. We propose building
multilevel models in the settings where multiple comparisons arise. Multilevel models perform
partial pooling (shifting estimates toward each other), whereas classical procedures typically keep
the centers of intervals stationary, adjusting for multiple comparisons by making the intervals wider
(or, equivalently, adjusting the p values corresponding to intervals of fixed width). Thus, multilevel
models address the multiple comparisons problem and also yield more efficient estimates, especially in
settings with low group-level variation, which is where multiple comparisons are a particular concern.

Keywords: Bayesian inference, hierarchical modeling, multiple comparisons, Type S error, statis-
tical significance

INTRODUCTION

Researchers from nearly every social and physical science discipline have found themselves
in the position of simultaneously evaluating many questions, testing many hypothesis, or
comparing many point estimates. In program evaluation this arises, for instance, when com-
paring the impact of several different policy interventions; comparing the status of social
indicators (test scores, poverty rates, teen pregnancy rates) across multiple schools, states,
or countries; examining whether treatment effects vary meaningfully across different sub-
groups of the population; or examining the impact of a program on many different outcomes.

The main multiple comparisons problem is that the probability a researcher wrongly
concludes that there is at least one statistically significant effect across a set of tests, even

Address correspondence to Andrew Gelman, Department of Statistics and Department of Political
Science, Columbia University, New York, NY 10027, USA. E-mail: gelman@stat.columbia.edu
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Some Bayesian dissent 

Main issues from a Bayesian perspective (my summary): 
1) FWER (family wise error, e.g., Bonferroni) is the general goal and this is an 

issue because it puts sole emphasis on Type I error (even FDR in many 
ways); 

2) issues with dependent tests; 
3) FDR good for very large number of tests but Bayesians may not recommend 

it for small numbers.  
     Bottom line: journals will request multiple testing and routine procedures are 
easier to implement and “articulate” than Bayesian ones.  So…for the majority of 
scientists, Type I error is a really BIG ISSUE and needs to be dealt with using 
appropriate adjustments!



What should be corrected for?

- Variance and multiple t tests?
- All tests in a paper?
- All tests across all papers within a journal issue?
- All test across all papers within a year
- The world is the limit!

Look into this blog (Why you don't need to adjust your 
alpha level for all tests you'll do in your lifetime):
http://daniellakens.blogspot.com/2016/02/why-
you-dont-need-to-adjust-you-alpha.html

I don’t necessarily agree with everything in there, 
but good food for thought!

http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html


Let’s reflect on statistical errors and decisions:

Which statement is correct? P-values SMALLER than 
0.05 are either:

Truly significant OR False positives (i.e., they are 
rejected when in reality H0 is true = Type I error).

OR

Truly non-significant OR False negatives (i.e., they are 
not rejected when in reality H0 is false = Type II error).



Which statement is correct? P-values GREATER than 
0.05 are either:

Truly significant OR False positives (i.e., they are 
rejected when in reality H0 is true = Type I error).

OR

Truly non-significant OR False negatives (i.e., they are 
not rejected when in reality H0 is false = Type II error).

Let’s reflect on statistical errors and decisions :


