Growth (g)

>

+

low

intermediate
Temperature

high

Calcium

high
+ intermediate
low

Regarding the interaction, there
are 3 groups of Calcium and 3
groups of temperature (9 means).
There are 36 possible pairwise
tests to contrast Growth across
levels (9 x 8/2 = 36).



Why do we conduct ANOVAs and not
simply test pairs of means?

BIOL 422 & 680, Pedro Peres-Neto, Biology, Concordia University
A pedagogical guide for understanding the issues underlying

Multiple hypothesis testing

oy
L% ﬁ%%

Why should we not trust the results from multiple
statistical tests?
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Guided discussion - t-distribution assuming H, as true
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Regarding Calcium, there are
3 possible pairwise tests

Calcium contrast Growth across
- m?et}mediate levels (3 X 2/2 = 3)

low

(o))

Growth (g)

AN

High — intermediate
, \-T—-’/ High — low

Intermediate — low
low intermediate high

Temperature




Growth (g)

AN

(@)

/

f\\/

low intermediate high
Calcium

Temperature

high
< intermediate
low

Regarding Temperature,
there are 3 possible pairwise
tests contrast Growth across
levels (3 x2/2=3).

High - intermediate
High - low
Intermediate - low



Growth (g)

>

+

low

intermediate
Temperature

high

Calcium

high
+ intermediate
low

Regarding the interaction, there
are 3 groups of Calcium and 3
groups of temperature (9 means).
There are 36 possible pairwise
tests to contrast Growth across
levels (9 x 8/2 = 36).
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$ Temperature:Calcium

There are 36 possible pairwise
onchigh-highthigh — gl tests to contrast Growth across
levels (9 x 8/2 = 36).
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What happens when we conduct
too many statistical tests?

A past classroom demonstration
using a survey



Past classroom surveys:
Would you expect odd- and even day born individuals
to differ in their preferences?

dislike Love it

1 2 3 4 5

1) Do you like soccer? X

2) Do you like playing video games? X

3) Do you like eating out?

4) Do you enjoy writting?

5) Do you like cats? X

6) Do you like to watch movies? X
7) Do you like to read novels?

21) Do you like science fiction? X

22) Do you like pizza? X

23) Do you like to listen to the radio? X
24) Do you like museums? X



Multiple testing survey (BIOL422, Real Iy r) r) ’? ?

BIOL680)/anonymous survey will close on
Wednesday Feb. 3 (5pm)

Results will be used to demonstrate the statistical principles of multiple testing

last number of your street address

0dd number

Even number

Your birthday is an odd or even number (the actual day; not month or year) *

0dd number

Even number

5_

Do you like soccer? *

=

Deslike Love it

Birthday

Even number
Odd number

@

"

class survey:
24 guestions

Preference for Radio [1 to 5]

Even number Odd number
Address



Why when comparing multiple mean values, one should
start with an ANOVA and not multiple t-test

Probability of committing 1 type | error (false positive) is the
same for 1 or multiple tests («), but conducting 100 tests,
there will be a chance of 5 being significant for an o = 0.05

2-5 | |
d1=1, d2=1 —
d1=2, d2=1 —
2 d1=5, d2=2 ——
d1=10, d2=1 —
1 5 d1=100, d2=100 i
1 .
0.5 .




Why when comparing multiple mean values, one should
start with an ANOVA and not multiple t-test

t-distribution assuming HO as true

0.4 —
2 0.3
n
c
() N o
o rejection rejection
> 0.2 area area
T_(_%
O 0.1 acceptance area
o a / 2 a /2
o _/ -2.063899 2.063899 ¥
0.0 — ]
| ﬁ/ | | |
-4 -2 0 2 4

t standardized values

Probability of committing 1 type | error (false positive) is the
same for 1 or multiple tests («), but conducting 100 tests,
there will be a chance of 5 being significant for an o = 0.05



Why when comparing multiple mean values, one should
start with an ANOVA and not multiple t-test

2-5 | |

d1=1, d2=1 —

d1=2, d2=1 —
2 d1=5, d2=2 ——

d1=10, d2=1 —
15 d1=100, d2=100 i
1 _
0.5 \ .
IS
0 1 2 3 4 5

Even though multiple ANOVAs will inflate the number of false
positives (i.e., type | error), it still generates a much smaller
number of tests than pairwise tests.



L .

ANOVA = 3 tests
pairwise t-tests =42 tests

3 pairwise
tests

3 pairwise
tests
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low intermediate high
Temperature







If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of at least
one significant test by chance (i.e., null hypothesis is true) when one should not (i.e.,
false positive) out of 32 tests is:

1-(1-alpha)3?= 1-(1-0.05)32= 0.806 (80.6%)

80.6% chance of finding at least 1 significant test when Hy is true!

> 1-(1-0.05)190=0.9941 (99.4%)

1.0 A

oo
........
..........
oo®
Py
pe
oo
o

0.8 —"=——> 1-(1-0.05)32= 0.806 (80.6%)

Probability of at least one error

| I I I

0O 20 40 60 80 100
l Number of statistical tests

1-(1-0.05)*=0.050 (5%)
[1 test leads to the expected alpha (prob. of committing a type | error)
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Examples of really huge numbers of multiple tests

How does multiple testing correction work?

NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 12 DECEMBER 2009

William S Noble

When prioritizing hits from a high-throughput experiment, it is important to correct for random events that falsely
appear significant. How is this done and what methods should be used?

As a motivating example, suppose that you
are studying CTCEF, a highly conserved zinc-
finger DNA-binding protein that exhibits
diverse regulatory functions and that may
play a major role in the global organization
of the chromatin architecture of the human
genome!. To better understand this protein,
you want to identify candidate CTCF bind-
ing sites in human chromosome 21. Using
a previously published model of the CTCF
binding motif (Fig. 1a)2, each 20 nucleotide
(nt) sub-sequence of chromosome 21 can be
scored for its similarity to the CTCF motif.
Considering both DNA strands, there are 68
million such subsequences. Figure 1b lists the
top 20 scores from such a search.

———————————

68 million

Position

[},
=
=

Sequence

Score

i statistical tests

19390631
32420105
27910537
21968106
31409358
19129218
21854623
12364895
13406383
18613020
31980801
32909754
25683654
31116990
29615421

6024389
26610753
26912791
20446267
21872506

P+ L+ 0+ 1+ ++++ |+ + |+ +

TTGACCAGCAGGGGGCGCCG
CTGGCCAGCAGAGGGCAGCA
CGGTGCCCCCTGCTGGTCAG
GTGACCACCAGGGGGCAGCA
CGGGCCTCCAGGGGGCGCTC
TGGCGCCACCTGCTGGTCAC
CTGGCCAGCAGAGGGCAGGG
CCCGCCAGCAGAGGGAGCCG
CTAGCCACCAGGTGGCGGTG
CCCGCCAGCAGAGGGAGCCG
ACGCCCAGCAGGGGGCGCCG
TGGCTCCCCCTGGCGGCCGG
TCGGCCACTAGGGGGCACTA
GGCCGCCACCTTGTGGCCAG
CTCTGCCCTCTGGTGGCTGC
GTTGCCACCAGAGGGCACTA
CACTGCCCTCTGCTGGCCCA
GGGCGCCACCTGGCGGTCAC
CTGCCCACCAGGGGGCAGCG
TGGCGCCACCTGGCGGCAGC

26.30
26.30
26.18
25.81
25.56
25.44
24.95
24.71
24.71
24.71
24.71
24.71
24.58
24.58
24.46
24.46
24.34
24.34
24.22
24.22

Wikipedia: High-throughput screening (HTS) is a method for scientific experimentation especially used 4
in drug discovery and relevant to the fields of biology and chemistry. Using robotics, data processing ¢
and control software, liquid handling devices, and sensitive detectors, High-throughput screening
allows a researcher to quickly conduct millions of chemical, genetic, or pharmacological tests.

Q



Examples of really huge numbers of multiple tests

Compare
signal
changes
using t-test
(task versus
no-task)
across
thousands of
voxels (brain
pixels in 3D)

Seizure Frequency Can Alter Brain Connectivity: Evidence from

*
AMERICAN JOURNAL OF NEURORADIOLOGY

R.D. Bharath, S. Sinha, R. Panda, K. Raghavendra, L. George, G. Chaitanya, A. Gupta, and P. Satishchandra



How to avoid inflated false positives (type | errors) due to multiple
testing? Or the so-called family-wise error rate (FWER)

There is a large number of specific (e.g., Tukey-test for comparing two
the difference between two means) and general procedures; the latter
applying to any statistical test as they are used to control for multiple
tests by correcting P-values.

There are many commonly used procedures to correct for FWER; here
we will review two (very commonly-used) general procedures:

1) Bonferroni correction (simplest): it controls the family Type | error.

2) False Discovery Rate (FDR; very much used these days): it controls the
false discovery rate.



Bonferroni correction

Carlo Emilio Bonferroni developed the correction. but modern use credited to Olive Dunn

Aponfferroni = @/mM=0.05/32=0.0015625

\ Total number

0.0500 — -
™ 1-(1-0.05)!=0.050 (5%) of tests

0.0498 -
0.0496 -

0.0494 — .

1-(1-0.05/32)32 =
0.048 (4.8%)

0.0490 | -, /,

00488 7 ] » 1-(1-0.05/100)°=

0 20 40 60 80 100  0.049 (4.9%)

0.0492 —

Instead of using the original pre-established (desired) a, use a adjusted by the number
of test instead to assure a family-wise (type ) error rate (FWER).



Bonferroni correction

If we set an alpha of 0.05, i.e., acceptance area of 95% (0.95), then the chance of
finding at least one significant test when you should not (i.e., false positive) out of 30
tests (as in our class survey) is: 1-(0.95)3°=1-(1-0.05)3°=0.78

78% chance of finding at least 1 significant test when Ho is true in 30 statistical tests!

@gonf ferroni = @/M=0.05/32=0.0015625

Total number of tests

1 — (1-@ponsrerroni) = 1— (1 — 0.0015625)%*=
0.04880777 ~ 0.05

Pgonfferroni = M X P —— oOriginal P value

\ Adjusted P value (adjusted P value that can be compared against any alpha)

Instead of using the original pre-established (desired) a, use a adjusted instead to
guarantee a family-wise (type I) error rate (FWER).




This example - not so many pairwise tests, but still an issue

Source of Sum of Mean

variation squares df square F P
Between 202.5 1 202.5 81 0.0000185
Within 20 8 2.5
Total 222.5 9

Ho: Meontrol = Mknee = ueyes ¥

I 5 Ha: at least one p is different
e .18 from another u or other u,;
> e ° .
£ e + \ but which pairs?
e N o & ~ ~
e o N N Xeontrol — Xknee
& -
= - - 3 t-tests
? 3 - O Xcontrol — Xeyes o
. | l _ _ necessary
control knee eyes anee _ Xeyes

Light treatment
Back to the problem about “The knees who say night”



Bonferroni correction

Either contrast the original P-value with a/number of tests (e.g., 0.05/3)
OR

Adjust the P-value as below and contrast with the original a (0.05)

Conclude based on these
= mP adjusted P-values

P Bonferroni /

unocorrected Bonferroni

comparison P (t test) P (t test)
control vs eyes 0.0029 0.0088 <«— 3x0.0029
control vs knee 0.9418 1.0000 <— 3x0.9418=2.8253
knee vs eyes 0.0044 0.0132 <— 3x0.0044 l
Adjusted
a =0.0166667 P-values greater than 1 are

settol



Bonferroni correction (common table presentation)

unocorrected Bonferroni

comparison P (t test) P (t test)

control vs eyes 0.0029 0.0088

control vs knee 0.9418 1.0000

knee vs eyes 0.0044 0.0132
BT o — The Tukey test or Tukey’s HSD
£ " g e (honest significant difference) usually
z o + O \ taught in Intro stats
c o8 L O~
2 11, -} ;
g - . §+ 1) is a solution to correct for
£ 2- o comparing two-sample means only
& (i.e., based on t-tests).

-3 -

I [ I
control knee eyes 2) It works well for small number of

Light treatment pairwise comparisons but not large.






False Discovery Rates - FDR (or false positive rate)
How much did you learn that was based on false positives?

Adjustments for multiple tests like the Bonferroni put too much
emphasis on controlling for false positives (Type | error) BUT not

false negatives (Type Il error); thus, they reduce the “power of
discovery”,

The FDR philosophy: To be “precise”, you need to ESTIMATE
how often you could be right when you declare a result to be
significant (avoid false negatives) and ESTIMATE how often
you could be wrong when you declare a result to be significant
(avoid false positives).



False Discovery Rates - FDR (or false positive rate)
How much did you learn that was false positive?

The are different types of FDR procedures and the one by Benjamini-
Hochberg is likely the most commonly used! To correct the P-values
based on the BH-FDR procedure, the calculation is conditional on
previous P-values. R does it for you!!

Gather all tests that lead to a statistically significant result (i.e., all for
which P < a). This subset is called “discoveries”. The FDR estimates
the probability that these discoveries are false positives (i.e., Type |
error). This improves statistical power as the entire sequence of P-
values (and not only individual ones as in the Bonferroni correction
procedure) are considered in the adjustment.



False Discovery Rates is widely used!

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2011, 2, 278-282 doi: 10.1111/5.2041-210X.2010.00061.x

Using false discovery rates for multiple comparisons
in ecology and evolution

Nathan Pike*

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Statistical significance for genomewide studies

John D. Storey*' and Robert Tibshirani*

*Department of Biostatistics, University of Washington, Seattle, WA 98195; and *Departments of Health Research and Policy and Statistics, Stanford
University, Stanford, CA 94305

9440-9445 | PNAS | August5,2003 | vol.100 | no. 16 'nn'i_



False Discovery Rates

Let’s assume a hypothetical (fictional) example where we know the truth about which

outcomes are significant and non-significant so that we can better understand the logic
behind FDR.

Truth (unknown)

Real effect in
/| 10% = 100 tests

1000 tests

N No effectin
90% = 900 tests

Adapted from Colquhoun 2017



False Discovery Rates

Hypothetical (fictional) example where we know the truth

Statistical assessment

_ Again,
Truth (unknown) 80% significant hypothetical
// (80 true positive) because
Real effect in < _ we don’t know
/| 10% = 100 tests N 20% non-significant true type Il
h (20 false negative) error
5 - for the data

1000 tests a=0.05
95% non-significant | | | We always
: // (855 true negative) know
\| No effectin <  Typelerror
90% = 900 tests N —— (i.e., a)
N 5% significant because we
(45 false positive) | choselit.

Adapted from Colquhoun 2017



False Discovery Rates

So, based on an a=0.05, one will be wrong 36% of the time when rejecting H, (claiming
discovery). So, the probability of true discovery is 64% (i.e., 100-36%; 36% being the False

Discovery Rate).
Statistical assessment

Truth (unknown)

80% significant S Correct discovery
// (80 true positive) [\
Real effect in < \
/1 10% =
10% = 100 tests \\ 20% non-significant
(20 false negative) FDR =
45 / (45 + 80) =
1000 tests a=0.05 0/3(6 _ 36%)

95% non-significant

// (855 true negative)
N No effectin <
90% =900 tests N

/ )
/ Incorrect discovery
(type | error)

N 5% significant
(45 false positive)

Vi

Remember - when you reject Hy you discover
Adapted from Colquhoun 2017 Something new



False Discovery Rates

Based on an a=0.05, in this case,
we will be wrong 36% of the time if
we reject Hy (claiming discovery).
So, the probability of true
discovery (reject a false H,) is 64%.

The goal is to reduce the FDR to
say 0.05 instead of keeping it at
0.36! So that the true discovery is
higher (0.95 = 95%)

How to estimate FDR based on real
data where we don’t know the
truth about false positives and
negative as in this example?

Statistical assessment

80% significant
(80 true positive)

Correct knowledge

N

20% non-significant
(20 false negative)

a=0.05

95% non-significant
(855 true negative)

FDR =

5% significant
(45 false positive)

Vi

45 / (45 + 80) =
Incorrect

0.36 =36%
knowledge

(type | error)

Remember - when you reject Hy you discover
something new




FDR then requires an estimate of the number of true positives!

Required knowledge (Step 1): Understand that when samples or groups
(e.g., control versus treatment) come from the same population (i.e., Hy is
true), the frequency distribution of P-values is flat (uniform).

vector.pvalues <-
(1 in 1:10000){
x1l <- (20,5,2)
X2 <- (20,5,2)
vector.pvalues[i] <-
t. (x1, x2, alternative = "two.sided", .equal = FALSE)$p.value

(vector.pvalues,ylim=c(0,1000),col="firebrick")

How to estimate FDR based on real data where we don’t know the truth about false
positives and negative as in this example?



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 1): Understand that when samples or groups
(e.g., control versus treatment) come from the same population (i.e., Hy is
true), the frequency distribution of P-values is flat (uniform).

1000 - Frequency distribution of 10,000 P-values
N generated by testing the difference between
% 800 - two samples (t-test) taken from the same
'© population.
T
Q. 600 -
Y
O
L 400 -
=
-
Z 200

0 _

| I |

|
0.0 0.2 0.4 0.6 0.8 1.0

P-values



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 1): Understand that when samples (e.g.,
control versus treatment) come from the same population (H, is true),
the frequency distribution of P-values is flat (uniform).

495 (~0.05) Frequency distribution of 10,000 P-values
1000 - generated by testing the difference between two
8 503 (~0.05) samples (t-test) taken from the same population.
= 800 - Each bin contains
C?U about 5% of P-
A 500 - / values
Y v
o L
3
o 400 -
S
>
Z 200 -
0 —

| I |

|
0.0 0.2 0.4 0.6 0.8 1.0

P-values



Proportion of p-values

FDR then requires an estimate of the number of true positives!

Required knowledge (Step 1): Understand that when samples (e.g.,
control versus treatment) come from the same population (H, is true),
the frequency distribution of P-values is flat (uniform).

< 0.05 Frequency distribution of infinite P-values
- generated by testing the difference between two
— > 0.05 samples (t-test) taken from the same population.

Each bin contains

exactly 5% of P-
1 / values

A

5%

| I I I I
00 02 04 0o 038 1.0

P-values



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 2): Understand that when samples (e.g.,
control versus treatment) come from different populations (H, is false),
the frequency distribution of P-values is not flat (not uniform).

vector.pvalues <-
(1 in 1:10000){
x1l <- (20,10,2)
X2 <- (20,11,2)
vector.pvalues[i] <-
t. (x1, x2, alternative = "two.sided", .equal = FALSE)$p.value

(vector.pvalues,ylim=c(0,1000),col="firebrick")




0.20

0.15

0.10 A

FDR then requires an estimate of the number of true positives!

Required knowledge (Step 2): Understand that when samples (e.g.,
control versus treatment) come from different populations (H, is false),
the frequency distribution of P-values is not flat (not uniform).

n -
3 5000
0.05 E
®© 4000 -
0.00 : | | | ?
5 10 15 20 o
45 3000 -
=10 -
'ul 8 2000 -
pp, =11 =
> 1000
Z
0 —
| | I | | |
0.0 0.2 0.4 0.6 0.8 1.0
Frequency distribution of 10,000 P-values generated P-values

by testing the difference between two samples
(t-test) taken from different populations.



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 3): Understand the concept of mixing the two types
of distributions (i.e., Hy is true and H; is unknown). In reality most distributions
of P-values are made of true significant and true non-significant differences.

1000
800 - 5000 ]
600 0
ST =
200 _—
0 - ©
[ T I T I 1 >
00 02 04 06 08 1.0 I
(@}
Y
o
(-
5000 + q)
4000 -| -g
3000 - 3
2000 Z
1000 +

r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 I I

I I
00 02 04 06 08 1.0

P-values



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 4): Estimate (i.e., you could still be wrong after
correction) fractions based on different potential successes (true rejections or
true non-rejections) and different failures (false positives or false negatives).

5000 -

2 4000 — Estimate of
c_ju True Positives
7 3000

©

o 2000

O

&

=2 1000

@

I
0.0 0.2 0.4 0.6 0.8 1.0

P-values



FDR then requires an estimate of the number of true positives!

Required knowledge (Step 4): Estimate (i.e., you could still be wrong after correction) fractions
based on different potential successes (true rejections or true non-rejections) and different failures
(false positives or false negatives).

» 5200 p-values smaller than 0.05

% 5000 -
(7p]
@ .
1 _ Estimate of number of tests
s 000 that are True Positives
>
© 3000 -
Y FDR = 550/ (4650+550) = 0.106 =
S 2000 - 10.6% \ FDR = FP/(FP + TP)
)
= 5200 — 550 = 4650
E 1000
Z
6 -

I I
0.2 0.4 0.6 0.8 1.0

Estimate of number of tests P-values
that are False Positives (550)




values

Number of p

FDR then requires an estimate of the number of true positives!

5000

AN
@
@
®

3000

2000

1000

e FDR=FP /(TP +FP)

True Positive

_ FDR = 550/ (4650+550) = 0.106 =
10.6%

How to reduce this FDR to a
desired value, say 0.05? SOON

| I I I | I
0.0\ 0.2 0.4 0.6 0.8 1.0
5% of the false positive are considered as significant;
FP is an estimate, so some could be actually TP.



FOR COMPLETION!!!!

Statistical
oower — TP | FN «— Type ll error
(false negatives)

Type | error —— FP 1 TN

(false positives)

5000
8 4000 | (| Estimate of FDR=FP /(TP + FP)
= True Positives
g . Estimate of
é 3000 False Negatives
o
& 2000 Estimate of
'g True Negatives
2 1000 -

| I 1
: 0.0 0.2 0.4 0.6 0.8 1.0
Estimate of
False Positives POSSibIe P-ValueS



Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:

0.91

0.11

0.71

0.31

0.51

0.41

0.61

0.21

0.81

0.01




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:

0.91

0.11

0.71

0.31

0.51

0.41

0.61

0.21

0.81

0.01

0.01

0.11

0.21

0.31

0.41

0.51

0.61

0.71

0.81

0.91

Order P-values




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

Consider 10 two-sample t tests with the following P-values:

0.01()0.11 | 0.21 (| 0.31 || 0.41 || 0.51 || 0.61 || 0.71 || 0.81 || 0.91

Let’s see what happens if this small p-value (significant) when
corrected by FDR.




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

0.01 (] 0.11 | 0.21 ([ 0.31 || 0.41 || 0.51 || 0.61 || 0.71 || 0.81 || 0.91

The largest probability is always the same

0.91

Adjusted Probabilities




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

original Probabilities

0.01 (] 0.11 | 0.21 ([ 0.31 || 0.41 || 0.51 || 0.61 || 0.71 || 0.81 || 0.91

The next is the smallest between these two P-values:

either 1) the previous adjusted p-value (0.91)

or 2) The current p-value (0.81) x (total P-values/p-value
rank of current P-value) = 0.81 x (10/9) = 0.90

0.90 || 0.91

adjusted Probabilities




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

original Probabilities

0.01(/0.11 ] 0.21 |1 0.31|0.41 (| 0.51(( 0.61 || 0.71 || 0.81 || 0.91
The next is the smallest between these two P-values:
either 1) the previous adjusted p-value (0.90)
or 2) The current p-value (0.71) x (total P-values/p-
value rank of current P-value) = 0.71 x (10/8) = 0.89
!
0.89 (| 0.90 || 0.91

adjusted Probabilities




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

original Probabilities

0.01 | 0.11 [[ 0.21 || 0.31 || 0.41 || 0.51 || 0.61 || 0.71 || 0.81 || 0.91
AND SO, ON
0.10 || 0.55 |[ 0.70 || 0.77 || 0.82 || 0.85 || 0.87 || 0.89 || 0.90 || 0.91

adjusted Probabilities




Step 5: Adjust probabilities based on the FDR principle (NOT CRITICAL TO KNOW)

original Probabilities

0.01

0.11

0.21

0.31

0.41

0.51

0.61

0.71

0.81

0.91

The previously significant unadjusted p-value is no
longer considered significant (i.e., we can assume that

it was related to inflated type | errors (false positives)
due to multiple testing).

0.10

0.55

0.70

0.77

0.82

0.85

0.87

0.89

0.90

0.91

adjusted Probabilities




Should we care about not committing any Type |
error?

If we want to be protected against any FWER

(family-wise error rate), then use Bonferroni like
adjustments.

In many cases, we can let go on strict control over
FWER, allow some false-positives to gain a lot of
statistical power (then use FDR).
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Main issues from a Bayesian perspective (my summary):

1) FWER (family wise error, e.g., Bonferroni) is the general goal and this is an
issue because it puts sole emphasis on Type | error (even FDR in many
ways);

2) issues with dependent tests;

3) FDR good for very large number of tests but Bayesians may not recommend
it for small numbers.

Bottom line: journals will request multiple testing and routine procedures are
easier to implement and “articulate” than Bayesian ones. So...for the majority of
scientists, Type | error is a really BIG ISSUE and needs to be dealt with using
appropriate adjustments!



What should be corrected for?

Variance and multiple t tests?

- All tests in a paper?

- All tests across all papers within a journal issue?
- All test across all papers within a year

The world is the limit!

Look into this blog (Why you don't need to adjust your

alpha level for all tests you'll do in your lifetime):

http://daniellakens.blogspot.com/2016/02/why-
yvou-dont-need-to-adjust-you-alpha.html

| don’t necessarily agree with everything in there,
but good food for thought!


http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html
http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html

Let’s reflect on statistical errors and decisions:

Which statement is correct? P-values SMALLER than
0.05 are either:

Truly significant OR False positives (i.e., they are
rejected when in reality H, is true = Type | error).

OR

Truly non-significant OR False negatives (i.e., they are
not rejected when in reality H, is false = Type Il error).



Let’s reflect on statistical errors and decisions :

Which statement is correct? P-values GREATER than
0.05 are either:

Truly significant OR False positives (i.e., they are
rejected when in reality H, is true = Type | error).

OR

Truly non-significant OR False negatives (i.e., they are
not rejected when in reality H, is false = Type Il error).



