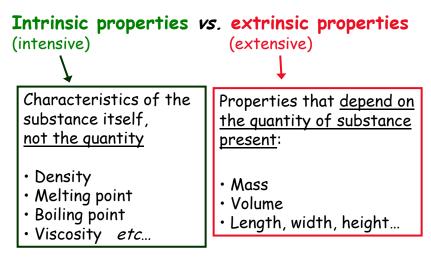
CHEM 205 section 03

LECTURE #2

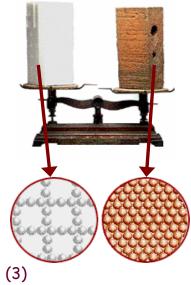
Tues., Jan.08, 2008

ASSIGNED READINGS:


TODAY'S CLASS: continue Ch.1

NEXT CLASS: finish Ch.1, start Ch.2

(1)


Quantitative observations

Properties with numerical values <u>not</u> necessarily reflect the sample's <u>size</u>.

1.4 Physical properties: DENSITY

d = <u>mass</u> volume

How heavy is a given volume of a substance?

Depends on:

- 1.) mass of individual particles (atoms/ions/molecules)
- 2.) how tightly packed together they are in the structure
 - = a characteristic, *intrinsic*, physical property of any pure substance

A very useful intrinsic property: DENSITY IS AN 'IDENTIFICATION TAG'

	Substance	Physical State	Density (g/cm ³)
	Oxygen	Gas	0.00133
	Hydrogen	Gas	0.000084
	Ethanol	Liquid	0.789
	Benzene	Liquid	0.880
	Water	Liquid	0.9982
	Magnesium	Solid	1.74
	Salt (sodium chloride)	Solid	2.16
	Aluminum	Solid	2.70
	Iron	Solid	7.87 ←
	Copper	Solid	8.96
	Silver	Solid	10.5
_	Lead	Solid	11.34
	Mercury	Liquid	13.6
	Gold	Solid	19.32

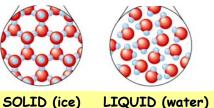
TABLE 1.5 Densities of Various Common Substances* at 20°C

*At 1 atmosphere pressure

From Zumdahl's Chemistry, 6th Edition

Density is affected by temperature FOR MOST SUBSTANCES: density \uparrow as temperature \downarrow WHY? \rightarrow attractive forces between particles are more significant when particles' kinetic energy decreases ⇒ particles move closer together ⇒ volume decreases Must specify temperature when discussing: 1000 ml density • volume See Fig. 1.11 **ND** Disposable 25 mL in 2/10 TD-EX 20°C USA (5) @ 2003 Thomson - Brooks/Cole

H₂O(s) is strange: most solids sink in their liquids


Temperature (°C)	Density of H ₂ O (g/mL)	
0 (solid)	0.917	
0 (liquid)	0.99984	
2	0.99994	
4	0.99997	
10	0.99970	
25	0.99707	
100	0.95836	

Most dense at 4°C

Ice is less dense than liquid water at same temp...

WHY?

When locked in ideal geometry for interaction (as in solid), H_2O molecules are a bit farther apart than in liquid!

From Zumdahl's *Chemistry* 6th Ed.

Problem: Density & jewelry...

You find a silver-coloured ring at a pawn shop and hope to buy it for a reasonable price. You want to know if it silver, or white gold, or platinum, or lead. How could you identify the metal?

Strategy:

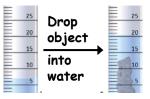
1.) Look up densities of metals.

2.) Gather data:

Measure the ring's mass. Measure the ring's volume.

3.) Calculate its density: d = m/v

Pt	21.5 g/cm ³
Au	19.3 g/cm^3
Pb	11.5 g/cm³
Ag	10.5 g/cm³


(7)

Data collection & solution:

mass of ring = 3.84 g

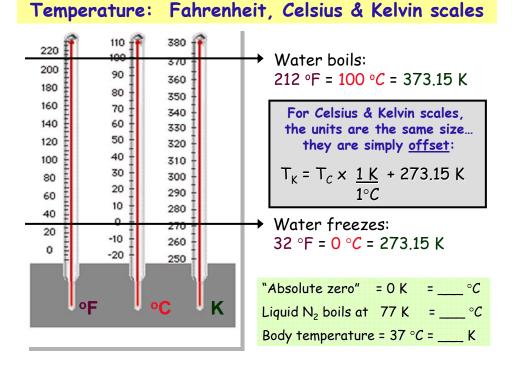
VOLUME: by displacement, since shape is irregular

- initial volume = 13.00 mL
- water + ring = 13.20 mL
- → ring volume = 0.20 mL

CALCULATIONS & ANALYSIS: Density of ring = mass / volume = 3.84 g / 0.20 mL = 19.2 g/mL But, 1 mL = 1 cm³... = 19.2 g/cm³ (8) Closest match is gold...

Pt 21.5 g/cm³ Au 19.3 g/cm³ Pb 11.5 g/cm³ Ag 10.5 g/cm³

1.6-7 Units of measurement & using numerical information


OBSERVING PHYSICAL & CHEMICAL CHANGES:

- 1. Qualitative observations: descriptive
- 2. Quantitative observations: numerical
- A measurement = a quantitative observation consisting of <u>TWO parts</u>

NUMBER + UNIT

20 grams (g) 6.63×10⁻³⁴ Joule seconds (J·s) 6.02×10²³ atoms 93 students

A NUMBER WITHOUT A UNIT IS MEANINGLESS!

SI system: a metric (decimal-based) system of units

base units: gram (g), meter (m), Liter (L), second (s)... use prefixes to denote larger/smaller than base units

	From Zumdahl's <i>Chemistry</i> 6 th Ed see Kotz Table 1.3				
		· · · · · · · · · · · · · · · · · · ·		Exponential	
	Prefix	Symbol	Meaning	Notation*	
	exa	Е	1,000,000,000,000,000,000	1018	
	peta	Р	1,000,000,000,000,000	10^{15}	
	tera	Т	1,000,000,000,000	1012	
	giga	G	1,000,000,000	10^{9}	2
	mega	М	1,000,000	10 ⁶	mmor
	kilo	k	1,000	10 ³	sr
	hecto	h	100	10 ²	
	deka	da	10	10 ¹	
_	—		1	10 ⁰	
	deci	d	0.1	10 ⁻¹	
	centi	с	0.01	10^{-2}	2
	milli	m	0.001	10 ⁻³	omnon
	micro	μ	0.000001	10 ⁻⁶	on
	nano	n	0.00000001	10	
	pico	р	0.00000000001	10^{-12}	
	femto	f	0.00000000000001	10^{-15}	
	atto	а	0.0000000000000000000000000000000000000	10^{-18}	

Dimensional analysis or Unit analysis

Proper use of "unit conversion factors" (... helps guide your leads to proper units in your answer

attack of problems!

Ex.: Interconverting metric units...

The Vehicle Assembly Building at the Kennedy Space Center in Florida has a volume of 3 666 500 m³ (the world's largest building). Convert this volume to liters and express the result in scientific notation.

Remember fundamental metric system definitions... some that may be useful here:

 $1 \text{ cm}^3 = 1 \text{ mL}$ $1L = 1 \, dm^3$ (12)

ANS: V = 3.6665 x10° L

Ex: Counting by weighing - common in chemistry

For a pharmacist dispensing pills or capsules, it is often easier to weight the medication to be dispensed rather than to count the individual pills. If a single antibiotic capsule weighs 0.65 g, and a pharmacist weighs out 15.6 g of capsules, how many capsules have been dispensed?

ANS: 24 capsules

(13)

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read Ch. 1 (all) & work on exercises

& learn to use your calculator: see Kotz p.37

	LABS & TUTORIALS ARRIVE PREPARED:	START THIS WEEK. lab coat, safety glasses lab manual <u>completed</u> Expt. #1 prelab. completed tutorial homework
(1	 CHEM 101 SEMINARS NEXT WEEK. SIGN UP AT CHEMISTY MAIN OFFICE: SP-20 14) 	