CHEM 205 section 03

LECTURE #4

Tues., Jan.15, 2008

ASSIGNED READINGS:

TODAY'S CLASS: start Ch.2

NEXT CLASS: finish most of Ch.2

(1)

CHAPTER 2: ATOMS & ELEMENTS

- 2.1 Atomic Structure: e⁻s, p⁺s, n^os
- 2.2 Atomic Number & Atomic Mass
- 2.3 Isotopes
- 2.4 Atomic Weight
- 2.5 Atoms & the Mole
- 2.6 The Periodic Table
- 2.7 Overview: Elements, Chemistry & Periodic Table
- 2.8 Essential Elements

Chapter Goals:

- Describe the structure of the atom and define atomic number & mass number
- Understand the nature of isotopes and calculate atomic weight from isotope abundances & exact atomic masses
- Explain the concept of the mole and use molar mass in calculations
- Know the terminology of the periodic table

2.1 Development of Atomic Structure: p⁺, n⁰, e⁻

John Dalton's 1803 "Atomic Theory"

(word atom: Democritus)

- 1. All matter is made of atoms.
- 3. A given compound always has the same relative numbers & types of atoms.

→ Atoms are NOT indivisible, since some can fall apart!
 → Understanding of atoms was growing...

(4)

Characterizing the atom: early experiments (~ 1900)

- 1. J. J. Thomson (1856 1940) Nobel prize in Physics, 1906
- Proved the existence of the <u>electron</u>
 - Experiments: to learn structure of the atom
 - Applied high voltage to a cathode ray tube

(5) Zumdahl's Figure 2.7 (see Kotz Fig. 2.3)

Thomson's expt to determine charge of particles

- Applied another voltage: across stream of particles \Rightarrow Particle stream bends towards POSITIVE
- ⇒ IMPLICATION: Particles must be **negatively** charged

Thomson's hypothesis:

Electrons are present in all kinds of matter, in atoms of all elements...

(7)

(8)

Characterizing the atom: early experiments (~ 1900)

3. Eugene Goldstein (1886) \rightarrow protons

When hydrogen gas used: +ve particle with highest charge/mass ratio ⇒ a H atom stripped of electrons = a fundamental positive particle "the proton"

(9) Note: I use "+ve" as an abbreviation of "positive" on my slides (and similarly: "-ve")

Characterizing the atom: early experiments (~ 1900)

- 1. J. J. Thomson (Nobel prize in Physics, 1906) Electrons
- 2. Robert Millikan (1909)
- 3. Eugene Goldstein (1886) } Protons...but where?
- **4. Ernest Rutherford** Nobel prize in Chemistry, 1908
 - Tested Thomson's plum pudding model
 - inconsistent with newly discovered protons...
 - So where ARE these protons?

Rutherford's gold foil experiment

Aimed beam of high energy, massive, +ve charged particles (α -particles) at thin metal foil

REASONING: should pass through "plum pudding"... If deflected \Rightarrow massive +ve particles present

Rutherford's interpretation:

Electrons occupy space outside nucleus. Nucleus of gold atoms Beam of α particles

Atoms in gold foil

A few α particles

Most α particles pass straight through or are deflected very little.

Some particles are deflected considerably.

Kotz Figure 2.6

collide head-on with nuclei and are deflected back towards the source.

HIS CONCLUSION: Atoms have a NUCLEUS of positive charge.

(12)

Characterizing the atom: early experiments (~ 1900)

- 1. J. J. Thomson (Nobel prize in Physics, 1906) Electrons
- 2. Robert Millikan (1909)
- 3. Eugene Goldstein (1886) } Protons
- 4. Ernest Rutherford (1910): the nucleus.
- 5. James Chadwick (1932): neutrons also in nucleus but we won't discuss his experiments...

(13)

LATER ON (CH.7)... WILL LEARN MORE ABOUT ELECTRONS

Particle	Mass	Charge*	<u>Abbrev.</u>					
Electron	$9.11 \times 10^{-31} \text{ kg}$	1-	e⁻					
Proton	$1.67 \times 10^{-27} \text{ kg}$	1+	P⁺					
Neutron	$1.67 \times 10^{-27} \text{ kg}$	None	n ^o					

Zumdahl's TABLE 2.1 The Mass and Charge of the Electron, Proton, and Neutron

*The magnitude of the charge of the electron and the proton is 1.60 \times 10^{-19} C.

Relative masses	"atomic mass	units"	"amu"
------------------------	--------------	--------	-------

- Reference point: ¹²C assigned a mass of *exactly* 12 amu
- Translates into: ¹H has a mass of 1 amu
- How we use it: mass of $1 p^+$ = mass of $1 n^0$ = 1 amu

mass of 1 atom of ${}^{1}H$ = 1 amu = 1 p⁺ + 0 n⁰

(15)

2.2 Atomic symbols: atomic number & atomic mass
1.) Atoms are electrically NEUTRAL: # protons = # electrons
 POSITIVE: charge on nucleus = # protons NEGATIVE: charge on electrons = # electrons are neutral counter each other
2.) Identity of element determined by # of protons in atom
3.) Atomic symbol reveals nuclear composition of atoms
¹² C or C-12 "carbon twelve" Mass number "A" $= \# p^+ + \# n^0$ Atomic number "Z" $= \# p^+ (= \# e^-)$ Atomic number "Z" $= \# p^+ (= \# e^-)$

Element	Latin	Symbol	# p	# e	# n		
sodium	natrium	²³ ₁₁ Na					
gold	aurium	¹⁹⁷ ₇₉ Au					

(16)

2.3 Isotopes have nearly identical chemical properties

ISOTOPES = Atoms with same # protons (∴ same element) ∴ same # electrons BUT <u>different # neutrons</u> (∴ different mass) Hydrogen: mass of 1 atom of ¹H (protium) = 1 amu 1 p⁺ + 0 n⁰

mass of 1 atom of ²H (deuterium) = 2 amu $1 p^+ + 1 n^0$ mass of 1 atom of ³H (tritium) = 3 amu $1 p^+ + 2 n^0$

0	2	a	r	ŀŁ	2	0	r	۱				98.89% ¹² C
												1.11% ¹³ C
												< 0.01% ¹⁴ C

Average atomic mass 12.01 amu

(17)

(18)

Figures from Zumdahl

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read Ch.2 up to / including section 2.4

master *atomic composition, isotopes*

& work on Ch.2 exercises

(21)