CHEM 205 section 03

LECTURE #5

Thurs., Jan.17, 2008

ASSIGNED READINGS:

TODAY'S CLASS: continue Ch.2

NEXT CLASS: finish Ch.2, start Ch.3

(1)

Counting large #s of objects: shorthand units

Unit of convenience	items / unit	Commonly used for						
1 couple	2	people						
1 dozen	12	eggs						
1 gross <i>(= 12 dozen)</i>	144	pencils (at bookstore)						
1 mole <i>(Latin:</i> pile, heap)	6.022×10 ²³	atoms, ions, molecules						

2.5 Atoms & The Mole: the chemists' dozen

Unit of convenience	# of items per unit	Usually used for	Approximate sample size
1 dozen	12	Eggs	Fits in egg carton
1 mole	6.022x10 ²³	Atoms	Fits in your hand

Amedeo Avogadro 1776-1856

Where did Avogadro's number, N, come from?

- Chose a convenient reference sample size: 12 g of pure ¹²C
- Experimentally determined the # of atoms
 - Implication: <u>1 ¹²C atom</u> = <u>12 amu</u>
 6.022×10²³ ¹²C atoms = 12 g

THUS: 1 g = 6.022×10^{23} amu \Rightarrow mass of 1 mole of p⁺ or n⁰

Thus:	the mass number shown for each element	on
	the periodic table has dual meaning:	
	1.) mass of 1 atom, in amu	
	2.) mass of 1 mole of atoms, in grams	S ← PRACTICAL

Using atomic masses: counting by weighing

- No single atom of an element has "average atomic mass"
- BUT...we call it "atomic mass"
- AND...we use average mass for calculations

Don't COUNT atoms: WEIGH them & calculate # using average mass

How many atoms of carbon are in your pencil's "lead", which is GRAPHITE, C(s)?

- Estimate: 7.0 g of graphite, C(s)
- Atomic mass: C = 12.01 g/mol

Which sample has more atoms in it? 103.5 g of lead, Pb(s) OR 0.5000 mol of zinc, Zn(s)

(5)

"Mendeleev's dream"...

(there's a cool book by this name...from chemistry's ancient Greek roots through to alchemy & finally developing into modern science...very interesting & reads like a novel...quite fun.)

Dmitri Mendeleev:

- Argued that element properties are periodic functions of their atomic weights...
- Developed the modern periodic table.
- We NOW know that element properties are periodic functions of their ATOMIC NUMBERS.

(see p.332 for more on Mendeleev)

(6)

2.6 The Periodic Table:

organized according to \underline{both} atomic number (Z) & properties

Periods or rows (horizontal): Z increases left \rightarrow right

E	Elements with similar properties are in vertical "groups"																	
1 1A	<u> </u>	Groups in red boxes: 1A - 8A "main group" elements Groups in blue box: 3B - 8B, 1B, 2B "transition" elements															18 8A	
1 H	2	2 2.A		Num A/B i	berin n U.S	g of g .A. (group older rld (p	s / fa syste	milie: em) IPAC	S:	em)		13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	1	$\frac{4}{Be}$								12	5 B	6 C	7 N	8 O	9 F	10 Ne		
11 N:	. 1	12 Mg	3B	4B	5B	6B	7B		8B		1B	2B	13 Al	14 Si	15 P	16 S	17 Cl	18 A r
19 K		20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 RI	5	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 C:	5	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 B i	84 Po	85 At	86 Rn
87 Fi		88 Ra	89 Ac [†]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uut						

(8)

"IUPAC" = International Union of Pure & Applied Chemistry

General trends in <u>PROPERTIES</u>:

	~		NONMETALS															
(1 H)+	METALS METALLOIDS															2 He
ſ	3 Li	4 Be		5 6 7 8 9 B C N O F														
	11 Na	12 Mg	,				13 Al	14 Si	15 P	16 S	17 Cl	18 Ar						
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub				-		

(9)

Broad classification by properties

Element class	Where in periodic table?	Characteristic physical properties							
METALS <i>e.g.,</i> Fe	left side MOST ELEMENTS	 conduct heat & electricity malleable, ductile, lustrous (shiny) exist as atomic SOLIDS (except for Hg = liquid) 							
NONMETALS e.g., S	right side (21 of ~112)	 insulators, non-malleable dull solids; liquids; gases many exist as diatomic molecules: I₂, H₂, N₂, Br₂, O₂, Cl₂, F₂ <u>"I have no bright or clever friends"</u> 							
METALLOIDS B, Si, Ge, As, Sb, Te	Along border b/w metals & nonmetals	 some properties of metals & some of non-metals very ambiguous behaviour 							

(10)

Become familiar with the elements (Fig. 2.10) Group 7A Bromine — Br roup BA, Noble Gases Group 6A Sulfur — S (top) Selenium — Se (bottom) Ne <u>Tas</u>k for each element here: Group 3A Boron — B (top) Aluminum — Al (bottom) Group 5A Nitrogen — N₂ (top) Phosphorus — P (bot Locate on P. Table • Classify as metal vs. Group 1A Lithium — Li (top) Batassium — K (bet non-metal up 21 See section 2.7: •Find 2 properties of each (phys./chem.) roup 2A •Write symbol of elemental form *e.g.*, oxygen $O_2(g)$ & compare your answers with a classmate

2	2.7 An overview of the elements, by group																	
Go	al:	Get	a fe	eelin	g fo	r ele	pert	ies	Noble									
	All	kali		fo	found in nature in elemental form, or only as compounds? <i>i.e.</i> , Reactive towards									gases				
	me	tal	5			air 8	s wa	ter,	or n	ot?			Н	alog	jen	5		
н	2 2A	_	Alk	ali		13 3A	14 4A	15 5A	16 6A		He							
3 Li	4 Be	K	Earth B C N O F													10 Ne		
11 Na	12 Mg	3	met	ajs	6	7 Fransitio	8 on metal	9 s	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 A r	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra	89 Ac [†]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub							

Group 7A: the halogens: F,Cl, Br, I, At

- Exist as diatomic molecules: F₂(g), Cl₂(g), Br₂(I), I₂(s)...
- Quite reactive...
- React violently with alkali metals to form ionic compounds (salts)

Group 1A: Alkali metals Li, Na, K, Rb, Cs, Fr

- Elemental form: soft silvery "atomic" metals, M(s)
- All are violently reactive towards water & air (& halogens)
 E.g., K(s) + H₂O(l) → H₂(g) + KOH(aq) + energy! burns!
- THUS: In nature, found only as cations, M⁺ e.g. in NaCl

Reaction of potassium metal K(s) with water 2

Cutting sodium metal Na(s) is like cutting cold butter

(15)

Group 2A: Alkali earth metals Be, Mg, Ca, Sr, Ba, Ra

- Elemental form:
 - Highly reactive metals...
- In nature: found only in compounds, as M²⁺ cations *e.g.* in CaCO₃ limestone →

(16)

Next: the more diverse "main groups"

less coherent sets of properties

	& Hydrogen																	
	1 H	2 2A	(spl	lit pë	ersol	nalit	y)	13 3A	14 4A	15 5A	16 64	17 7A	2 He					
Ì	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
	11 Na	12 Mg	3 4 5 6 7 8 9 10 11 12 Transition metals AI Si P S S B C C C C C C C C C													17 Cl	18 A r	
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac†	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
((17)																	

Hydrogen: the most common element in the universe

- Exists as H₂(g): a colourless lighter-than-air gas
- Main component of stars ...minor component of air
- In most reactions, forms H⁺ ion (loses its electron, like alkali metals do)
- In some reactions, forms H⁻ ion (gains an electron, like halogens do)
- Highly combustible

The sun is mostly H₂

Shuttle's main engines use H_2 and O_2 as fuel

(18)

Group 3: B, Al, Ga, In, Tl

Boron: only metalloid in Gp.3

- In nature: as mineral, borax
 - ionic: Na₂B₄O₅(OH)₄
 - cleaning agent, antiseptic
- B can be converted in lab to other forms (see Ch.9):

Boron halides BF₃ & BI₃ Highly reactive

Aluminum:

- Most abundant metal in earth's crust (in ionic compounds...)
- In many minerals, gems

Refined Al(s) has many uses...

(19)

Group 4A: C, Si, Ge, Sn, Pb

Carbon:

- Elemental form: 3 allotropes (different forms of pure element)
- Solids with large molecular structures

Carbon in nature: elemental forms uncommon

in covalent compounds: organic substances, coal, biomolecules
 (20)ionic compounds: carbonates (limestone...)

Group 5A: N, P, As, Sb, Bi

Nitrogen:

- ³/₄ of air = N₂(g)
- very unreactive
- In compounds:

fertilizer

Later in course:

 Proteins, DNA, & other biomolecules

Ammonia: used as

Ammonia, NH₃

see basic correlation between reactivity & structure...

Found as phosphate (ionic)

Phosphorus:

& in biomolecules (e.g., DNA)

Elemental forms highly reactive

2 allotropes:

White phosphorus

Brandt 1669: boiled urine for weeks... & isolated elemental phosphorus (!?!)

Group 6A: O, S, Se, Te, Po radioactive

Oxygen: colourless gas

- O₂(g): 20% of air
- Quite reactive...
 - Reacts so strongly with many substances, lots of energy is released
 Feeds "combustion"
 - · reeds compustion
- Most abundant element (as compounds...) in earth's crust
- Allotrope: O₃ = ozone

Compounds of S, Se,Te typically very smelly & very toxic... yet S & Se are essential to life • S = component of amino acids cysteine & methionine

Sulfur: yellow solid

S(s) forms at volcanoes →

Most react with air (oxidation), but not violently: rusting of Fe Most elemental transition metals can be easily handled (23)

2.8 Essential Elements

So important to life, deficiency in any ONE will result in death, severe developmental abnormalities, chronic ailments...

Major elements:

99.9% of all atoms in human body are the following 'light' elements:

Trace elements:

 V, Cr, Mo Mn, Fe, Co, Ni, Cu, Zn

Abundance

(ppm)*

41,000

5,600

950

190

160

100

80

75

68

50

Element

Titanium

Manganese

Zirconium

Vanadium

Chromium

Nickel

Cerium

Copper

Zinc

Iron

- B, Si, Se, F, Br, I, As, Sn
- Often crucial for function of specific proteins, enzymes, vitamins...

Relative quantities ~mimic relative abundances in earth's crust...

(24)

Iron: essential for oxygen transport

- Hemoglobin = the protein that carries oxygen in the blood
- Located inside red blood cells
- Requires Fe to function properly
- · Fe deficiency: fatigue, infections, mouth inflammation...
- A sample exam problem:

In the blood of an adult human, there are approx. 2.60×10^{13} red blood cells, containing a total of 2.90 g of iron. On average, how many iron atoms are present in each red blood cell?

(25)

ANS = 1.20×10^9 atoms/rbc (3 SF)

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read all of Ch. 2 master the *mole* concept & calculations & work on Ch.2 exercises

Memorize the first 20 elements... (periodic table on midterm exam will not include them!)