CHEM 205 section 03

LECTURE #6

Tues. Jan.22, 2008

ASSIGNED READINGS:

TODAY'S CLASS: up to 3.2

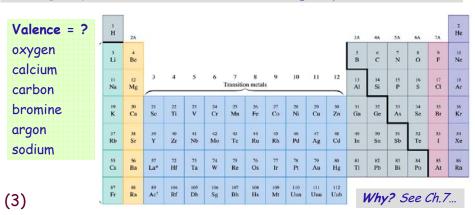
NEXT CLASS: 3.3 - 3.4

http://faculty.concordia.ca/rogers

(1)

CHAPTER 3: MOLECULES, IONS, AND THEIR COMPOUNDS

- 3.1 Molecules, Compounds & Formulas
- 3.2 Molecular Models
- 3.3 Ionic Compounds: Formulas, Names & Properties
- 3.4 Molecular Compounds: Formulas, Names & Properties
- 3.5 Formulas, Compounds & the Mole
- 3.6 Determining Compound Formulas
- 3.7 Hydrated Compounds


CHAPTER GOALS (see p.97)

- Interpret, predict & write formulas for ionic & molecular compounds
- Name compounds
- Understand some properties of ionic compounds
- Calculate & use molar mass
- Calculate % composition & derive formulas for compounds from experimental data

Valence electrons determine chemical properties...

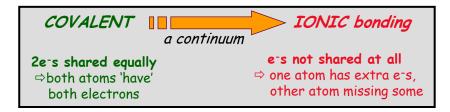
- e- cloud = part of atom that interacts with surroundings
 - valence electrons = outermost "shell" of e-s on atom
 - valence shells of atoms can intermingle ⇒ form bonds
 - # valence e-s determines element's reactivity

Main group elements: # valence e-s = group # ("A/B" system)

WHY & HOW do atoms bond to each other?

WHY: To fill their valence shell

= to have same # valence e⁻s as a NOBLE GAS


Atoms are most stable when have same # e⁻s

as nearest noble gas.

Li tends to mimic He
O tends to mimic Ne
Cl tends to mimic Ar...

HOW: Atoms fill their valence by...

- 2. Stealing electrons
- 3. Giving away electrons FORMING IONS

Covalent bonding occurs between nonmetals

- Atoms share valence electrons: "co-valent"
- Collection of atoms joined by covalent bonds is called a MOLECULE

= basic unit of a molecular compound

Individual molecules move independently

Nonmetals bond covalently in elemental form & in compounds:

Seven nonmetallic ELEMENTS exist as diatomic molecules:

"I Have No Bright Or Clever Friends" $I_2(s)$, $H_2(g)$, $N_2(g)$, $Br_2(l)$, $O_2(g)$, $Cl_2(g)$, $F_2(g)$

> Fluorine F_2

White phosphorus

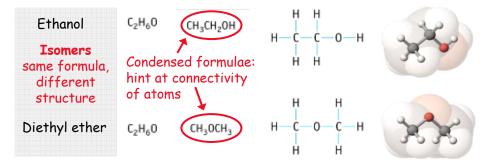
Sulfur

Ammonia NH₃

3.1-3.2 Different ways to represent molecules (Fig.3.2)

Molecular formula: indicate elements present using symbols # of atoms of each type using subscripts

Methane: CH₄



Structural formula / Perspective drawing

Ball-and-stick Space-filling model

model

More complicated molecules:

Identifying compounds (via their formulae) as MOLECULAR vs. IONIC

- formed when nonmetals react with each other (in more advanced courses, see transition metals too, but not now!)
- definitely molecular if FORMULA looks like:

Nonmetal + Nonmetal

H₂O

*PF*₅

 $C_6H_{12}O_6$

- often (but not ONLY)
 formed when metals & nonmetals react
- definitely ionic if FORMULA looks like:

Metal + Nonmetal

LiF

NaCl

 $MgBr_2$

(7)

ASSIGNED READINGS

■ BEFORE NEXT CLASS:

Read Ch. 3 up to 3.4

& work on Ch.3 exercises

Memorize the first 20 elements... (periodic table on exams will not include them!)