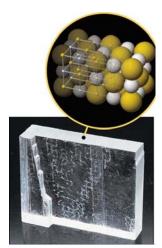
CHEM 205 section 03

LECTURE #7 Thurs. Jan.24, 2008

ASSIGNED READINGS:

TODAY'S CLASS: up to 3.4


NEXT CLASS: finish Ch.3, start Ch.4

(1)

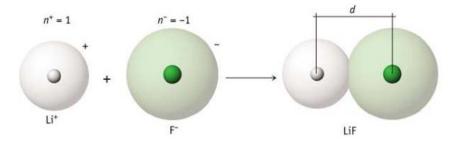
3.3 Ionic Compounds: Formulas, Names & Properties

An ION

= atom or group of atoms with net positive or negative charge

In ionic compounds:

- Ions arranged in crystal lattice
 - ordered, closely packed, 3-D array
 - each ion surrounded by nearestneighbours of opposite charge
- Charges countered, not cancelled
- Crystal as a whole is neutral


Fig.3.11

IONIC bonding = electrostatic attraction between oppositely charged IONS

COULOMB'S LAW: governs force of attraction

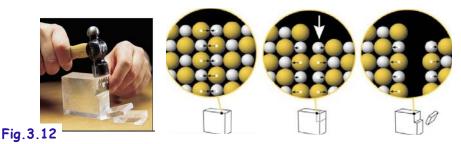
 $F = k \frac{(n^+ e)(n^- e)}{d^2}$

n+ n- = charges on cation & anion e = actual charge on an electron d = distance between ion centres k = a proportionality constant

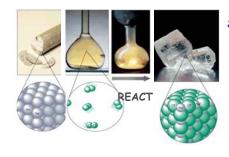
ion charges $\uparrow \Rightarrow$ attraction \uparrow ion sizes $\uparrow \Rightarrow$ attraction \downarrow

Learn about estimating ion sizes later...

Properties of ionic compounds


- High melting points
 - Ions must overcome MANY individual ionic bonds (high E needed)

NaCl Na+ & Cl-ions m.p. 804 °C **MgO** Mg²⁺ & O²⁻ ions m.p. 2800 °C



- Brittle, crystalline solids
 - Impact ⇒ push like charges together ⇒ repulsion ⇒ CLEAVAGE

Where do ions come from? ...atoms lose / gain electrons

		# p+ = # e-	NEUTRAL	ATOM
Metals	Lose e- ⇒	# p+ > # e-	POSITIVE	"CATION"
Nonmetals	Gain e⁻ ⇒	# p+ < # e-	NEGATIVE	"ANION"

Sodium + chlorine
$$\rightarrow$$
 sodium chloride
2 Na(s) + $Cl_2(g) \rightarrow$ 2 Na $Cl(s)$

Keeping track of the electrons:

$$2 \text{ Na} \rightarrow 2 \text{ Na}^+ + 2 \text{ e}^-$$

 $Cl_2 + 2 \text{ e}^- \rightarrow 2 \text{ Cl}^-$
 $2 \text{ Na}(s) + Cl_2(g) \rightarrow 2 \text{ NaCl}(s)$

Aton	n	Loss/Gain	# p⁺	# e-	CHARGE	Name	Symbol
23 11 N	a	Lose 1 e-	11	10	+1	Sodium ion	Na⁺
35 17 C		Gain 1 e-	17	18	-1	Chloride ion	CI-

Predicting ion charges: for monatomic (single atom) ions

- Main group elements: lose/gain to achieve empty/full valence
 - metals → cations: M^{(group#)+}
 - nonmetals → anions: E^(8-group#)-

Sn & Pb also form 4+ cations

- ■Transition metals: more possibilites, harder to predict \cdot M^{2+} & M^{3+} are common (see below)
- 1A 7A 8A Metals 2A 3A 4A 5A 6A Transition metals 02-Metalloids N^{3-} Li+ Nonmetals Mg²⁺ S2-Na⁺ Al^{3+} 5B 6B 7B 4B 2B 1B Cr²⁺ Mn²⁺ Fe²⁺ Co²⁺ Ni²⁺ Cu+ Se²⁻ K+ Ca²⁺ Br⁻ Zn²⁺ Fe³⁺ Co3+ Cu²⁺ Sr²⁺ Sn²⁺ Te²⁻ Rb+ I^- Ag⁺ Hg₂^{2.} Cs+ Ba² Pb²⁺ Bi3+

Formulas of ionic compounds: ZERO NET CHARGE

- Principle of electroneutrality:
 Ions present in ratio that yields zero net charge in crystal
- USEFUL: can predict formula if know ion charges
 trick: cross-multiply charges to find common denominator yields formula with correct balance of + & charges

Ion Combination M ^{m+} & E ⁿ⁻	Ion ratio required for neutrality $M_{m+} = \frac{1}{2} \text{ since } (n \times m)^{+} + (m \times n)^{-} = 0$	Compound's formula M _n E _m
K⁺ & N³-	$[3 \times (1+)] + [1 \times (3-)] = 0$	K ₃ N
Ti ⁴⁺ & O ²⁻		
		Al ₂ O ₃

An ionic compound's NAME indicates BARE ESSENTIALS:

- 1.) identities of ions present
- (7) 2.) sufficient information to deduce # of each

Naming ions: monatomic cations ⇒ element name

METAL -
$$n e^- \rightarrow M^{n+}$$

- n = *G*roup #
- charge # 1st, then sign

Na⁺ sodium ion Al³⁺ aluminum ion

Fe²⁺ iron(II) ion $\}$ Specify charge IF >1 charge possible Fe³⁺ iron(III) ion $\}$ i.e., transition metals...

FYI: old system for metals with variable charge

Higher charge: Latin root + "-ic"
Lower charge: Latin root + "-ous"

 Cu^{2+} copper(II) = cupric ion, Fe³⁺ iron(III) = ferric ion Cu^{+} copper(I) = cuprous ion, Fe²⁺ iron(II) = ferrous ion

NOTE symbol convention: charge written with # first, then sign

Naming ions: monatomic anions

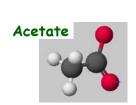
⇒ element root + "-ide"

NONMETAL + $n e^- \rightarrow E^{n-}$

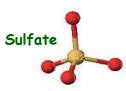
n = (8 - Group #)
 charge # 1st, then sign

Group 4A	Group 5A	Group 6A	Group 7A
C ⁴⁻	N ³⁻	O ²⁻	F-
	P ³⁻ , phosphide	S ²⁻	CI-
		Se ²⁻ , selenide	Br-
		Te ²⁻ , telluride	I-

NOTE symbol convention: charge written with # first, then sign


Some ions are polyatomic


- Like molecules:
 - · covalent bonding within unit
- Unlike molecules:
 - net charge on whole unit (superscript...)
 - WHY? Sometime during its formation, an atom gained/lost electrons



Naming ionic compounds: 1st cation, then anion

a) Binary Ionic Compounds (composed of 2 elements)

Specify charge ONLY if variable

Formula	Name
CoCl ₃	
	potassium phosphide
FeBr ₂	

b) Compounds containing polyatomic ions (memorize - next...)

Brackets & subscript to indicate multiple	Formula	Name
•	(NH ₄) ₂ CO ₃	
do NOT use () for monatomic ions		sodium phosphate

CHEMISTS SPECIFY ONLY AS MUCH AS NECESSARY IN NAMES:

- ionic compounds: never specify # of each ion present
- reader must apply the concept of electroneutrality

CATION: Positive Ion			
mr +			
NH ₄ ⁺	ammonium ion	ammonium ion	
ANIONS: Negative Ions	Many polyatomic anions	contain OXYGEN:	"oxoanions"
Based on a Group 4A e	element		
CN-	cyanide ion	Based on a (Group 7A element
CH ₃ CO ₂	acetate ion	CIO-	hypochlorite ion
CO ₃ ²⁻	carbonate ion	ClO ₂	chlorite ion
HCO ₃	hydrogen carbonate io	on ClO ₃	chlorate ion
	(or bicarbonate ion)	${ m ClO_4}^-$	perchlorate ion
Based on a Group 5A e	lement	Based on a t	transition metal
NO_2^-	nitrite ion	CrO ₄ ²⁻	chromate ion
NO ₃	nitrate ion	Cr ₂ 0 ₇ ²⁻	dichromate ion
P0 ₄ ³⁻	phosphate ion	$Mn0_4$	permanganate io
HP0 ₄ ²⁻	hydrogen phosphate ic	on 🥽	
H ₂ PO ₄	dihydrogen phosphate	ion $\langle \cdot \rangle$	
Based on a Group 6A e		Oxognions aka ox	vyeniene:
OH-	hydroxide ion		
SO ₃ ²⁻	sulfite ion	 negative charge 	
S0 ₄ ²⁻	sulfate ion	· can cancel out -	
HSO ₄	hydrogen sulfate ion (or bisulfate ion)	making covalent	Dona to H

Polyatomic ions containing oxygen: "oxoanions"

Trend for nonmetals: set of oxoanions varying # of Os prefix/suffix to specify # of Os

Thomasina	Per	ate
Increasing		ate
oxygen		ite
content	Нуро	ite

IO ₄ -	Periodate ion
IO ₃ -	Iodate ion
IO2-	Iodite ion
IO-	Hypoiodite ion

- Oxoanions containing hydrogen:
 - · add "hydrogen" before name of oxoanion
 - hydrogen phosphate HPO₄²⁻
 - · dihydrogen phosphate H₂PO₄-
- Many have common names too: using prefix "bi"

 - hydrogen sulfate
 hydrogen sulfite
 HSO₄ bisulfate ion
 HSO₃ bisulfite ion
 - hydrogen carbonate HCO₃- bicarbonate

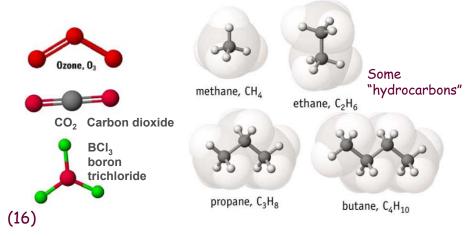
(13)

Polyatomic ion memory aid: by central atom, on P. Table

Memorize unique ions & -ates ⇒ deduce rest using oxoanion rules if add H⁺, reduce -ve charge

	4 <i>A</i>	5 <i>A</i>	6 <i>A</i>	7 <i>A</i>
	Carbon	Nitrogen	Oxygen	Halogens
Transition		NH ₄ ⁺		
metals	CH ₃ COO-		OH-	
	CO ₃ ²⁻	NO ₃ -		
	_	NO ₂ -		
CrO ₄ ²⁻		PO ₄ 3- PO ₃ 3-	50 ₄ ²⁻	CIO ₄ -
CrO ₄ ²⁻ Cr ₂ O ₄ ²⁻		PO ₃ ³⁻	50 ₃ ²⁻	CIO ₃ -
				CIO ₂ -
MnO ₄ -				CIO- (same for Br & I)

Some practice with polyatomic ions


Compound	Ion Combination	Formula
		(NH ₄) ₂ 50 ₃
silver perchlorate		
		Ni(HCO ₃) ₂
iron (II) phosphate <i>OR</i>		
ferrous phosphate		

NAMES OF COMPOUNDS CONTAIN THE BARE ESSENTIALS:

- never specify # of each ion present
- specify charge for variable-charge transition metals
- deduce ion ratio by applying concept of electroneutrality

3.4 Molecular compounds: Formulas, Names and Properties

- Atoms bound together by covalent bonds
- Molecular compounds generally contain only nonmetals
 - Molecules containing transition metals are very interesting...
 ...but we won't see them in Chem205

Molecular compounds: Properties (Physical & Chemical)

- Depend on degree of attraction between individual molecules...
 - Compared to electrostatic interactions between ions, intermolecular interactions are quite weak
 - Learn more about this near end of course... & Chem 206
- Unlike ionic compounds: highly variable properties
 → gases, liquids, solids...

More common for larger/heavier molecules

→ because of heavier atoms and/or larger # of atoms

- Even though atoms in molecules usually have full valence shell, molecules can still be very reactive!
 - E.g., halogens: F_2 , Cl_2 ... would rather share e^-s unequally or better yet, not at all $(\rightarrow ions)$

(17)

Binary Covalent Compounds = between 2 nonmetals

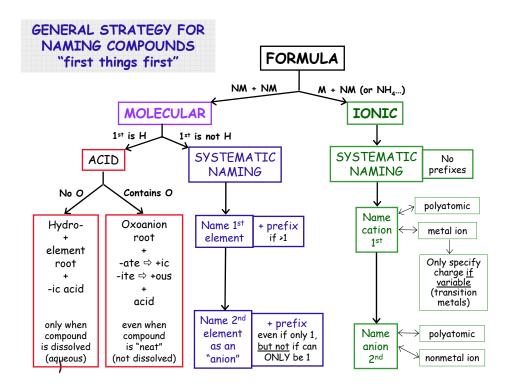
NAMING: in order seen in formula

- 1st element: named first, same as cations
- 2nd element: named same as anion (... but isn't)

Difference from ionic compound names

- Can't deduce #s via neutrality (...no ions!)
- Must specify #s of atoms using prefixes
- Exception: don't use mono- for 1^{st} element NOR when 1 is the only option

P₂O₅ **di**phosphorus **pent**oxide NO₂ CO


· · · · · ·	,
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8
nona	9
deca	10

Prefix Means...

HBr hydrogen bromide (= a gas)

H can only form 1 bond \Rightarrow could only be 1 Br \Rightarrow omit 'mono'

Note: When hydrogen halide gases are dissolved in water ⇒ ACIDS named as "hydrohalic acids" due to striking properties

PRACTICE: names & formulae for compounds

IONIC or

MOLECULAR?

NAME THESE:

CaCO₃ limestone

N₂O laughing gas

 $Fe(OH)_3$ a component of rust

 $Ca_3(PO_4)_2$ mineral component of bone

CIO₂ a disinfectant

PROVIDE FORMULAE FOR:

sodium cyanide

xenon hexafluoride

copper(II) nitrate

carbon disulfide

(20)

ASSIGNED READINGS

■ BEFORE NEXT CLASS:

Read rest of Ch. 3

& work on Ch.3 exercises

Practice naming/formulae of compounds

(21)