CHEM 205 section 03

LECTURE #8

Tues. Jan.29, 2008

ASSIGNED READINGS:

TODAY'S CLASS: finish Ch.3

NEXT CLASS: most of Ch.4

(1)

3.5 Formulae & molar masses of compounds

- Molar mass (MM) = mass (g) of one mole of substance
 - For ionic compounds: MM also called formula weight, F_w
 - $\,\cdot\,$ For molecular cmpds: MM also called molecular weight, M_w
- To calculate MM: must know chemical formula
 - Consider mole ratio of elements given in formula
 - Subscripts indicate #moles of element per mole of compound
 - Add up atomic masses (mass per mole of atoms) for each element...taking into account #moles of each in compound...

CaCl₂ MM = (1 mol x 40.078 g/mol Ca) + (2 mol x 35.453 g/mol Cl) = 110.984 g/mol

Caffeine $C_8H_{10}N_4O_2$ MM = 194.201 g/mol

NEXT: How to experimentally determine formulas...

How do we find elemental composition by exp't?

Exploit a known reaction

start with known mass of reactant

Zumdahl's Fig. 3.5: A schematic diagram of a combustion analyzer

EXAMPLE: What is the formula for Aspirin?

Given: Elemental Analysis data: 60.0% C, 4.4% H, 35.6% O Molar mass measurement (for expt, see Chem206): ~ 180 g/mol

Mass %	Mass in 100 g	MM (g/mol)	Moles	Ratio	Whole # ratio
60.0% C	60.0 g	12.01	5.00	2.24	8.96
4.4% H	4.4 g	1.00	4.4	1.97	7.88
35.6% O	35.6 g	16.00	2.23	1.00	4.00

Sample calculations, for carbon:

		Ratio: Normalize	Whole # ratio:
Mass of C	Moles of C:	to least abundant	multiply all ratios
in 100g sample: 60.0% × 100.0g = 0.600 × 100.0g	<u>60.0g</u> 12.01 g/mol = 5.00 mol	element <u>#mol C</u> = <u>5.00</u> #mol O 2.23 = 2.24	by same integer coefficient, to convert all to whole #s
- 00.0 y		4	

EXAMPLE: What is the formula for Aspirin?

Given: Elemental Analysis data: 60.0% C, 4.4% H, 35.6% O Molar mass measurement: approx. 180 g/mol

Mass %	Mass in 100 g	MM (g/mol)	Moles	Ratio	Whole # ratio
60.0% C	60.0 g	12.01	5.00	2.24	8.96
4.4% H	4.4 g	1.00	4.4	1.97	7.88
35.6% O	35.6 g	16.00	2.23	1.00	4.00

Rounds to: $C_9H_8O_4$

Empirical MM = 180.17 g/mol Matches experimental MM \therefore Molecular formula = $C_9H_8O_4$

(6)

Empirical Formula Determination: Strategy Given: elemental composition data Goal: find mole ratio of elements present

- 1 Determine mass of each element in your sample.
 - if given mass % data, but no sample mass: use 100 g
 - if given mass of each product formed: see Ch.4...
- Determine #moles of each element in your sample. 2.
- 3. Normalize the mole data: divide each mole value by the least abundant element's value ⇒ gives MOLE RATIO of elements, relative to one of them.
- 4. Scale to whole numbers: multiply each normalized mole value by the smallest integer (SAME FOR ALL!) that yields a whole number for each element.
- RESULT: smallest whole number mole ratio of elements = empirical formula.

(7)

EASIEST TO USE A TABLE.

Empirical formula (= simplest) vs. Molecular formula

Glucose:

molecular formula: C₆H₁₂O₆ 180.158 g/mol empirical formula: CH₂O 30.026 g/mol

molecular formula = (empirical formula)_n [n = an integer]

Experimental mass % data ⇒ empirical formula

- Fine for ionic compounds... BUT...
- Molecular formulae NOT ALWAYS same as empirical
- Need: experiment to measure MM (see Chem 206)
- Calculate ratio: MM (measured by experiment) MM (empirical formula weight)
- Multiply empirical formula by ratio to find molecular formula

(8)

3.7 Hydrated compounds

- Many compounds can have water molecules become trapped inside their crystal lattice
 - Common for ionic solids isolated from aqueous solution
 - Some substances asborb H₂O from air: called "hygroscopic"
 - # of H₂O's trapped per mole of substance varies for different substances: represented by M_mE_n•×H₂O ← a hydrated compound
 - "Waters of hydration" can be driven off by heating (*i.e.,* can find x...)

RED/PINK **CoCl**₂·×H₂O Hydrated cobalt(II) chloride

(9)

Figure 3.17

BLUE CoCl2

"Anhydrous" cobalt(II) chloride

How many waters of hydration were there? (must do expts...)

EXAMPLE: What is x in CoCl₂·xH₂O ? Given: Elemental Analysis data: 24.77% Co, 29.80% Cl

Rest must be $H_2O!$

Mass %	Mass in 100 g	MM (g/mol)	Moles	Ratio	Whole # ratio
24.77% Co	24.77	58.93	0.4203	1.000	1
29.80% Cl	29.80	35.45	0.8406	2.000	2
45.43% H₂O	45.43	18.02	2.521	6.000	6

Formula: CoCl₂·6H₂O Cobalt(II) chloride hexahydrate

Determining how many waters of hydration: by dryingSample final exam questionwork must be shown...

A 4.450 g sample of hydrated lithium iodide, $\text{Li}I \cdot x H_2O$, is dried in an oven. When the anhydrous salt is removed from the oven, its mass is 3.170 g. What is the value of x?

		~
Δ	nc	
<i>r</i> \	1131	<u> </u>

(11)

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read rest of Ch. 3 & Ch. 4 sections 4.1-4.2

Master Ch.1-3 material & exercises

 Practice: naming/formulae of compounds determining mass % & formulae balancing chemical equations