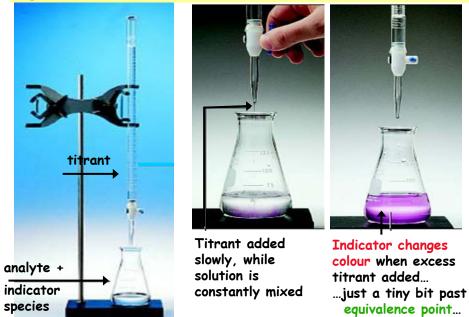
CHEM 205 section 03	
LECTURE #14	Tues., Feb.26, 2008
LECTURE TOPICS:	
TODAY'S CLASS:	continue Ch.5
NEXT CLASS:	finish Ch.5, start Ch.7
MIDTERM EXAM:	Tues. March 4 th during class Ch.1-5 (all) but not 20.1 see sample MTs on website

(1)

TITRATIONS: using solution stoichiometry...

Volumetric analysis: How much analyte "X" is in a sample?

- Consume X via quantitative reaction with known stoichiometry
- Measure volume of *titrant* solution required to consume all of X
 - Thus: X = limiting reactant
 - Use stoichiometry: calculate amount of X originally present


REQUIREMENT FOR ALL TITRATIONS:

Moment when reaction is <u>exactly</u> complete (*equivalence point*) must be **accurately** indicated somehow (*end point*)

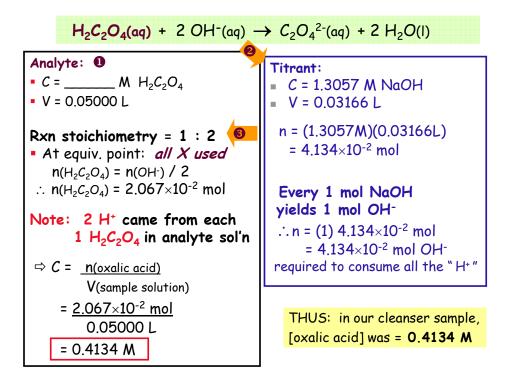
NOTE:

- · Commonly used with acid-base rxns (often 1:1 stoichiometry)
- BUT: can be used for <u>any</u> rxn where stoichiometry is known
- (2) · IMPORTANT: do <u>not necessarily</u> have 1:1 ratio of reactants!

Fig.5.20: Titration of an acid with a base

Quality control application of titration...

A production lot of an oxalic acid based cleanser is being analyzed via titration with NaOH(aq). No other acids are present. Sample volume: 50.00 mL Phenolphthalein end point: 31.66 mL of 1.3057 M NaOH Calculate the [oxalic acid] in the cleanser, in mol/L.


 $H_2C_2O_4(aq) + NaOH(aq) \rightarrow ?$

$$H_2C_2O_4^{2-}(aq) + 2Na^{+}(aq) + 2OH^{-}(aq) \rightarrow C_2O_4^{2-}(aq) + 2Na^{+}(aq) + 2H_2O(I)$$

weak acid

OH- will pull off its H*s...

(4) NET IONIC EQUATION:

$$H_2C_2O_4(aq) + 2 OH^-(aq) \rightarrow C_2O_4^{2-}(aq) + 2 H_2O(l)$$

5.5 Gas-Forming R×ns: net formation of gas (easy to see...) Many types of chemical r×n can produce gaseous products:

Gas-forming REDOX (e⁻-transfer) rxns:
 certain metals + acid → "dissolved" metal + GAS
 Mq(s) + 2H⁺(aq) → Mq²⁺(aq) + H₂(g)

- Gas-forming ACID-BASE (H⁺-transfer) rxns: • sometimes the A/B rxn product is a GAS $NH_4Cl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(1) + NH_3(g)$
 - products of some A/B rxns can DECOMPOSE (details next...) $CaCO_3(s) + 2H^+(aq) \rightarrow Ca^{2+}(aq) + H_2O(I) + CO_2(g)$

THUS: any gas-forming rxn should be described by also identifying the type of chemistry involved

Limeston	e + acid rain	: CaCO ₃ (aq)	+ $HNO_{3}(aq) \rightarrow ?$
	Ac	arbonate salt	A strong acid (very weak bond to H ⁺)
	Ca ²⁺ (aq) + C	CO3 ²⁻ (aq) + 2H	$^{+}(aq)$ + $2NO_{3}^{-}(aq)$ \rightarrow
	Anions of weak acids are weak bases, & can accept H*s	H ₂ CO ₃ (aq) - Carbonic acid (stronger bon	
	from acids		s if CO_2 dissolves in H_2O that rxn is reversible
Net ionic A/	B rxn: CO3 ²⁻ (ad	$_{\rm q}$) + 2H ⁺ (aq) \rightarrow	H ₂ CO ₃ (aq)
Carbonic aci	d is unstable:	$H_2CO_3(aq) \rightarrow$	$CO_2(g) + H_2O(\ell)$
Overall net r	xn: CO ₃ ²⁻ (aq)	$) + 2H^{+}(aq) \rightarrow$	$CO_2(g) + H_2O(\ell)$
	ulan anuation. liu		" the sector state sector

5.6 Types of solution rxns: what drives them to occur?

Reactions are "product-favoured" (go nearly to completion) if the products are:

- Particularly stable (compared to reactants) OR
- Able to 'escape' from the ⇒ solids ppt out...

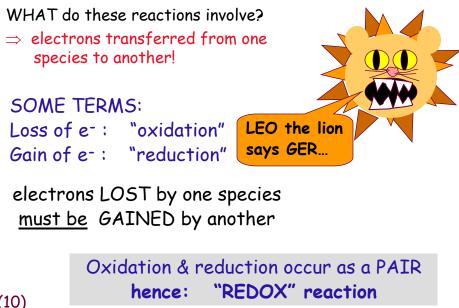
gases bubble out...

Reaction type	What happens	Driving force
Precipitation	Ion exchange	Formation of an insoluble compound
Acid-base (neutralization)	Proton transfer	Formation of new, stronger covalent bond to H⁺ ⇔ usually forming water
Gas-forming	Various	Evolution of a gas
Oxidation- reduction	Electron transfer	Products more stable than reactants <i>(discuss these rxns next)</i>

Predicting which type of rxn will occur in soln...

- Precipitation ("pptn") rxns involve ion exchange only
- Acid-base rxns involve forming a new covalent bond to H⁺ H⁺ moves from acid to base...so both reactants must be there...

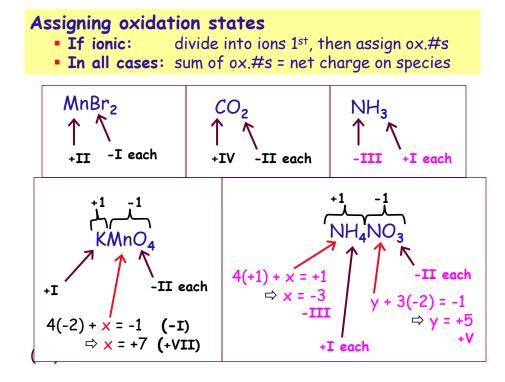
species are present in the reactant	 Q2: What happens? Strong electrolytes: use ion-exchange trick if products soluble & ionic ⇒ "NO RXN" If acid & base react: products likely soluble (new strong A or B)
--	--


 $HNO_3(aq) + CsI(aq) \rightarrow No$ base \Rightarrow Ion exchange only. Ppt forms?

 $NH_3(aq) + HCl(aq) \rightarrow Acid-base rxn.$ Product soluble?

NaOH(aq) + CaBr₂(aq) \rightarrow No acid \Rightarrow Ion exchange only. Ppt forms?

(9)


5.7 Oxidation-reduction (redox) reactions

Characteristic chemical feature of redox rxns = electrons transferred from one species to another
$\begin{array}{c} \text{loses} \\ \text{electrons} \end{array}^{K(s)} & + & H_2O(l) \\ & \uparrow \\ \text{must be} \\ \text{gaining ers} \end{array} \xrightarrow{KOH(s) + & \frac{1}{2} H_2(g) \\ & \uparrow \\ \text{now } K^+ \\ \text{the ers?} \end{array} $
EXAMPLES: when ions are formed from elements (& vice versa) but can also involve only covalent compounds
$\begin{array}{c} \label{eq:charge} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
How do we know: • if a process involves electron transfer? • which substance loses <i>vs.</i> gains electrons?

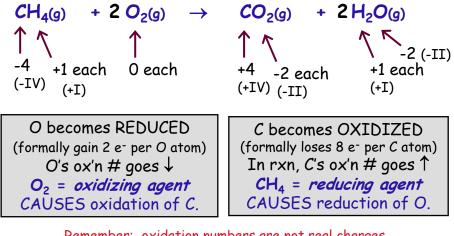

Keeping track of e ⁻ s is important	OXIDATION STATE (o • every atom is assigned an i • denoted using roman numer	maginary charge
anion: extra	ions: oxidation state matches o a e-s ⇔ -ve ox.# ing e ⁻ ⇔ +ve ox.#	harge So, in Fe ₂ O ₃ ?
	pds: "pretend " ionic!(sum "cha s: 2e ⁻ <u>shared</u> between 2 atoms	rges" = 0)
•	s: e⁻s shared equally : look "normal" ⇔ ox.# = 0	I_2 , H_2 , O_2 , N_2 etc FOR EACH ATOM, ox'n state = 0
 Polar bonds: e⁻s shared unequally pretend atom with stronger pull on e⁻ has <u>both</u> e⁻s 		<u>oth</u> e⁻s
 ⇒ ox.# = -ve (like anion) <u>pretend</u> other atom has <u>neither e</u>- ⇒ ox.# = +ve (like cation) 	WATER: H ₂ O H ox'n state = +I O ox'n state = -II	

TABLE 4.2 Rules for Assignin	g Oxidation States	(Zumdahl)
The Oxidation State of	Summary	Examples
• An atom in an element is zero	Element: 0	$\operatorname{Na}(s), \operatorname{O}_2(g), \operatorname{O}_3(g)$
• A monatomic ion is the same as its charge	Monatomic ion: charge of ion	Na^+ , Cl^-
 Fluorine is -1 in its compounds 	Fluorine: -1	HF, PF ₃
 Oxygen is usually -2 in its compounds Exception: peroxides (containing O₂²⁻) in which oxygen is -1 	Oxygen: -2	H ₂ O, CO ₂
• Hydrogen is +1 in its covalent compounds	Hydrogen: +1	H ₂ O, HCl, NH ₃
Ox.# = Same as CHARGE on mo	st common ION !!!	Kotz? p.200

A CLASSIC REDOX REACTION: Combustion

Burning substances in presence of oxygen... ...especially organic compounds --- *e.g.*, natural gas

Remember: oxidation numbers are not real charges they just help us keep track of e⁻s...

(15)

Recognizing	redox agents		'n (e- loss): ox. #↑ 'n (e- gain): ox. #↓
 Oxidizing agent = oxidant contains "high" ox. state atom(s) relative to that element's preference causes others to be oxidized (steals e⁻) itself becomes REDUCED 		 Reducing agent contains "low" ox. state atom(s) relative to that element's preference causes others to be reduced (gives away e⁻) itself becomes OXIDIZED 	
Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0 ²⁻ , oxide ion or 0 combined in H ₂ 0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H ₂ 0 or other molecule
Halogen, F_2 , Cl_2 , Br_2 , or I_2	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
HNO ₃ , nitric acid	Nitrogen oxides* such as NO and NO ₂	C, carbon (used to reduce metal oxides	CO and CO ₂
Cr ₂ O ₇ ²⁻ , dichromate ion	Cr ³⁺ , chromium(III) ion (in acid solution)		
MnO ₄ , permanganate ion	Mn ²⁺ , manganese(II) ion (in acid solution)		

Recognizing redox reactions: change in ox.#s

- Obvious" clue:
 - Substance in elemental form on one side of reaction equation...but not on the other...

 $Pb(s) + PbO_{2}(s) + 2H_{2}SO_{4}(aq) \rightarrow 2Pb(SO_{4})_{2}(s) + 2H_{2}O(I)$

- Not-so-obvious cases:
 - Assign oxidation #s for all elements do any change?

$$\begin{split} \text{K}_2\text{CO}_3(\text{aq}) + & 2\text{HIO}_4(\text{aq}) \rightarrow 2\text{KIO}_4(\text{aq}) + & CO_2(g) + \text{H}_2O(l) \\ & (\text{This one's not redox...}) \\ & 5C_2O_4^{2-}(\text{aq}) + & 2\text{MnO}_4^{-}(\text{aq}) + & 16\text{H}^+ \rightarrow \\ & & 2\text{Mn}^{2+}(\text{aq}) + & 10CO_2(g) + & 8\text{H}_2O(l) \\ & (\text{This one is redox...}) \end{split}$$

(17)

Summary: common types of solution reactions

- Precipitation reaction = Ion-exchange reaction
 ⇒ if new salt(s) less soluble, solid precipitates out
 BaCl₂(aq) + Na₂SO₄(aq) → BaSO₄(s) + 2NaCl(aq)
- Acid-base reaction = H⁺ transfer reaction
 ⇒ base takes H⁺ from acid; both become "neutralized"

 $\begin{array}{rcl} \mathsf{KOH}(\mathit{aq}) + \mathsf{HNO}_3(\mathit{aq}) \to & \mathsf{KNO}_3(\mathit{aq}) + \mathsf{H}_2\mathsf{O}(\mathit{l}) \\ \mathsf{NH}_3(\mathit{aq}) + & \mathsf{HBr}(\mathit{aq}) \to & \mathsf{NH}_4\mathsf{Br}(\mathit{aq}) \end{array}$

 Oxidation-reduction reaction = e⁻ transfer r×n ⇒ oxidizing agent takes e⁻ from reducing agent

 $\begin{array}{rcl} 2\mathrm{Na}(s) &+ & C\mathrm{I_2}(g) \rightarrow & 2\mathrm{Na}\mathrm{CI}(s) \\ \mathrm{Fe_2O_3}(s) &+ & 2\mathrm{AI}(s) \rightarrow & 2\mathrm{Fe}(s) + & \mathrm{AI_2O_3}(s) \end{array}$

 (18)
 Gas-forming rxn = any rxn yielding net production of gas chemistry involved usually redox or acid-base

Practical twists to stoichiometry problems:

CAN I REMOVE THE TOXIC Pb2+ FROM A WASTE SOLUTION?

- Via a precipitation reaction: choose reactants?
- Given a certain mixture, which reactant is limiting?
- Assuming 100% yield, how much solid product forms?
- What are the concentrations of all species left in the solution after the precipitation is complete? (spectator ions? excess reactants?)

CAN I REMOVE THE HARD-WATER SCUM FROM MY BATHTUB?

- Find a rxn that converts solid to a soluble salt...
 If scum = metal hydroxide salt...reacts with acid!
- Will all the starting material end up "dissolving"?
- If not, how much remains unreacted?
- How much reactant would we need to add to react away all the insoluble material?

See tests on website for examples of many types of questions!

House-cleaning stoichiometry... (modified from MT F2004)

Oxalic acid $(H_2C_2O_4)$ is commonly used to remove rust (*e.g.*, Fe₂O₃) from household surfaces like toilet bowls and bathtubs:

 $Fe_2O_3(s) + 6H_2C_2O_4(aq) \rightarrow 2Fe(C_2O_4)_3^{3-}(aq) + 6H^{+}(aq) + 3H_2O(\ell)$

(a) What type of reaction is this?

Precipitation? Acid-base? Redox? Gas-forming?

(b) Imagine your toilet bowl has accumulated 0.685 g of $Fe_2O_3(s)$. If you treat it with 500 mL of a 0.100 M oxalic acid solution, will all of the rust be removed from the toilet bowl or will some remain? Show calculations to justify your choice...

ASSIGNED READINGS

BEFORE NEXT CLASS:

Read rest of Ch. 5 & 20.1 & work on Ch.5 & 20.1 exercises

- Practice identifying reaction types
- Practice balancing redox reaction equations
- Practice solution stoichiometry problems

MIDTERM EXAM: Tues. March 4 th during class Ch.1-5 (all) but not 20.1 see sample MTs on website
--

(21)

More examples of gas-forming rxns...

 $\begin{array}{l} \mbox{Metal carbonate or bicarbonate + acid } \longrightarrow \mbox{metal salt + } CO_2(g) + H_2O(\ell) \\ \mbox{Na}_2CO_3(aq) + 2 \mbox{ HCl}(aq) \longrightarrow 2 \mbox{ Na}Cl(aq) + CO_2(g) + H_2O(\ell) \\ \mbox{Just saw this...} \end{array}$

 $\begin{array}{c} \mbox{Metal sulfite + acid } \longrightarrow \mbox{ metal salt + $S0_2(g) + H_20(\ell) } \\ \mbox{Na}_2 \mbox{S0}_3(aq) + 2 \mbox{ HCl}(aq) & \longrightarrow 2 \mbox{ NaCl}(aq) + \mbox{S0}_2(g) + H_20(\ell) \\ \mbox{S0}_3^{2^-} \mbox{ picks up } \mbox{H}^+ \colon \mbox{ S0}_3^{2^-} + \mbox{ H}^+ \mbox{ \rightarrow } \mbox{HSO}_3^- \\ \mbox{ then another} \colon \mbox{ HSO}_3^- + \mbox{ H}^+ \mbox{ \rightarrow } \mbox{ H}_2 \mbox{SO}_3 \\ \mbox{ \& this decomposes} \colon \mbox{ H}_2 \mbox{ SO}_3 \mbox{ \rightarrow } \mbox{ H}_2 \mbox{ O} + \mbox{ SO}_2 \end{array} \right) \label{eq:solution} \begin{array}{c} \mbox{Similar to} \\ \mbox{ carbonate salts} \\ \mbox{ salts} \end{array}$

sometimes the A/B rxn product itself is simply a gas:

 $\begin{array}{l} \mbox{Ammonium salt} + \mbox{strong base} \longrightarrow \mbox{metal salt} + \mbox{NH}_3(g) + \mbox{H}_20(\ell) \\ \mbox{NH}_4Cl(aq) + \mbox{NaOH}(aq) \longrightarrow \mbox{NaCl}(aq) + \mbox{NH}_3(g) + \mbox{H}_20(\ell) \\ \mbox{H}^+ \mbox{ removed from } \mbox{NH}_4^+ : \mbox{NH}_4^+ + \mbox{OH}^- \mbox{>} \mbox{NH}_3 + \mbox{H}_2O(\ell) \\ \mbox{(23)} \end{array}$